что такое нейтрино в физике
Где рождаются нейтрино?
Александр Плавин, Юрий Ковалев-мл., Юрий Ковалев-ст., Сергей Троицкий
«Троицкий вариант — Наука» № 10(304), 19 мая 2020 года
Телескоп РАТАН-600 помогает разобраться, где рождаются нейтрино. Иллюстрация Дарьи Сокол, пресс-служба МФТИ
«В ядрах активных галактик», — так ответила на давно беспокоивший астрофизиков вопрос группа российских ученых из Астрокосмического центра ФИАН (АКЦ ФИАН), Московского физико-технического института (МФТИ) и Института ядерных исследований (ИЯИ РАН). Александр Плавин, Юрий Ковалев-мл., Юрий Ковалев-ст. и Сергей Троицкий рассказали «ТрВ-Наука» о сделанном ими открытии.
Нейтрино — трудноуловимые частицы, настолько легкие, что даже их массу до сих пор не удалось измерить. Они легко проходят через нас, через Землю и через любые другие препятствия. Однако чувствительные детекторы могут улавливать нейтрино, которые прилетают к нам из далекого космоса. Уже полвека регистрируются такие частицы, рожденные внутри Солнца. Оказалось, через каждого из нас их пролетает миллиарды в секунду. Намного более редкие, но и более энергичные, нейтрино достигают нас от сверхновых звезд — большая часть энергии от взрыва звезд уносится именно нейтрино.
Самые энергичные нейтрино наблюдаются такими современными нейтринными телескопами, как IceCube на Южном полюсе и детектор на Байкале (Baikal-GVD, основные научные организации — ОИЯИ и ИЯИ). Регулярно обнаруживаются частицы, несущие энергию в несколько петаэлектронвольт (1 ПэВ — единица с пятнадцатью нулями электронвольт). Откуда они приходят, до недавнего времени было неизвестно, и многочисленные поиски источников среди ярких объектов на небе или среди мощных вспышек не давали убедительного результата.
Оптический модуль, установленный на нейтринном телескопе Baikal-GVD. Фото ИЯИ РАН
Как работают нейтринные телескопы? Они используют планету Земля для фильтрации приходящих частиц. Нейтрино, испытывающие только слабое и гравитационное взаимодействие, легко проходят через Землю. Обнаружить их удается во льду на Южном полюсе или в воде озера Байкал. В результате такого взаимодействия рождаются мюоны, они пролетают через лед и воду со скоростью выше, чем скорость света в данной среде. В итоге появляется так называемое излучение Вавилова — Черенкова в видимом свете. И вот эти всполохи света регистрируют фотодетекторы, позволяющие получить для анализа энергию и направление прихода нейтрино, а также момент регистрации этих частиц. Понятно, что эти данные измеряются с какой-то ошибкой. И как всегда в астрономии, точность определения положения на небе (или направления прихода — в случае нейтрино) критически важна. Далее мы еще вернемся к этому вопросу.
Итак, мы сфокусировались на нейтрино, имеющих самую большую энергию, и смогли найти, где они рождаются. Почему это важно и интересно? Дело в том, что нейтрино сверхвысоких энергий (вплоть до энергии хоккейной шайбы, летящей со скоростью 100 км/ч), скорее всего, рождаются в результате взаимодействия релятивистских протонов друг с другом или с излучением. А протон ускорить почти до скорости света очень сложно, ведь это массивная частица. То есть нейтрино высоких энергий — ключик к космическим суперколлайдерам!
Оказалось, что многие нейтрино высоких энергий (мы анализировали энергии больше 0,2 ПэВ) рождаются в самых центрах квазаров, вблизи сверхмассивных черных дыр и релятивистских выбросов вещества из них [1]. Значит, там имеются подходящие условия и энергии для образования таких нейтрино: есть протоны, ускоренные почти до скорости света.
Основная трудность в установлении источников нейтрино — слабое угловое разрешение современных детекторов по сравнению с привычными астрономическими телескопами — типичная погрешность измерения направлений на небе и у IceCube, и у Байкальского телескопа больше градуса. В участки такого размера попадает сразу много далеких космических объектов, и достоверно понять, какой из них ответственен за нейтрино, сложно.
Теоретические предсказания того, что активные галактики являются источниками нейтрино, делались уже давно. Предполагалось, что нейтрино рождаются в их ядрах или на фронтах ударных волн в плазменных облаках на расстоянии килопарсеков от центра. Однако экспериментально это никак не удавалось подтвердить.
Ледяные торосы на оз. Байкал, образовавшиеся из-за сильного ветра, сломавшего ледяной покров водоема. За все 40 лет байкальских экспедиций исследователи столкнулись с таким явлением впервые. Фото Б. Шайбонова (ОИЯИ)
В центрах активных галактик «сидят» массивные черные дыры и ускоряют падающие на них легкие частицы почти до скорости света. Последние выбрасываются в виде наблюдаемых астрономами джетов. Причем, если джет смотрит прямо на наблюдателя, астрономы называют такую галактику квазаром или блазаром. Но могут ли джеты так же ускорить массивные протоны? Напомним читателям, что протон почти в 2 тыс. раз массивнее электрона.
Дело в том, что вместе с нейтрино должны рождаться и фотоны высоких энергий. Соответственно, ученые вели поиск «под фонарем», сравнивая направления прихода нейтрино и фотонов гамма-излучения от квазаров при помощи замечательного космического телескопа Fermi LAT. И тем не менее при массовых попытках по всему небу отождествить приход нейтрино с приходом гамма-фотонов положительный результат получить не удалось. Был найден только один квазар со звучным названием 0506+056 [2]. У него обнаружили гамма-всплеск одновременно с приходом нейтрино. Этому уникальному событию Национальный научный фонд США посвятил большую пресс-конференцию в 2018 году. Но у многих коллег оставались сомнения. Аргумент прост: если ждать 10 лет, как минимум один раз может и «повезти».
Мы подошли к этому вопросу с другой стороны: объединили данные сразу по всем нейтрино высоких энергий, которые увидел IceCube, и сравнили их с массовыми и регулярными наблюдениями в радиодиапазоне. Кажется безумием — при чем тут радио с мизерными энергиями его фотонов по сравнению с гигантскими энергиями нейтрино или гамма-квантов? Да и мы сначала не особенно рассчитывали на успех. И все-таки: в радиодиапазоне излучают горячие джеты плазмы, разогнанной до скорости света. Вдруг они помогут? И помогли!
Именно такой подход позволил обнаружить следующую закономерность: оказалось, что самые яркие квазары «предпочитают» находиться на небе вблизи областей, откуда пришли некоторые нейтрино. Их яркость измерена с помощью международных сетей радиотелескопов — так называемых радиоинтерферометров. Они отфильтровывают всё протяженное излучение и видят только наиболее компактное излучение джетов вблизи центральной черной дыры. Получается, что быстрые протоны не успевают далеко уйти от черной дыры и частично теряют свою энергию, создавая при этом нейтрино в каскаде рождений и распадов других нестабильных элементарных частиц (пионов и мюонов).
Но не всё так просто. Многие «подозрительно яркие» квазары лежали вблизи от места прихода нейтрино, но недостаточно близко, чтобы объяснить различия в их положениях опубликованными случайными ошибками IceCube. Как так? А дело в том, что лед, в котором взаимодействуют нейтрино в IceCube, неоднороден. И в результате, в дополнение к известным случайным ошибкам, имеются систематические ошибки определения направлений прихода нейтрино. Оценить их крайне сложно. Этой информации в научной литературе очень мало. Мы решили оценить такие ошибки из сравнения направлений прихода нейтрино и направлений на ядра квазаров по их самым точным на сегодня радиокоординатам.
В результате систематическая ошибка была оценена примерно в половину градуса. Мы ждали, что группа IceCube с высоты своего понимания особенностей телескопа выступит с суровой критикой этой оценки. Каково же было наше удивление, когда по результатам научного семинара в группе IceCube мы услышали: «Коллеги, возможно, это наилучший способ оценки наших систематических ошибок».
Фото и иллюстрация нейтринного телескопа IceCube. IceCube Collaboration / NSF
Дальше — больше. Кажется логичным предположить, что протоны «легче» ускорить во время вспышек, наблюдаемых от квазаров. Для проверки этого предположения мы использовали результаты многолетних наблюдений большой выборки квазаров на российском радиотелескопе РАТАН-600 Специальной астрофизической обсерватории РАН на Северном Кавказе. И действительно, оказалось, что нейтрино предпочитают приходить в те моменты, когда в квазарах наблюдается всплеск радиоизлучения. Такое поведение можно объяснить только тем, что нейтрино образуются в центрах квазаров.
Почему именно радиодиапазон оказался ключевым для обнаружения источников нейтрино в далеком космосе? Здесь свою роль сыграли сразу несколько факторов: и предельно высокая точность определения координат компактных ядер активных галактик с помощью радиоинтерферометров — лучшая во всей астрономии, и отличное покрытие всего неба измерениями с помощью международных сетей радиотелескопов, и регулярные массовые многолетние и многочастотные наблюдения на уникальном РАТАН-600. Но всё это не сработало бы без красивого и простого эффекта релятивистской аберрации. В результате этого эффекта квазары выглядят ярче, когда их джеты направлены почти точно на наблюдателя. Таким образом радиоастрономия «автоматически отобрала» те активные галактики на небе, чьи джеты смотрят в нашу сторону. А раз вещество излучающих струй разогнано в направлении на нас, то и нейтрино, рожденное релятивистским протоном, летит в нашу сторону.
Внимательный читатель спросит: а как же сопутствующее гамма-излучение, на поиск которого ориентировались другие исследователи? Радионаблюдения указывают на область рождения нейтрино столь близкую к самому центру галактики, что плотность фотонов там может не позволять этому гамма-излучению ее покинуть: фотоны рассеиваются на фотонах. Скорее всего, происхождение наблюдаемого от блазаров гамма-излучения и их нейтрино связаны друг с другом не напрямую.
На этом работа не прекращается — скорее положено начало применению нейтринной астрономии высоких энергий к изучению космических суперускорителей, квазаров. В ближайшие годы ожидается бурное развитие нейтринных телескопов: в частности, на Байкале достраивается установка нового поколения, которая увеличит чувствительность и точность измерения направлений прихода нейтрино. Новый импульс получают наблюдения квазаров как на РАТАН-600, так и на международных радиоинтерферометрах.
Что нас ждет? Первый результат был получен со значимостью 3σ или вероятностью случайного совпадения 0,2%. И как наши, так и независимые оценки коллег уже подтвердили этот результат с большей значимостью (что позволит нам выиграть бутылку коньяка в недавнем споре). В ходе дальнейшей работы мы надеемся разобраться, получаются ли наблюдаемые нейтрино при взаимодействии релятивистского протона и фотона или двух релятивистских протонов? Являются ли релятивистские джеты у квазаров электронными или протонными? Где рождаются нейтрино: совсем рядом с черной дырой или чуть дальше — в начале джета? И как же все-таки ускоряются протоны до таких огромных энергий?
Квантовый мир: как связаны стерильные нейтрино и темная материя?
Самые распространенные частицы природы, за исключением фотонов (частиц света) – это нейтрино. Они не имеют заряда и исходят от Солнца, а также от сверхновых и других космических событий. Более того, около триллиона нейтрино прямо сейчас проходят через вашу руку! Ученые выделяют несколько типов или разновидностей нейтрино: электронные, мюонные и тау-нейтрино, а также надеются на существование четвертого типа – «стерильных нейтрино». Если они действительно существуют, то помогли бы разрешить несколько фундаментальных загадок в физике, например, почему нейтрино имеют массу, в то время как теории предсказывают, что массы у этих частиц быть не должно? Стерильные нейтрино также связывают с таинственный субстанцией, которая заполняет 85% наблюдаемой Вселенной – темной материей, пронизывающей космос. Наличие этих загадочных частиц предсказывали ранее проведенные эксперименты, но вот незадача: теория также предсказывает возможное существование не только «стерильных» нейтрино, но и множества других, дополнительных частиц. Эти нейтрино могли бы взаимодействовать друг с другом посредством своих собственных тайных сил где-то на задворках Вселенной. Но обо всем по порядку.
Квантовый мир скрывает множество тайн, крохотную часть из которых мы пытаемся постичь
Из чего состоит все вокруг?
С точки зрения физики мы состоим из кварков и лептонов. Как объясняет в своем видео для Пост-Науки доктор физико-математических наук Данилов Михаил Владимирович, нейтроны состоят из u-кварков и d-кварков и составляют атомные ядра. Из атомных ядер и электронов образуются атомы, которые затем объединяются в молекулы, образуя абсолютно все, что мы видим вокруг себя.
Согласитесь, довольно простая картина. Электроны в атомах удерживаются за счет электромагнитного взаимодействия, а его переносчик – фотоны. Кварки внутри протона и нейтрона удерживаются за счет сильного взаимодействия, переносчиками которого появляются глюоны.
Бозон Хиггса многое изменил в мире элементарных частиц
За счет сильного взаимодействия протоны и нейтроны удерживаются в ядре атома, а слабое взаимодействие ответственно за переход нейтрона в протон, электрон и антинейтрино. Тут, однако, необходимо отметить, что у каждой частицы есть своя античастица, которая отличается от частицы отрицательным зарядом, – отмечает Данилов.
Но несмотря на столь элегантную и простую на первый взгляд картину, природа не так проста. И доказательством тому служит существование еще одного набора кварков и лептонов, которые физики называют поколениями. Интересно, что эти частицы тяжелее обыкновенных кварков и лептонов, но вокруг нас их нет. Они возникают лишь в редких случаях.
Итак, что мы в итоге знаем о Вселенной?
В природе существуют кварки и лептоны. Кварки принимают участие в сильном взаимодействии, лептоны – нет.
По сути, эти крошечные частицы – фундамент всего, что мы видим. Обнаруженный в 2012 году Бозон Хиггса, кажется, завершил картину, так как именно он дает массу всем остальным частицам Стандартной модели. Подробнее о том, что такое Стандартная модель и как физики дробят материю на атомы, я рассказывала в этой статье, рекомендую к прочтению.
Загадочные нейтрино
Но вернемся к нейтрино. В 1990-х годах во время экспериментов по изучению этих таинственных частиц произошло нечто странное: в детекторе появилось слишком много частиц. В 2002 году ученые начали еще один эксперимент, чтобы выяснить, что произошло. Это испытание также показало удивительные результаты — но по-другому.
Нейтрино – это загадочные квантовые частицы, которые имеют массу, но очень малы и их трудно измерить. Они удивительны, потому что масса, которую они содержат, не учитывается в Стандартной модели, описывающей субатомный мир.
Эти избыточные частицы в ранних экспериментах взволновали ученых. Дело в том, что они выглядели как возможные признаки существования так называемых «стерильных нейтрино», мешающих нормальным нейтринным ароматам (как их поэтично называют физики): стерильные нейтрино взаимодействовали бы с другими частицами только с помощью гравитации, тогда как известные три аромата нейтрино – с помощью слабого взаимодействия.
Физики поэтично называют разные типа кварков ароматами
И все же они могут оказывать влияние на другие нейтрино из-за странного свойства, которым обладают все эти частицы: способности «колебаться» или менять аромат. Частица, например, электронное нейтрино, может превратиться в тау или мюонное нейтрино, и наоборот. Обычно это преобразование происходит, когда нейтрино преодолевают определенное расстояние, но, похоже, оно происходит быстрее в других экспериментах.
Однако в 2013 году существование стерильных нейтрино было поставлено под сомнение, поскольку исследования, проведенные в Институте Макса Планка в Германии по ранней вселенной, не обнаружили их следов, как, например, объясняет в этой связи журнал Quanta.
С тех пор появились предположения о возможности существования не одного стерильного, а множества дополнительных нейтрино, которые могли бы взаимодействовать друг с другом посредством своих собственных тайных сил в месте во Вселенной, которое мы до сих пор не знаем.
В поисках стерильного нейтрино
Детектор нейтрино LSND, расположенный в Национальной лаборатории Лос-Аламоса и мини-ускоритель нейтрино MiniBooNE в Национальной ускорительной лаборатории Ферми (Fermilab) позволили исследователям прийти к удивительным выводам.
Более двадцати лет физики ищут таинственное стерильное нейтрино
Интересный факт
Ранее считалось, что мюонные нейтрино могут превращаться в стерильные нейтрино, а затем в электронные нейтрино – этот процесс может происходить быстрее, чем простое переключение мюонного аромата на электронный.
В своих экспериментах физики генерируют поток мюонных нейтрино и направляют их на детектор, расположенный на расстоянии 470 метров. Детектор – гигантский резервуар, заполненный 170 метрическими тоннами чистого жидкого аргона – ждет, чтобы поймать нейтрино в момент столкновения с ядром одного из атомов аргона. Такие столкновения крайне редки, и единственными их признаками являются вторичные частицы, образующиеся в результате взаимодействия.
Как пишет Scientific American, ученые объявили о результатах, полученных с помощью детектора MicroBooNE 27 октября, заявив, что не увидели никаких признаков, свидетельствующих о наличии дополнительных частиц.
Да, это немного странно, – говорит представитель MicroBooNE Бонни Флеминг из Йельского университета. «В более ранних экспериментах наблюдались дополнительные частицы, похожие на электроны или фотоны», – отмечает он.
Детектор элементарных частиц MicroBooNE
Однако MicroBooNE может гораздо точнее определить направление движения частиц и энергию, которую выделяют частицы. Это означает, что физики могут решить, является ли что-то электроном или фотоном. Настоящий триумф эксперимента заключается в том, что технология работает настолько хорошо.
Тем не менее, исследователи практически уверены в том, что там, где они искали, нет лишних электронов или фотонов, что ослабляет надежды на обнаружение стерильных нейтрино. Если бы мюонные нейтрино могли быстро превращаться в стерильные нейтрино, а затем в электронные нейтрино, электроны появились бы в детекторе.
Детектор находится недостаточно далеко от своего источника, чтобы возникло обычное колебание мюонного нейтрино в электронное нейтрино
Но если нет лишних электронов или фотонов, то что это за избыточные частицы, которые были зарегистрированы LSND и MiniBooNE? Один из вариантов ответа заключается в том, что необъяснимые столкновения нейтрино на самом деле не происходили ни в одном из предыдущих экспериментов и что в случае с MiniBooNE исследователи просто пропустили некоторые помехи внутри детектора в ходе эксперимента.
Детектор находится недостаточно далеко от своего источника, чтобы возникло обычное колебание мюонного нейтрино в электронное нейтрино.
Другие соглашаются. «Очень маловероятно, что в детекторе произошла какая-то ошибка», – рассказал журналистам физик-теоретик Северо-Западного университета Андре де Гувеа. Должен быть новый источник либо электронов, либо фотонов, либо чего-то похожего на электроны или фотоны. Возможно, говорит он, происходит что-то более сложное.
Эти частицы могут распадаться на другие — например, на обычное нейтрино и нечто экзотическое, например «темный фотон» (двоюродный брат обычных фотонов, физики предполагают его существование, однако никаких доказательств их существования на сегодняшний день нет).
Причем здесь темная материя?
И все же, стерильные нейтрино остаются привлекательной перспективой для физиков. Они, вероятно, являются побочным продуктом теорий, пытающихся объяснить, почему нейтрино вообще имеют массу. Более того, эти таинственные частицы могут помочь объяснить, что такое темная материя.
Дело в том, что некоторые виды стерильных нейтрино сами могут быть кандидатами на темную материю, или же быть частью «темного сектора», в котором частица темной материи оказывается связана со стерильными нейтрино или распадается на них. И выяснение того, что происходит в этих экспериментах с нейтрино, может стать первым шагом к ответу на эти более масштабные вопросы.
Это действительно интересно, потому что все очевидные возможности уже проверены, – считают исследователи.
Так как темная материя не вступает в электромагнитное взаимодействие с фотонами света, наблюдать ее непосредственно невозможно
Как предложил Джанет Конрад, физик из Массачусетского технологического института (MIT), и Карлос Аргуэльес-Дельгадо, физик из Гарвардского университета, стерильные нейтрино могут распадаться на набор невидимых частиц: они подтвердили бы существование темного сектора, выведенного в качестве альтернативы невозможности обнаружения «неповрежденных» стерильных нейтрино.
Напомню, что темная материя не состоит из обычных частиц, таких как электроны, протоны или электроны, поэтому считается, что она должна состоять из частицы, не распознаваемой Стандартной моделью.
Исторически стерильные нейтрино были кандидатами для объяснения состава темной материи, поэтому проверка того, что они доминируют в темном секторе с помощью невидимых частиц, которые являются их прямыми потомками, также объяснило бы, почему Вселенная находится в постоянном расширении.
Возможно, ученые вскоре обнаружит нечто такое, что навсегда изменит современную физику
Словом, хорошо то, что у нас есть инструменты для дальнейшего изучения этого вопроса так что, надеемся, что ученые докопаются до сути. Поиск стерильных нейтрино продолжается, следите за новостями и подписывайтесь на наш канал в Telegram, так вы точно не пропустите ничего интересного!
Новости, статьи и анонсы публикаций
Свободное общение и обсуждение материалов
Физика интересна эффектами, которые проявляются на самых крошечных масштабах. Если бы не человеческая любознательность, мир никогда бы не узнал, что снег сос…
Архитекторы, техногиганты, дорожные инженеры, строители, технологи, торговцы и многие другие работают сообща, чтобы представить свои футуристические версии т…
Неподготовленного слушателя квантовая физика пугает с самого начала знакомства. Она странная и нелогичная, даже для физиков, которые имеют с ней дело каждый …
Нейтрино нужно разговорить
Конструирование Байкальского нейтринного телескопа. Фото Б. Шайбонова (ОИЯИ)
Об этом и многом другом журналист Ян Махонин поговорил с доктором физико-математических наук Дмитрием Наумовым, заместителем директора по научной работе лаборатории ядерных проблем Объединенного института ядерных исследований (ОИЯИ) в Дубне.
В интервью он рассказал не только о физике нейтрино, но и о своем жизненном пути, исследовательской и административной деятельности и о том, как институт выжил в девяностые годы и как функционирует сейчас.
Роль нейтрино в эволюции Вселенной и галактик
— Сегодня изучение свойств нейтрино является одним из ключевых направлений исследований физики частиц. Почему?
— Гипотеза о существовании нейтрино была предложена Вольфгангом Паули в 1930-е годы для того, чтобы спасти закон сохранения энергии. Нейтрино выступило на сцену как спаситель этой важнейшей концепции в науке. Позже, когда нейтрино открыли и когда изучили некоторые его свойства, было обнаружено, что физика нейтрино в нашем мире и в «кэрролловском зазеркалье» сильно различается. Это натолкнуло создателей Стандартной модели на идею ее правильного построения. С тех пор прошло уже порядка 50 лет, и физики понимают, что, несмотря на успешность Стандартной модели, остаются две загадки: темная энергия и темная материя. Необходима новая теория. И сейчас надеются, что если мы сможем аккуратно измерить все свойства нейтрино, то оно снова укажет нам путь, на этот раз за пределы Стандартной модели.
— Что мы знаем на данный момент о роли нейтрино в эволюции Вселенной?
— В эволюции нашей Вселенной нейтрино играет довольно серьезную роль. Например, после Большого взрыва, считающегося рождением Вселенной, в первые доли секунды нейтрино вместе с фотонами, электронами, протонами, нейтронами и т. д. образовали «горячий суп» из частиц. Если бы число типов нейтрино в газе было другим, то у этого газа были бы несколько другие свойства, и это привело бы к несколько другой эволюции Вселенной. Нам известно, что масса нейтрино составляет не более одного электронвольта (эВ). Если бы, скажем, масса нейтрино была 50 эВ, то наша Вселенная уже давно сколлапсировала бы обратно в точку, в так называемую сингулярность.
— Какую роль играет нейтрино в возникновении галактик? Претендует ли оно на роль частиц темной материи?
— Согласно современным представлениям, галактики не могли образовываться самостоятельно. Звезды находятся слишком далеко друг от друга, чтобы объединиться в галактику. Возможным решением проблемы является гипотеза темной материи, заполняющей пространство между звездами и усиливающей действие гравитационного поля. Нейтрино по-прежнему играет роль возможного кандидата на роль темной материи. И снова всё зависит от того, какие у нейтрино свойства и масса. Если бы масса нейтрино была слишком маленькая, то такая темная материя приводила бы, наоборот, к тому, что никакие галактики не могли бы образоваться. Если масса нейтрино потяжелее, они могли бы играть роль темной материи.
— Можете ли вы привести такой пример важности нейтрино, который касался бы непосредственно нас всех?
— Рассмотрим наше Солнце. Если бы нейтрино не существовали, то Солнце бы вообще не горело. Самая первая реакция, благодаря которой Солнце зажигается, — это когда два протона сливаются друг с другом, превращаются в дейтрон, позитрон и нейтрино. Без нейтрино такой реакции не было бы, Солнце не горело бы и, соответственно, не было бы жизни на Земле.
— Исследуя нейтрино сверхвысоких энергий, сможем ли мы понять, что было с нашей планетой и с нашей Галактикой в момент их возникновения?
— К ответу на этот вопрос стремится, например, эксперимент Baikal-GVD, который исследует нейтрино с очень большими энергиями. Оказывается, когда образуются галактики, в их центре практически всегда возникает черная дыра. Сначала она небольшая, но постепенно начинает пожирать вещество вокруг и разрастается до миллионов масс нашего Солнца, иногда даже до миллиардов. То есть заметная доля массы всей галактики может сидеть в одной черной дыре.
Эта черная дыра пожирает вещество звезд вокруг себя, постоянно увеличиваясь в размерах. Вещество от этих звезд закручивается вокруг черной дыры, образуя аккреционный диск, нагревается и ярко светится. Это красивое и драматическое явление. Сама черная дыра, конечно, не может излучать свет, но благодаря этому светящемуся газу она становится одним из самых ярких объектов во Вселенной. Газ закручивается в определенной плоскости, и в направлении, перпендикулярном этой плоскости, черная дыра иногда выбрасывает мощную струю газа, которую не смогла «переварить». В этой струе возникает самый мощный ускоритель, который существует во Вселенной. Он ускоряет частицы до совершенно безумных энергий. В том числе там возникают такие прозаические для земных ускорителей частицы, как пионы, каоны и другие, которые ускоряются и при своих распадах частенько дают нейтрино. Мы на Земле такие ускорители построить не можем.
Кроме того, для нас важно слабое взаимодействие нейтрино. Если выстроить миллиард солнц по порядку, одно за другим, нейтрино с энергией 1 млн эВ, пролетая сквозь этот строй, провзаимодействует с веществом всего один раз. Так что оно без проблем покидает область черной дыры, проходит через половину Вселенной и может прийти к нам и принести информацию о том, как и где оно родилось. По пути оно не отклоняется ни электромагнитными, ни гравитационными взаимодействиями.
— Значит, нам больше не нужен обычный телескоп? Мы можем читать информацию о галактиках прямо с помощью нейтрино?
— Есть такие места во Вселенной, про которые мы не сможем надежно ничего сказать без регистрации нейтринного сигнала оттуда. Нейтринная астрономия возможна при условии, что мы на Земле сможем аккуратно установить, откуда к нам пришло нейтрино. А сделать мы это можем потому, что у нейтрино очень большая энергия, и все частицы, которые оно рождает, когда взаимодействует в детекторе, будут лететь строго в том же направлении, откуда нейтрино само пришло. Например, наш байкальский телескоп Baikal-GVD регистрирует черенковское излучение, которое генерируют эти заряженные частицы, и может достаточно хорошо, с точностью лучше одного градуса, определить направление нейтрино. Однако рождение новой науки — нейтринной астрономии — не отменяет обычную астрономию с классическими телескопами, которые остаются лучшими приборами для менее труднодоступных мест во Вселенной.
Скопление галактик Abell 2744 (скопление Пандоры). Распределение массы: галактики — около 5%, газ — около 20% (условно красного цвета, на самом деле он испускает рентгеновское излучение), невидимая темная материя — около 75% (условно синего цвета, на самом деле обнаружена с помощью гравитационного линзирования). Фото из «Википедии»
Физики-теоретики и физики-экспериментаторы
— Исследование нейтрино стоит на перекрестке физики частиц, космологии и астрофизики. В ОИЯИ применяется междисциплинарный подход?
— В ОИЯИ пока мало астрономов или космологов, которые бы занимались исследованием нейтрино. Но мы работаем в большой международной команде, и, конечно, есть коллеги-астрофизики, которые используют наши результаты. В итоге нам не так уж важно, где числится или работает человек. Все эти результаты мгновенно становятся известны, и, действительно, очень важно, что работа ведется в такой междисциплинарной области. Это значит, что результаты, которые мы получаем, изучая нейтрино, переосмысливаются в более глобальном контексте. Это, к примеру, позволяет понять, что происходило во Вселенной в целом, как образовывались галактики, какие механизмы приводили к тому, что возникали активные галактические ядра, как нейтрино проходит через плотное вещество. То есть при помощи этих сверхэнергичных нейтрино мы, фактически, восстанавливаем прошлое, заглядываем примерно на 4–5 млрд лет назад и восстанавливаем тогдашнюю ситуацию.
— В исследованиях нейтрино вы с коллегами придерживаетесь какой-нибудь конкретной теории Новой физики?
— Нет. В этом смысле экспериментальная физика хороша тем, что мы просто получаем экспериментальный результат, а потом теоретики в рамках разных теорий или моделей пытаются этот результат проверить и осмыслить, определить, вписывается ли он в ту или иную теорию или нет. На прецизионное измерение тонких свойств нейтрино нацелен, например, международный проект JUNO (Jiangmen Underground Neutrino Observatory). Это как раз тот самый путь к Новой физике. JUNO уже рутинным образом будет использовать явление нейтринных осцилляций для исследования свойств нейтрино. Важнейшую роль в установлении самого явления нейтринных осцилляций сыграл эксперимент Daya Bay. За это, кстати, многие участники коллаборации Daya Bay были удостоены самой крупной премии в науке — «Прорыв в фундаментальной физике» за 2016 год. Оба этих эксперимента проводятся с ядерными реакторами в Китае, и в обоих принимают активное участие ученые из ОИЯИ.
— Как вы взаимодействуете с физиками-теоретиками? Чешско-французский физик Франтишек Легар, работавший в 1960-е годы в ОИЯИ, делил их на более и менее «полезных» для физиков-экспериментаторов. Вы бы с ним согласились?
— Вообще, разделение на теоретиков и экспериментаторов для меня лично достаточно условное. Более правильно говорить — хороший и плохой физик. Потому что, когда кто-то говорит: «Я экспериментатор, я формулы писать не умею» и вообще не знает, как интерпретировать то, чем он занимается, его заключения для меня не имеют большого значения. И точно так же, когда теоретик говорит: «Я не представляю как измерить то, что я посчитал», это означает, что он не разобрался в явлении. По-моему, если человек понимает физику, он способен объяснить ее на пальцах любому, включая ребенка, и он может предложить метод измерения, пускай самый простой, и понять, как интерпретировать результаты этого измерения. Кто-то лучше пишет формулы, кто-то лучше работает с приборами, но хорошие физики всегда находят общий язык.
Древние античные философы полагали, что можно чисто умозрительно, без эксперимента, понять, как устроена Вселенная. Позже, уже во времена Галилея, ученые осознали, что единственный верный путь — ставить эксперименты. Хорошая теория должна быть способна объяснить не только старый, накопленный материал, но и новый. Наша конечная цель — получить правильную картину физического явления. Современные эксперименты уже, как правило, настолько сложны, что всё то, что мы наблюдаем, всегда нуждается в теоретическом описании. Нельзя, например, сказать, что мы в каком-то эксперименте «увидели» бозон Хиггса. На самом деле мы реконструируем очень косвенные характеристики определенного явления. Мы смотрим на следы, которые оно оставляет.
Точно так же, только еще сложнее, обстоят дела и в астрофизике. Проект Baikal-GVD позволяет нам рассматривать сигналы из оптических модулей. Затем в рамках теоретической модели, которая основана на том, что существует черенковское излучение, мы пытаемся реконструировать направление прилета той или иной частицы. Дальше вместе с теоретиками мы должны понять, где ее источник, какие механизмы могли бы приводить к рождению этих высокоэнергетических нейтрино и так далее. Без теоретиков и теоретического осмысления невозможно получить настоящий результат.
Польза от нейтрино «для народного хозяйства»
— Что вы можете сказать о прикладных исследованиях в области нейтринной физики?
— В какой обстановке проводятся эти эксперименты?
— На Калининской АЭС находятся четыре реактора, и под каждым из них согласно проекту существует пустая комната. ОИЯИ и Институту теоретической и экспериментальной физики (ИТЭФ) благодаря договоренностям с Росатомом было разрешено поставить в эту комнату научное оборудование. Таким образом, получилось создать лабораторию с самым маленьким расстоянием до центра ядерного реактора — порядка 8 метров.
— Там существует надежная защита от всего ядерного излучения. От нейтрино защититься нельзя, но оно и не может навредить здоровью. Детектор массой около тонны может регистрировать огромные потоки нейтрино, собирая большую статистику данных — порядка пяти тысяч событий в день. Один из экспериментов — это поиск стерильных нейтрино, другой — поиск возможного магнитного момента у нейтрино, третий — исследование и измерение вероятности когерентного рассеяния нейтрино на ядре.
— Поясните, пожалуйста, о чем идет речь.
— Процесс когерентного рассеяния весьма интересен, поскольку на фундаментальном уровне нейтрино взаимодействует с протонами и нейтронами, из которых состоит ядро. Еще точнее — с кварками, из которых состоят протоны и нейтроны. Так вот, при энергиях нейтрино порядка нескольких миллионов электронвольт оказывается, что вероятность взаимодействия нейтрино с ядром, содержащим N нейтронов, больше соответствующей вероятности взаимодействия с одним нейтроном в N 2 раз! Этот эффект возникает в результате когерентного сложения амплитуд вероятности и служит замечательной иллюстрацией законов квантовой механики. Недавно этот процесс был обнаружен коллаборацией COHERENT.
— Каково практическое значение таких экспериментов?
Не менее, а, может быть, даже более важна польза от развития технологий, связанных с исследованием нейтрино, необходимых для того, чтобы сделать следующий шаг в науке.
— То есть с помощью нейтрино можно осуществлять контроль за ядерной безопасностью?
Методика, использующая нейтрино для оценки количества рожденного плутония-239, сейчас в стадии разработки. В рамках международного эксперимента на АЭС Daya Bay в Китае мы с коллегами надежно доказали, что это работает. Мы этот эффект увидели, и в разных научных центрах исследуются возможности его прикладного применения.
Один из восьми антинейтринных детекторов на АЭС Daya Bay в Китае. Фото из «Википедии»
— Как еще может практически применяться нейтрино?
— Поскольку нейтрино довольно слабо взаимодействует с веществом, оно может без проблем пройти сквозь Землю. Но чем больше вещества, тем чаще нейтрино с ним взаимодействует. Более того, число взаимодействий нейтрино внутри нашей планеты будет зависеть от типа атомов тех или иных веществ, от того, сколько протонов и нейтронов в ядрах этих атомов. Никаких других надежных способов проникнуть внутрь и узнать, из каких химических элементов состоит Земля, пока не существует. Для томографии Земли можно использовать атмосферные нейтрино.
— На Землю постоянно падают космические протоны, они взаимодействуют с ядрами азота, кислорода и других элементов атмосферы и рождают пионы, каоны и другие частицы, которые иногда распадаются с рождением нейтрино. Поэтому вся атмосфера светится нейтрино. Со всех сторон они падают на Землю, проходят сквозь Землю, и, если поставить достаточное число детекторов и измерить, сколько нейтрино проходит с той или иной ее стороны, можно просканировать Землю.
— Развитие нейтринной физики сопровождается созданием новых установок и оборудования. Насколько они применимы в других областях науки и в повседневной жизни?
— Любой физический эксперимент, в том числе с нейтрино, находится на переднем крае науки. Соответственно, каждый следующий шаг всегда требует новых технологий. А потом этими технологиями пользуется всё человечество, уже без всякой связи с нейтрино.
— Можете привести пример?
— Скажем, высокочувствительные фотоэлектронные умножители. Их можно использовать в медицине, в томографии.
Нейтринный телескоп на Байкале
— На какой стадии находится строительство Байкальского нейтринного телескопа?
Дмитрий Наумов принимает деятельное участие в создании Байкальского нейтринного телескопа. Фото Б. Шайбонова (ОИЯИ)
— Что конкретно достигнуто?
— В основном силы коллаборации сейчас брошены именно на строительство экспериментального прибора. Параллельно ведутся серьезные работы, связанные с анализом экспериментальных данных. Уже сейчас есть некоторые интересные кандидаты на нейтринное взаимодействие с огромными энергиями.
— Какое значение для вашей работы имеет обнаружение нейтрино ультравысоких энергий в 2013 году в рамках эксперимента IceCube в Антарктиде?
— Это важнейшее открытие играет ключевую роль. Мы теперь знаем, что наш телескоп обязательно увидит нейтрино из космоса, а значит, инвестиции будут не напрасны. Отличные свойства байкальской воды могут позволить нам определить источники нейтрино сверхвысоких энергий.
— Входит ли в ваши планы создание на Байкале полноценной нейтринной обсерватории, сравнимой с IceCube?
— Конечно. На 106-м километре Кругобайкальской железной дороги есть станция, где находится наш нейтринный Береговой центр. Центр серьезным образом модернизируется, появляются новые жилые домики, новая береговая станция для сбора информации с нейтринного телескопа. Там очень красиво, туда приятно будет приезжать, жить там и работать. Он станет очень важным мировым центром нейтринной физики.
Нейтрино из глубин Земли
— Что такое геонейтрино?
— Если копать вглубь Земли, она становится всё более и более горячей. В самом центре Земли находится очень горячее железное ядро. Это знает, наверное, каждый школьник. Но вот почему к центру Земли становится всё горячее — никто не знает наверняка.
Существуют две модели, объясняющие это явление.
Первая: когда планета была еще холодная, более тяжелые элементы начали опускаться вниз, более легкие всплывали к поверхности. В результате такой гравитационной дифференциации начало выделяться тепло, которое нагревало внутренность Земли.
Вторая модель предполагает, что внутри нашей планеты находятся радиоактивные элементы, такие как уран или торий. В распадах этих радиоактивных ядер, как и в ядерном реакторе, выделяется тепло, и оно идет на то, чтобы нагревать планету. Чтобы проверить вторую гипотезу, можно воспользоваться тем, что в таких ядерных распадах обязательно должны рождаться антинейтрино. Если мы сможем увидеть антинейтрино, идущие прямо из глубин Земли с энергиями, характерными для распадов ядер, то мы сможем определить вклад этого механизма в разогрев планеты.
Два эксперимента несколько лет назад обнаружили антинейтрино, идущие из глубин Земли. Это эксперимент KamLAND в Японии и эксперимент Borexino в Италии. В последнем эксперименте принимают участие ученые из ОИЯИ. Хотя само существование геонейтрино надежно подтверждается данными обоих экспериментов, точность измерения потоков пока не очень высока; общее число наблюдаемых событий около двух сотен. Тем не менее это позволяет говорить о том, что такой сигнал есть. Интерпретация результатов экспериментов показывает, что примерно половина тепла Земли приходится на радиоактивные распады ядер. В итоге мы теперь принципиально по-новому понимаем, что происходило с нашей планетой и что находится внутри нее.
Личная история
— Теперь расскажите, пожалуйста, о себе. Откуда вы родом?
— Я родился в Кемерово, но прожил там всего полгода. Моя семья переехала в Иркутск, и там прошли первые двадцать лет моей жизни. Образование я получил в Иркутском государственном университете.
— Так что Байкал — это ваш дом?
— Да, это мое родное место.
— Как Вы попали в ОИЯИ?
— Когда я закончил четвертый курс, к нам в Иркутск приехал профессор Владимир Борисович Беляев из Лаборатории теоретической физики (ЛТФ) ОИЯИ. Он посетил Байкал, организовал у нас семинар, и мой научный руководитель — профессор Александр Николаевич Валл — представил ему меня и мою однокурсницу Нину Шевченко. Владимир Борисович с нами поговорил и пригласил нас приехать в Дубну на дипломную практику.
Так мы оказались в ОИЯИ. После этого я остался в Дубне. Нина тоже некоторое время работала в Дубне. Сейчас она работает в Чехии, в Институте ядерной физики Академии наук Чешской Республики в городе Ржеж, она там успешный физик и регулярно приезжает в Дубну как лектор.
Здание Объединенного института ядерных исследований в Дубне
— Вы учились в девяностые годы. Каковы были перспективы у молодого ученого в ельцинской России? Вы не задумывались об отъезде из страны?
— Для меня девяностые годы — это прежде всего годы моей юности. Поэтому, что бы там ни было, я их вспоминаю с теплотой. Несмотря на то, что материальная ситуация в стране была очень тяжелая, мои родители сделали максимум для того, чтобы я и мой младший брат ни в чем не нуждались. Благодаря родителям мы были окружены большой заботой и уютом.
Однако люди старше меня на десять, двадцать лет должны были зарабатывать деньги сами, и сделать это тогда было очень сложно. В науке это было практически невозможно. Очень многие из-за этого покинули науку, ушли в бизнес или другие области, а те, кто хотел остаться в науке, постарались уехать за границу. Время от времени мы видимся за рубежом. Когда материальная ситуация выровнялась, некоторые из них вернулись в страну, правда, немногие. Например, мой отец как раз относится к поколению, сильно ощутившему на себе реалии девяностых. Он многие годы проработал за границей, зарабатывая на наше счастливое детство. А потом вернулся в Россию и сейчас работает руководителем сектора в ЛТФ ОИЯИ.
— Как в девяностые выживал ОИЯИ?
— Директором в ОИЯИ в то время был сначала академик РАН Владимир Георгиевич Кадышевский, а с 2006 года — академик РАН Алексей Норайрович Сисакян. В девяностые годы основные усилия они тратили на то, чтобы сохранить наш институт. Они понимали, что много людей из ОИЯИ, как и со всей страны, уезжает на Запад, и они, тем не менее, пытались сделать максимум для того, чтобы институт сохранился и чтобы там работала молодежь.
Им удалось это сделать и даже заложить важнейший фундамент для развития ОИЯИ сегодня. Хорошо работающих молодых ученых поддерживали. У нас тогда основным источником дохода были командировочные деньги, которые нам выдавали, когда мы ездили в CERN. Если мы проводили в CERN два месяца, этого в принципе хватало на целый год. Алексей Норайрович с коллегами заложили серьезный фундамент для развития ОИЯИ.
— Почему вы в эти годы не уехали из ОИЯИ и не остались работать на Западе?
— На самом деле, мне в ОИЯИ было интересно. У меня была очень интересная физическая задача, я этим делом занимался с большим удовольствием, и опять же — мои родители меня финансово поддерживали, и я, в принципе, никогда не был в ситуации, когда у меня не было бы денег на еду, на основные нужды.
— Каким примерам вы следовали во время учебы? Вы чувствуете себя сторонником какой-нибудь школы, конкретной традиции, связанной с конкретными личностями?
— В моей жизни, конечно, были люди, которые помогли мне стать тем, кто я есть. Важную роль в моей жизни сыграл мой первый научный руководитель профессор Александр Николаевич Валл. Мне в нем очень импонировало то, что в любом сложном физическом вопросе, которым он занимался, он всегда пытался разобраться настолько, что вопрос оказывался тривиальным. Он его всегда очень по-простому мог излагать. И любую тему он всегда излагал по-своему.
Важнейшую роль в моем становлении сыграл мой отец — физик-теоретик, очень талантливый человек с глубоким пониманием науки и энциклопедическими познаниями.
Очень многому я научился из книг. В студенческие годы я был под сильным впечатлением от американского физика Ричарда Фейнмана. Я читал и изучал его книги. Мне очень нравился и до сих пор нравится его научный стиль, который отличает ясность, простота и отсутствие скуки.
Сегодня развиваться дальше мне помогает общение с моими учениками и молодыми сотрудниками.
— Вы провели несколько лет за границей — во Франции, в Италии.
— После того, как я в Дубне получил степень кандидата физико-математических наук, я решил сделать следующий шаг, еще раз сменить поле деятельности. Во время аспирантуры я занимался экспериментами в CERN с ускорительными нейтрино и достаточно хорошо изучил эту физику. Но потом решил, что надо изучить что-нибудь новое, и это была физика космических лучей, астрофизика. Я подал заявку на постдок-позицию во Францию, в город Анси-ле-Вье (Annecy-le-Vieux), выиграл ее и проработал там полтора года. За это время я выучил французский язык.
Потом я получил постдоковскую позицию для иностранных специалистов в Италии. Я был первым в списке отобранных ученых, поэтому мог сам выбрать город и институт, где работать. Так получилось, что одновременно я выиграл позицию в Германии, в Мюнхене. Несмотря на то, что там предлагали зарплату в полтора раза больше, я выбрал Италию, Флоренцию. С этим городом у меня давние связи. Мой отец тоже там работал, и наша семья там прожила несколько лет. Кроме того, я хотел поработать с моим другом, флорентийцем Серджио Боттаи. Поэтому я решил, что лучше быть на более скромной зарплате, но заниматься делом, которое больше нравится.
— После Вашего европейского опыта чувствуете себя «западником»? Почему вы не уехали из России?
— Я по своему характеру демократически настроенный человек, и мне близки западные ценности. Но близки они мне не потому, что я поработал за границей и «заразился» западными ценностями, а, скорее всего, по складу моего характера. Я за мир, я против коррупции, против всего плохого и за всё хорошее. При всем при этом я люблю свою страну и поэтому вернулся сюда. Еще сравнительно молодым, в возрасте 25–28 лет, я получал довольно заманчивые предложения, например, стать профессором физики в США. Это даже льстило моему самолюбию, но на тот момент я руководил группой молодых ребят в Дубне, и я ни в коем случае не хотел их бросать, так что решил никуда не уезжать и старался здесь, в Дубне, построить свой мир.
Как совместить административную и научную работу?
— Вы начинали в ЛЯП в качестве младшего научного сотрудника, сегодня вы заместитель директора ЛЯП по научной работе. Что вы считаете главным двигателем вашей научной карьеры?
— Я никогда не любил должности и никогда к ним не стремился. Наука — вот единственное, что меня интересовало в научной карьере. Потом, в определенный момент, оказалось, что члены нашего коллектива рассматривают меня как кандидата на позицию руководителя сектора. Я был еще довольно молодым человеком, для меня было удивительно, что кто-то считает, что я мог бы руководить людьми, которые старше меня. В итоге я на этой должности проработал примерно десять лет. Она была в административном смысле довольно скромная, но, тем не менее, я сразу ввел некоторые принципы, которыми руководствовался тогда и которыми руководствуюсь и сейчас, когда занимаю более высокую должность.
— Как вы стали заместителем директора лаборатории по науке, в которой работает порядка 650 сотрудников?
— Профессор Вадим Александрович Бедняков, когда стал директором ЛЯП, пришел ко мне однажды и сказал, что хочет мне предложить, чтобы я в лаборатории отвечал за нейтринную физику на должности его заместителя. Я некоторое время подумал и принял это предложение, хотя для меня это был совсем не простой шаг. Это, конечно, совершенно другая работа, которой я раньше не занимался. Приходится заниматься многими вещами, не имеющими прямого отношения к физике нейтрино. Лазить по крышам, когда они начинают протекать, чердакам, подвалам. Заниматься обновлением парка станков, обновлением производственных и проектных процессов, налаживанием разрушенных связей и созданием новых. Успешная работа большой научной организации требует отлаженных связей многих специалистов и служб. Этой картины я не видел со своей предыдущей позиции. Осознав это, я с энтузиазмом взялся за большой круг задач и продолжаю их тянуть по сей день. Радует, когда видишь, как обновляется наша лаборатория и растет научно-технический уровень сотрудников. Это было бы невозможно без всемерной поддержки дирекции ОИЯИ, а также слаженной работы всего коллектива.
— Вы упомянули о принципах, которыми руководствуетесь в работе. Назовите их, пожалуйста.
— Я не приемлю вещей, связанных с коррупцией, безропотным подчинением, отсутствием свободы, халтурным отношением к делу.
— Вы не боитесь, что на административной должности вам придется частично или полностью пожертвовать наукой?
— В целом, я согласен с тем, что чем выше административная позиция, тем меньше удается заниматься наукой. Конкретная позиция, при которой происходит резкий переход, зависит от многих факторов: самой научной организации, ситуации в стране, мире, от самого человека, в конце концов. Мне повезло в том, что я занимаю довольно высокий пост, но при этом занимаюсь наукой, любимым делом. И заодно могу организовывать людей, вдохновлять их и привлекать, чтобы они этим делом тоже занимались. Если бы этот пост предполагал только административную работу, я бы на него не согласился. Такая возможность требует больших душевных и временных затрат. Нужны также организованность и порядок в работе. Если всё бы приходилось делать в пожарном порядке, то ни о какой науке речи бы уже ни шло.
— Насколько в ОИЯИ выстроена «вертикаль», или наоборот, работают горизонтальные отношения между учеными разных званий и уровней?
— ОИЯИ — институт довольно демократический. В нашей лаборатории ЛЯП демократии даже больше среднего. Любой человек может зайти ко мне или к директору, у нас не надо записываться через секретаря, я большую часть времени общаюсь с людьми, у которых вообще нет никаких должностей, с молодежью, техниками из механических мастерских, инженерами, физиками — мне это без разницы. Главное, чтобы это приносило пользу для дела. И институт, в общем, тоже весьма демократичный. Тут все спокойно горизонтально и вертикально общаются, включая центральную дирекцию, но там, разумеется, они более заняты, постучать к ним в дверь уже не так просто. У директора, академика РАН Виктора Анатольевича Матвеева, календарь на год вперед расписан. Но тем не менее, в каких-нибудь важных ситуациях, даже к нему можно достучаться любому человеку. Строгой армейской иерархии у нас нет.
— Вы долгое время руководили Байкальской международной школой по физике элементарных частиц и астрофизике. Что она собой представляет?
— Байкальская школа — это мое детище. Я эту школу в свое время создал вместе с Александром Николаевичем Валлом. Базируется она в поселке Большие Коты на Байкале. Ее идея была очень простая: когда я встал на ноги в ОИЯИ, то понял, что могу и должен помочь людям из Иркутского университета и в целом из российской провинции заводить связи в научном мире, двигаться и передвигаться по стране и, может быть, по всему миру.
Система, которая существовала в то время в Иркутске и в многих других точках нашей страны, была очень косная, и даже если человек, который заканчивал университет, был очень талантливым и образованным, устроиться ему в родном университете было очень сложно. Новых научных ставок почти не было, а чтобы кого-то устроить, надо было уволить кого-то другого, кто был, скорее всего, даже лучшим специалистом, чем молодой выпускник. И это было бы, конечно, несправедливо. Я видел, что существует какой-то барьер, что человек упирается головой в потолок и выйти невозможно. Поэтому многие талантливые люди либо уходили из науки вообще, либо искали счастье где-то на стороне.
Со мной было бы тоже самое, если бы, по счастливой случайности, профессор Владимир Борисович Беляев не приехал в Иркутск — и я не оказался бы в Дубне. А в Дубне ситуация обратная. Здесь так много научных проектов, что здесь всегда есть потребность в новых кадрах. Мы всегда с большим удовольствием принимали молодежь, у нас и сейчас ее много. Я решил, что надо сделать такую школу, на которую приезжали бы сильные ученые, иностранные и российские, и на очень высоком уровне, с высоким стандартом качества, рассказывали бы о современной физике. И иркутские студенты, и студенты из других российских университетов, в свою очередь, могли бы там учиться, заводить связи, и, таким образом, открывать себе возможности, чтобы найти работу по душе.
— Когда и как вы основали Байкальскую школу?
— Школу мы основали в начале 2000-х годов. У нас не было денег, первые школы проходили буквально на наши суточные деньги, которые мы получали от института. Всё проводилось почти на общественных началах. Наш институт в то время не вкладывал в школу существенных денег, потому что еще не было известно, что из всего этого выйдет. Но довольно быстро Байкальская школа приобрела известность не только в России, но и за рубежом и даже, в определенном смысле, стала стандартом качества. Люди стремились попасть на эту школу, считали серьезным и даже престижным, если они смогут сюда приехать и позаниматься со студентами. В итоге наш институт стал весьма серьезно финансировать это мероприятие. Я был вместе с Александром Николаевичем сопредседателем этой школы 15 лет.
После смерти Александра Николаевича Валла я подумал, что будет правильно, если дам дорогу другим. К тому моменту у меня уже был очень хороший друг — Игорь Иванов, который на эту школу тоже попал сначала как лектор и слушатель, а через некоторое время стал играть важную роль в ее организации. Он очень активный и талантливый физик, блестящий лектор и очень любит преподавать. Через некоторое время я предложил ему поработать членом оргкомитета школы, понял, что он не только блестящий ученый и лектор, но и очень хороший руководитель, и без сомнения передал ему бразды правления. Со стороны Иркутского университета соруководителем был выбран профессор Александр Евгеньевич Калошин. Сегодня они оба руководят школой.
Нам удалось сохранить эту школу на очень высоком уровне потому, что мы стараемся следовать правилу: одного человека больше двух раз не приглашать. Другими словами — мы не приглашаем туда людей отдыхать.
— Является ли ОИЯИ на самом деле организацией с международной правосубъектностью, как говорится в его уставе? А если да, то в чем выгоды и невыгоды такого положения?
— ОИЯИ — полноценная международная организация, несмотря на то, что она находится в России и что большую часть бюджета составляет вклад российского правительства. И, насколько я могу судить, Российская Федерация тоже с большой любовью и уважением относится к нашей организации, старается поддерживать ее статус и оказывает институту высокое доверие, как и остальные страны-участницы. Мы стараемся сделать здесь жизнь такой, чтобы всем людям из разных стран было интересно работать в науке, и стараемся создавать хорошие условия для работы, жизни и для отдыха.
Дирекция ОИЯИ проводит очень большую и важную работу по привлечению новых людей в наш институт, по созданию условий работы, отвечающих духу времени, по модернизации всего института — от инфраструктуры до принципов научной работы. Ситуация за последние пять лет очень сильно изменилась: к нам приезжает довольно много иностранных специалистов, и это говорит о том, что ОИЯИ становится всё более и более привлекательным местом для работы.
— Что можете сказать по личному опыту о стиле жизни и атмосфере, царящей в Дубне и ОИЯИ?
— Я здесь остался, помимо прочего, потому, что мне очень нравится этот город и этот институт. Здесь очень своеобразная, творческая атмосфера, люди любят свой красивый город, вокруг очень много воды. Работаешь в одном из самых важных научных центров в нашей стране и при этом живешь практически на курорте. Что может быть лучше?
— Какие у вас лично отношения с нейтрино? Оно вездесущее, мирное, не может навредить, не конфликтует. Вы дружите?
— Мы не завели личных связей друг с другом — на работе романов лучше не заводить. Однако эта неприступная частица позволила нам понять, что наш мир и «зазеркалье» управляются немного разными физическими законами. Если нейтрино разговорить, оно расскажет много интересного и важного о законах природы и о самых далеких уголках Вселенной. Этого более чем достаточно, чтобы относиться к нейтрино с уважением.
— Спасибо за интересный разговор! Желаю удачи во всех областях вашей деятельности.