что такое нейросети в интернет

Нейросети. Самый полный гайд. Часть 1 для чего нужны нейросети

Всем привет, сегодня мы с вами поговорим о такой области программирования как нейросети. Для чего они нужны, когда их придумали, ну и конечно как они работают. Статья получилась такая большая, что я решил разбить её на три части. В этой части описано для чего нужны нейросети, а если интересно узнать чем всё закончится, или посмотрите ролик, или дождитесь второй и третей части. Вот в ролике всё целиком.

Первая часть. Для чего нужны нейросети.

Для того что бы понять что же такое нейросети и для чего они нужны, нам стоит вообще понять суть решения задач при помощи электронно-вычислительных машин. В общем случае любая задача решается на компьютере в 6 этапов:

1. Постановка задачи. В ходе этого этапа происходит подготовка к решению, а так же запись всех исходных данных и требуемого результата.

2. Формализация. Т.е. запись на каком либо формальном языке процесса превращения исходных данных в результат. Чаще всего это язык математики или формальной логики.

3. Создание алгоритма.

4. Запись алгоритма, на каком либо компьютерном языке.

5. Тестирование и отладка.

6. Проведение расчетов и анализ результатов.

Как видим, три первых пункта вообще никоим образом не относятся к компьютеру. А 6-й пункт уже относиться не столько к программированию, сколько к практике. Теперь и вы наглядно можете видеть, что большая часть программирования – это не столько нажимание на кнопочки, сколько размышления над тем или иным алгоритмом, которые довольно часто сливаются в размышления над смыслом жизни. Так же понятно, что удачные алгоритмы можно создавать и вовсе не знаю ни одного языка программирования. На практике это означает что человеку, который освоил создание программ на одном языке программирования, будет гораздо проще освоить другой язык, чем человеку, который вообще не сведущ в программировании.

Весь этот список, более менее понятен любому человеку. Кроме, быть может, третьего пункта. Если не знать что такое алгоритм нельзя и понять что требуется. Хотя всем нам на интуитивном уровне ясно, что это, но даже немногие программисты знают, что в информатике у этого слова есть довольно чёткое определение.

Пример: «сделай мне бутер», это не детерминированная команда.

Так же в жизни очень многие тру-программисты вовсе не записывают алгоритм отдельно, постоянно держа его целиком у себя в голове. Это привычка о двух концах. С одной стороны она экономит время, с другой стороны из-за неё происходят порой самые глупые и труднонаходимые ошибки. Но в любом случае не записывание алгоритма на бумаге, не означает не создание его в голове. Прежде чем начать клацать на кнопочки, любой человек обязательно создаст алгоритм работы программы у себя в голове.

Кстати для записи алгоритмов есть специальный язык – блок схемы. Большинство из тех кто изучал программирование в учебном заведении его узнает. Остальные, даже вполне успешные программисты, понятия не имеют что это такое.

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Теперь зная об алгоритмах, мы с вами должны ответить для себя на такой вопрос. Можно ли при помощи алгоритмов описать любую последовательность действий, которая не противоречит законам физики и математики. Пример: сможем ли мы написать алгоритм движения боевого шагающего паука-робота, если до этого были очень успешны в написании других алгоритмов. Ответ – да. Если выполнены два пункта из списка выше, то и третий не должен создать проблем. Давайте сейчас вместе попытаемся приступить к решению данной задачи. И всё по науке, по пунктам.

1. Исходные данные и результат.

Исходные данные: Робот – 1 штука. Ноги – 6 штук. Суставы на ногах – 3 штуки на каждой. Степени свободы у каждого сустава – по одной. Начальные координаты каждой ноги и сустава. Начальные углы в суставах робота. Начальная координата центра робота.

Результат: робот сместился на Х метров в указанном направлении.

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

На этом этапе мы должны чётенько расписать опираясь на законы Ньютона куда и когда послать усилие на сервопривод чтобы нога передвинулась в необходимое нам место.

3. Написание Алгоритма.

Теперь зная, куда и когда двигаются ноги, мы должны расписать последовательность их движения, отталкиваясь от взаимного их расположения и координаты куда нам требуется попасть. Алгоритм будет громадный, с кучей разных условий, но он будет работать.

4. Превратим всё это в строчки кода.

5. Зальём в голову микрочип робота.

6. Отправим робота на прогулку.

Да, я вам не сказал что робот у нас запитан не от святого духа, а от энергии, которую вырабатывает топливный генератор. Во время его путешествия, часть топлива сгорела и масса робота стала меньше начальной отчего он потерял равновесие и упал.

Разумеется возникла идея создать такой алгоритм который мог бы подстроится к изменениям прям на ходу. Ведь паук в природе как то передвигается если ему оторвать ногу. Это и было зарождением нейросетей. По сути нейросеть – это такой алгоритм, который не нужно записывать в привычном понимании. Мы строим некую логическую конструкцию с начальными параметрами, а дальше она сама обучается, по каким-нибудь правилам, и принимает решение в каждом конкретном случае самостоятельно, исходя из старого опыта. История возникновения нейросетей отправляет нас прямиком к 1943 год, т.е. нейросети придумали сразу, как только появились ЭВМ. Но вот беда, в те времени один нейрон был размером с холодильник, а для серьёзных задач нейронов требовались сотни и даже тысячи. Почесав затылки, тогдашние программисты и инженеры сказали что мы и так всё сделаем без ваших нейросетей и отринули данную идею. Вновь к нейросетям вернулись только через 30 лет, за это время компьютеры шагнули невероятно далеко, на целых 4 поколения. В 71-м как вы помните, изобрели первый процессор. А в 75-м на этих крутейших по тем временам компам японский программист Кунихико Фукусима создал так называемый когнитрон – нейронную сеть умеющую выполнять логическую операцию «или». Вдумайтесь 30 лет от задумки да простейшей реализации.

Из вышесказанного вытекает и функция нейросетей. Они нужны тогда когда классические алгоритмы плохо справляются с задачей, или же условия задачи могут немного измениться в процессе её выполнения, что потребует новый классический алгоритм.

Примеров применения нейросетей сегодня можно привести целую кучу. Очень популярны в последнее время нейросети распознающие образы. Такие используются в автомобилях Тесла например. Одна нейросеть переводит окружающий мир в 3D модель, а другая управляет автомобилем вместо человека.

Создание искусственного интеллекта – тоже пример использования нейросетей. Голова у Яндекс Алисы, или эпловской Сири, не из классических алгоритмов состоит, а из множества нейрончиков. Именно нейросети распознают вашу речь когда вы спрашиваете что то у гугла, и делают подборку песен, которая вам скорее всего понравиться. А ещё они всё больше вытесняет работников техподдержки, заставляя нас кричать в трубку: «Я хочу поговорить с человеком!». Если честно, всего 6 лет назад когда я смотрел фильм «Элизиум: Рай не на Земле», я и представить не мог себя в ситуации когда я буду спорить с роботом, и просить его переключить на человека. Но я думаю что с подобной проблемой сталкивались уже многие. Сейчас способности ИИ, оставляют желать лучшего, но скорость развития этих гомункулов поражает. И спустя те же 6 лет, человек в тех поддержке будет такой же редкостью, как сегодня использование DVD-дисков.

Несмотря на относительную тупизну, нейросети и сегодня влияют на вашу жизнь, и быть может даже больше чем вы думаете. Именно они решают, дать вам кредит в банке или отказать, какой фильм или музыка вам может понравиться, и какую рекламу вам показать, анализируя ваш сёрфинг интернета, а быть может и подслушавшая за вами через телефон.

Источник

Нейросеть с нуля своими руками. Часть 1. Теория

Здравствуйте. Меня зовут Андрей, я frontend-разработчик и я хочу поговорить с вами на такую тему как нейросети. Дело в том, что ML технологии все глубже проникают в нашу жизнь, и о нейросетях сказано и написано уже очень много, но когда я захотел разобраться в этом вопросе, я понял что в интернете есть множество гайдов о том как создать нейросеть и выглядят они примерно следующим образом:

Более подробная информация разбросана кусками по всему интернету. Поэтому я постарался собрать ее воедино и изложить в этой статье. Сразу оговорюсь, что я не являюсь специалистом в области ML или биологии, поэтому местами могу быть не точным. В таком случае буду рад вашим комментариям.

Пока я писал эту статью я понял, что у меня получается довольно объемный лонгрид, поэтому решил разбить ее на несколько частей. В первой части мы поговорим о теории, во второй напишем собственную нейросеть с нуля без использования каких-либо библиотек, в третьей попробуем применить ее на практике.

Так как это моя первая публикация, появляться они будут по мере прохождения модерации, после чего я добавлю ссылки на все части. Итак, приступим.

Для чего нужны нейросети

В нашем глазу есть сенсоры, которые улавливают количество света попадающего через зрачок на заднюю поверхность глаза. Они преобразуют эту информацию в электрические импульсы и передают на прикрепленные к ним нервные окончания. Далее это сигнал проходит по всей нейронной сети, которая принимает решение о том, не опасно ли такое количество света для глаза, достаточно ли оно для того, чтобы четко распознавать визуальную информацию, и нужно ли, исходя из этих факторов, уменьшить или увеличить количество света.

На выходе этой сети находятся мышцы, отвечающие за расширение или сужение зрачка, и приводят эти механизмы в действие в зависимости от сигнала, полученного из нейросети. И таких механизмов огромное количество в теле любого живого существа, обладающего нервной системой.

Устройство нейрона

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Дендриты нейрона создают дендритное дерево, размер которого зависит от числа контактов с другими нейронами. Это своего рода входные каналы нервной клетки. Именно с их помощью нейрон получает сигналы от других нейронов.

Тело нейрона в природе, достаточно сложная штука, но именно в нем все сигналы, поступившие через дендриты объединяются, обрабатываются, и принимается решение о том передавать ли сигнал далее, и какой силы он должен быть.

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Нейросети в IT

Что же, раз механизм нам понятен, почему бы нам не попробовать воспроизвести его с помощью информационных технологий?

Итак, у нас есть входной слои нейронов, которые, по сути, являются сенсорами нашей системы. Они нужны для того, чтобы получить информацию из окружающей среды и передать ее дальше в нейросеть.

Также у нас есть несколько слоев нейронов, каждый из которых получает информацию от всех нейронов предыдущего слоя, каким-то образом ее обрабатывают, и передают на следующий слой.

И, наконец, у нас есть выходные нейроны. Исходя из сигналов, поступающих от них, мы можем судить о принятом нейросетью решении.

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Такой простейший вариант нейронной сети называется перцептрон, и именно его мы с вами и попробуем воссоздать.

Все нейроны по сути одинаковы, и принимают решение о том, какой силы сигнал передать далее с помощью одного и того же алгоритма. Это алгоритм называется активационной функцией. На вход она получает сумму значений входных сигналов, а на выход передает значение выходного сигнала.

Но в таком случае, получается, что все нейроны любого слоя будут получать одинаковый сигнал, и отдавать одинаковое значение. Таким образом мы могли бы заменить всю нашу сеть на один нейрон. Чтобы устранить эту проблему, мы присвоим входу каждого нейрона определенный вес. Этот вес будет обозначать насколько важен для каждого конкретного нейрона сигнал, получаемый от другого нейрона. И тут мы подходим к самому интересному.

То есть мы подаем на вход нейросети определенные данные, для которых мы знаем, каким должен быть результат. Далее мы сравниваем результат, который нам выдала нейросеть с ожидаемым результатом, вычисляем ошибку, и корректируем веса нейронов таким образом, чтобы эту ошибку минимизировать. И повторяем это действие большое количество раз для большого количества наборов входных и выходных данных, чтобы сеть поняла какие сигналы на каком нейроне ей важны больше, а какие меньше. Чем больше и разнообразнее будет набор данных для обучения, тем лучше нейросеть сможет обучиться и впоследствии давать правильный результат. Этот процесс называется обучением с учителем.

Добавим немного математики.

В качестве активационной функции нейрона может выступать любая функция, существующая на всем отрезке значений, получающихся на выходе нейрона и входных данных. Для нашего примера мы возьмем сигмоиду. Она существует на отрезке от минус бесконечности до бесконечности, плавно меняется от 0 до 1 и имеет значение 0,5 в точке 0. Идеальный кандидат. Выглядит она следующим образом:

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Таким образом сумма входных значений первого нейрона скрытого слоя будет равна

Передав это значение в активационную функцию, мы получим значение, которое наш нейрон передаст далее по сети в следующий слой.

sigmoid(0,22) = 1 / (1 + e^-0,22) = 0,55

Аналогичные операции произведём для второго нейрона скрытого слоя и получим значение 0,60.

И, наконец, повторим эти операции для единственного нейрона в выходном слое нашей нейросети и получим значение 0,60, что мы условились считать как истину.

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Пока что это абсолютно случайное значение, так как веса мы выбирали случайно. Но, предположим, что мы знаем ожидаемое значение для такого набора входных данных и наша сеть ошиблась. В таком случае нам нужно вычислить ошибку и изменить параметры весов, таким образом немного обучив нашу нейросеть.

Первым делом рассчитаем ошибку на выходе сети. Делается это довольно просто, нам просто нужно получить разницу полученного значения и ожидаемого.

Чтобы узнать насколько нам надо изменить веса нашего нейрона, нам нужно величину ошибки умножить на производную от нашей активационной функции в этой точке. К счастью, производная от сигмоиды довольно проста.

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Таким образом наша дельта весов будет равна

Новый вес для входа нейрона рассчитывается по формуле

Аналогичным образом рассчитаем новый вес для второго входа выходного нейрона:

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Итак, мы скорректировали веса для входов выходного нейрона, но чтобы рассчитать остальные, нам нужно знать ошибку для каждого из нейронов нашей нейросети. Это делается не так очевидно как для выходного нейрона, но тоже довольно просто. Чтобы получить ошибку каждого нейрона нам нужно новый вес нейронной связи умножить на дельту. Таким образом ошибка первого нейрона скрытого слоя равна:

error = 0.18 * 0.24 = 0.04

Теперь, зная ошибку для нейрона, мы можем произвести все те же самые операции, что провели ранее, и скорректировать его веса. Этот процесс называется обратным распространением ошибки.

Итак, мы знаем как работает нейрон, что такое нейронные связи в нейросети и как происходит процесс обучения. Этих знаний достаточно чтобы применить их на практике и написать простейшую нейросеть, чем мы и займемся в следующей части статьи.

Источник

Искусственные нейронные сети простыми словами

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Когда, за бутылкой пива, я заводил разговор о нейронных сетях — люди обычно начинали боязливо на меня смотреть, грустнели, иногда у них начинал дёргаться глаз, а в крайних случаях они залезали под стол. Но, на самом деле, эти сети просты и интуитивны. Да-да, именно так! И, позвольте, я вам это докажу!

Допустим, я знаю о девушке две вещи — симпатична она мне или нет, а также, есть ли о чём мне с ней поговорить. Если есть, то будем считать это единицей, если нет, то — нулём. Аналогичный принцип возьмем и для внешности. Вопрос: “В какую девушку я влюблюсь и почему?”

Можно подумать просто и бескомпромиссно: “Если симпатична и есть о чём поговорить, то влюблюсь. Если ни то и ни другое, то — увольте.”

Но что если дама мне симпатична, но с ней не о чем разговаривать? Или наоборот?

Понятно, что для каждого из нас что-то одно будет важнее. Точнее, у каждого параметра есть его уровень важности, или вернее сказать — вес. Если помножить параметр на его вес, то получится соответственно “влияние внешности” и “влияние болтливости разговора”.

И вот теперь я с чистой совестью могу ответить на свой вопрос:

“Если влияние харизмы и влияние болтливости в сумме больше значения “влюбчивость” то влюблюсь…”

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

То есть, если я поставлю большой вес “болтологичности” дамы и маленький вес внешности, то в спорной ситуации я влюблюсь в особу, с которой приятно поболтать. И наоборот.

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Собственно, это правило и есть нейрон.

Искусственный нейрон — это такая функция, которая преобразует несколько входных фактов в один выходной. Настройкой весов этих фактов, а также порога возбуждения — мы настраиваем адекватность нейрона. В принципе, для многих наука жизни заканчивается на этом уровне, но ведь эта история не про нас, верно?

Сделаем ещё несколько выводов:

Смешно, но параметр “влюбчивости” называется “порогом возбуждения”. Но, дабы эта статья не получила рейтинг “18+”, давайте договоримся говорить просто “порог”, ок?

Нейронная сеть

Не бывает однозначно симпатичных и однозначно общительных дам. Да и влюблённость влюблённости рознь, кто бы что ни говорил. Потому давайте вместо брутальных и бескомпромиссных “0” и “1”, будем использовать проценты. Тогда можно сказать — “я сильно влюблён (80%), или “эта дама не особо разговорчива (20%)”.

Наш примитивный “нейрон-максималист” из первой части уже нам не подходит. Ему на смену приходит “нейрон-мудрец”, результатом работы которого будет число от 0 до 1, в зависимости от входных данных.

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

“Нейрон-мудрец” может нам сказать: “эта дама достаточно красива, но я не знаю о чём с ней говорить, поэтому я не очень-то ей и восхищён”

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

К слову говоря, входные факты нейрона называются синапсами, а выходное суждение — аксоном. Связи с положительным весом называются возбуждающими, а с отрицательным — тормозящими. Если же вес равен нулю, то считается, что связи нет (мёртвая связь).

Поехали дальше. Сделаем по этим двум фактам другую оценку: насколько хорошо с такой девушкой работать (сотрудничать)? Будем действовать абсолютно аналогичным образом — добавим мудрый нейрон и настроим веса комфортным для нас образом.

Но, судить девушку по двум характеристикам — это очень грубо. Давайте судить её по трём! Добавим ещё один факт – деньги. Который будет варьироваться от нуля (абсолютно бедная) до единицы (дочь Рокфеллера). Посмотрим, как с приходом денег изменятся наши суждения….

Для себя я решил, что, в плане очарования, деньги не очень важны, но шикарный вид всё же может на меня повлиять, потому вес денег я сделаю маленьким, но положительным.

В работе мне абсолютно всё равно, сколько денег у девушки, поэтому вес сделаю равным нулю.

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Оценивать девушку только для работы и влюблённости — очень глупо. Давайте добавим, насколько с ней будет приятно путешествовать:

Соединим все эти три схемы в одну и обнаружим, что мы перешли на более глубокий уровень суждений, а именно: от харизмы, денег и разговорчивости — к восхищению, сотрудничеству и комфортности совместного путешествия. И заметьте — это тоже сигналы от нуля до единицы. А значит, теперь я могу добавить финальный “нейрон-максималист”, и пускай он однозначно ответит на вопрос — “жениться или нет”?

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Ладно, конечно же, не всё так просто (в плане женщин). Привнесём немного драматизма и реальности в наш простой и радужный мир. Во-первых, сделаем нейрон «женюсь — не женюсь» — мудрым. Сомнения же присущи всем, так или иначе. И ещё — добавим нейрон «хочу от неё детей» и, чтобы совсем по правде, нейрон “держись от неё подальше».

Я ничего не понимаю в женщинах, и поэтому моя примитивная сеть теперь выглядит как картинка в начале статьи.

Входные суждения называются “входной слой”, итоговые — “выходной слой”, а тот, что скрывается посередине, называется «скрытым». Скрытый слой — это мои суждения, полуфабрикаты, мысли, о которых никто не знает. Скрытых слоёв может быть несколько, а может быть и ни одного.

Долой максимализм.

Помните, я говорил об отрицательном влияние денег на моё желание путешествовать с человеком? Так вот — я слукавил. Для путешествий лучше всего подходит персона, у которой денег не мало, и не много. Мне так интереснее и не буду объяснять почему.

Но тут я сталкиваюсь с проблемой:

Если я ставлю вес денег отрицательным, то чем меньше денег — тем лучше для путешествий.
Если положительным, то чем богаче — тем лучше,
Если ноль — тогда деньги “побоку”.

Чтобы это обойти, я сделаю два нейрона — “денег много” и “денег мало”, и подам им на вход денежный поток от нашей дамы.

Теперь у меня есть два суждения: “много” и “мало”. Если оба вывода незначительны, то буквально получится “ни много — ни мало”. То есть, добавим на выход ещё один нейрон, с отрицательными весами:

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

“Нимногонимало”. Красные стрелки — положительные связи, синие — отрицательные

Вообще, это значит, что нейроны подобны элементам конструктора. Подобно тому, как процессор делают из транзисторов, мы можем собрать из нейронов мозг. Например, суждение “Или богата, или умна” можно сделать так:

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

Или-или. Красные стрелки — положительные связи, синие – отрицательные

что такое нейросети в интернет. Смотреть фото что такое нейросети в интернет. Смотреть картинку что такое нейросети в интернет. Картинка про что такое нейросети в интернет. Фото что такое нейросети в интернет

можно заменить “мудрые” нейроны на “максималистов” и тогда получим логический оператор XOR. Главное — не забыть настроить пороги возбуждения.

В отличие от транзисторов и бескомпромиссной логики типичного программиста “если — то”, нейронная сеть умеет принимать взвешенные решения. Их результаты будут плавно меняться, при плавном изменение входных параметров. Вот она мудрость!

Обращу ваше внимание, что добавление слоя из двух нейронов, позволило нейрону “ни много — ни мало” делать более сложное и взвешенное суждение, перейти на новый уровень логики. От “много” или “мало” — к компромиссному решению, к более глубокому, с философской точки зрения, суждению. А что если добавить скрытых слоёв ещё? Мы способны охватить разумом ту простую сеть, но как насчёт сети, у которой есть 7 слоёв? Способны ли мы осознать глубину её суждений? А если в каждом из них, включая входной, около тысячи нейронов? Как вы думаете, на что она способна?

Представьте, что я и дальше усложнял свой пример с женитьбой и влюблённостью, и пришёл к такой сети. Где-то там в ней скрыты все наши девять нейрончиков, и это уже больше похоже на правду. При всём желании, понять все зависимости и глубину суждений такой сети — попросту невозможно. Для меня переход от сети 3х3 к 7х1000 — сравним с осознанием масштабов, если не вселенной, то галактики — относительно моего роста. Попросту говоря, у меня это не получится. Решение такой сети, загоревшийся выход одного из её нейронов — будет необъясним логикой. Это то, что в быту мы можем назвать “интуицией” (по крайней мере – “одно из..”). Непонятное желание системы или её подсказка.

Но, в отличие от нашего синтетического примера 3х3, где каждый нейрон скрытого слоя достаточно чётко формализован, в настоящей сети это не обязательно так. В хорошо настроенной сети, чей размер не избыточен для решения поставленной задачи — каждый нейрон будет детектировать какой-то признак, но это абсолютно не значит, что в нашем языке найдётся слово или предложение, которое сможет его описать. Если проецировать на человека, то это — какая-то его характеристика, которую ты чувствуешь, но словами объяснить не можешь.

Обучение.

Несколькими строчками ранее я обмолвился о хорошо настроенной сети, чем вероятно спровоцировал немой вопрос: “А как мы можем настроить сеть, состоящую из нескольких тысяч нейронов? Сколько “человеколет” и погубленных жизней нужно на это. Боюсь предположить ответ на последний вопрос. Куда лучше автоматизировать такой процесс настройки — заставить сеть саму настраивать себя. Такой процесс автоматизации называется обучением. И чтобы дать поверхностное о нём представление, я вернусь к изначальной метафоре об “очень важном вопросе”:

Мы появляемся в этом мире с чистым, невинным мозгом и нейронной сетью, абсолютно не настроенной относительно дам. Её необходимо как-то грамотно настроить, дабы счастье и радость пришли в наш дом. Для этого нам нужен некоторый опыт, и тут есть несколько путей по его добыче:

1) Обучение с учителем (для романтиков). Насмотреться на голливудские мелодрамы и начитаться слезливых романов. Или же насмотреться на своих родителей и/или друзей. После этого, в зависимости от выборки, отправиться проверять полученные знания. После неудачной попытки — повторить всё заново, начиная с романов.

2) Обучение без учителя (для отчаянных экспериментаторов). Попробовать методом “тыка” жениться на десятке-другом женщин. После каждой женитьбы, в недоумение чесать репу. Повторять, пока не поймёшь, что надоело, и ты “уже знаешь, как это бывает”.

3) Обучение без учителя, вариант 2 (путь отчаянных оптимистов). Забить на всё, что-то делать по жизни, и однажды обнаружить себя женатым. После этого, перенастроить свою сеть в соответствие с текущей реальностью, дабы всё устраивало.

Далее, по логике я должен расписать всё это подробно, но без математики это будет слишком философично. Потому считаю, что мне стоит на этом остановиться. Быть может в другой раз?

Всё вышесказанное справедливо для искусственной нейронной сети типа “персептрон”. Остальные сети похожи на нее по основным принципам, но имеют свою нюансы.

Хороших вам весов и отличных обучающих выборок! Ну а если это уже и не нужно, то расскажите об этом кому-нибудь ещё.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *