что такое неразветвленная цепь
Неразветвленные и разветвленные линейные электрические цепи с одним источником питания
Если большое число пассивных элементов вместе с источником э. д. с. образуют электрическую цепь, то их взаимное соединение может быть выполнено различными способами. Существуют следующие характерные схемы таких соединений.
Последовательное соединение элементов — это самое простое соединение. При таком соединении во всех элементах цепи протекает один и тот же ток. По этой схеме могут быть соединены или все пассивные элементы цепи и тогда цепь будет одноконтурной неразветвленной (рис. 1., а), или может быть соединена только часть элементов многоконтурной цепи.
Если последовательно соединены n элементов, в которых протекает один и тот же ток I, то напряжение на зажимах цепи будет равно сумме падений напряжения на n последовательно включенных элементах, т. е.
где Rэк — эквивалентное сопротивление цепи.
Рис. 1. Схема последовательного соединения линейных элементов (а) и ее эквивалентная схема (б)
При расчете цепи с последовательным соединением элементов при заданных напряжении источника питания и сопротивлениях элементов ток в цепи рассчитывают по закону Ома:
Падение напряжения на k-м элементе
зависит не только от сопротивления этого элемента но и от эквивалентного сопротивления Rэк, т. е. от сопротивления других элементов цепи. В этом заключается существенный недостаток последовательного соединения элементов. В предельном случае, когда сопротивление какого-либо элемента цепи становится равным бесконечности (разрыв цепи), ток во всех элементах цепи становится равным нулю.
Так как при последовательном соединении ток во всех элементах цепи один и тот же, то отношение падений напряжения на элементах равно отношению сопротивлений этих элементов:
Параллельное соединение элементов — это такое соединение, при котором ко всем элементам цепи приложено одно и то же напряжение. По схеме параллельного соединения могут быть соединены или все пассивные элементы цепи (рис. 2, а), или только часть их. Каждый параллельно включенный элемент образует отдельную ветвь. Поэтому цепь с параллельным соединением элементов, изображенная на рис. 2, а, хотя и является простой цепью (так как содержит только два узла), в то же время разветвленная.
Рис. 2. Схема параллельного соединения линейных элементов (а) и ее эквивалентная схема (б)
В каждой параллельной ветви ток
где Gk — проводимость k-й ветви.
где Gэк — эквивалентная проводимость цепи.
Тогда эквивалентная схема цепи, изображенная на рис. 2, а, будет иметь вид, представленный на рис. 2, б. Ток в неразветвленной части цепи с параллельным соединением элементов может быть определен из этой схемы по закону Ома:
Следовательно, если напряжение источника питания постоянно, то при увеличении числа параллельно включенных элементов (что приводит к увеличению эквивалентной проводимости) ток в неразветвленной части цепи (ток источника питания) увеличивается.
видно, что ток в каждой ветви зависит только от проводимости данной ветви и не зависит от проводимостей других ветвей. Независимость режимов параллельных ветвей друг от друга — важное преимущество параллельного соединения пассивных элементов. В промышленных установках параллельное соединение электроприемников применяют в большинстве случаев. Самым наглядным примером является включение электрических осветительных ламп.
Так как при параллельном соединении ко всем элементам приложено одно и то же напряжение, а ток в каждой ветви пропорционален проводимости этой ветви, то отношение токов в параллельных ветвях равно отношению проводимостей этих ветвей или обратно пропорционально отношению их сопротивлений:
Смешанное соединение элементов представляет собой сочетание последовательного и параллельного соединений. Такая цепь может иметь различное число узлов и ветвей. Пример смешанного соединения приведен на схеме (рис. 3, а)
Рис. 3. Схема смешанного соединения линейных элементов (а) и ее эквивалентные схемы (б, в).
Для расчета такой цепи необходимо последовательно определять эквивалентные сопротивления для тех частей схемы, которые представляют собой только последовательное или только параллельное соединение. В рассматриваемой схеме имеется последовательное соединение элементов с сопротивлениями R1 и R2 и параллельное соединение элементов с сопротивлениями R3 и R4. Используя полученные ранее соотношения между параметрами элементов цепи при последовательном и параллельном их соединении, реальную схему цепи можно последовательно заменить эквивалентными схемами.
Эквивалентное сопротивление последовательно соединенных элементов
Эквивалентное сопротивление параллельно соединенных элементов R3 и R4
Эквивалентная схема с сопротивлениями элементов R12 и R34 изображена на рис. 3, б. Для этой схемы последовательного соединения R12 и R34 эквивалентное сопротивление
а соответствующая эквивалентная схема представлена на рис. 2, б. Найдем ток в этой цепи:
Это ток источника питания и ток в элементах R1 и R2 реальной цепи. Для расчета токов I3 и I4 определяют напряжение на участке цепи с сопротивлением R34 (рис. 3, б):
Тогда токи I3 и I4 можно найти по закону Ома:
Подобным образом можно рассчитать и ряд других схем электрических цепей со смешанным соединением пассивных элементов.
Для сложных схем с большим количеством контуров и источников э. д. с. не всегда может быть проведено такое эквивалентное преобразование. Их расчет ведется с использованием других методов.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Электрическая цепь
Электри́ческая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.
Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1).
Содержание
Классификация электрических цепей
Неразветвленные и разветвленные электрические цепи
Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом
Линейные и нелинейные электрические цепи
Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.
Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.
В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.
Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.
Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть прменён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).
Тема 1.2. Электрические цепи постоянного тока
Электрические цепи и ее элементы
Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.
Элементы цепи можно разделить на три группы:
1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);
2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);
3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.
Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.
Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.
Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.
Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.
Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.
Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.
Активные и пассивные элементы
Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).
Линейные и нелинейные цепи
Топологические элементы электрической цепи.
Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.
Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.
Узел – точка соединения трех или более ветвей.
Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.
Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.
Положительные направления тока, напряжения и ЭДС.
Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.
Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.
По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.
За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.
Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.
Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.
Основные законы электрической цепи
Условное обозначение параметров в цепях постоянного и переменного тока.
i – переменный ток; I – постоянный ток;
u – переменное напряжение; U – постоянное напряжение;
e – переменная ЭДС; E – постоянная ЭДС;
Методы расчета сложных разветвленных электрических цепей
Неразветвленная электрическая цепь
Неразветвленную электрическую цепь можно представить эквивалентной RLС-
цепью (рис. 3.20).
При синусоидальном напряжении
и напряжения на элементах
также синусоидальны, причем uL
и
uC
всегда находятся в противофазе.
Для мгновенных значений напряжений выполняется второй закон Кирхгофа:
который можно представить в комплексной форме
Характер комплексного сопротивленияцепи
меняется в зависимости от соотношения реактивных xL
При ( ) сопротивление цепи имеет индуктивный характер. Его аргумент, равный углу сдвига фаз j
При ( ) комплексное сопротивление цепи Z
имеет
емкостный характер, а его аргумент, равный углу сдвига фаз, отрицателен: (рис. 3.22).
При ( ) сопротивление цепи Z
Фазовые сдвиги между током и напряжениями на разных участках цепи различны, их соотношения поясняют векторные диаграммы для активно-индуктивной нагрузки (рис. 3.23), для активно-емкостной нагрузки (рис. 3.24, а
) и для активной нагрузки (рис. 3.24,
б
).
При построении диаграмм начальная фаза тока принята равной нулю, а угол сдвига фаз отложен от вектора тока против движения часовой стрелки.
. При индуктивной нагрузке реактивное напряжение опережает на
π/2
, при емкостном характере отстает на
π/2
.
Цепь при последовательном соединении элементов R
,
L
,
C
можно представить одной из трех эквивалентных схем замещения:
· последовательным соединением активного R
и индуктив- ного
L
элементов ( ) (см. рис. 3.23);
· последовательным соединением активного R
· активным элементом R
Неразветвленные и разветвленные электрические цепи. Рисунок 2 — Разветвленная цепь
Рисунок 2 — Разветвленная цепь
Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом
[править]Линейные и нелинейные электрические цепи
Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.
Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.
В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.
Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.
Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть прменён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).
5.Резистивный элемент, индуктивность, емкость. Определение и обозначение на электрических схемах. Какая энергия образуется и как она находится.
Резистивным называют идеализированный двухполюсный элемент, для которого связь между напряжением и током можно представить в виде графика, называемого вольт-амперной характеристикой (ВАХ)- Математическая модель резистивного элементаR определяется законом Ома, который устанавливает зависимость напряжения u от тока i, протекающего через сопротивление R.
Резистивный элемент моделирует процесс необратимого преобразования электромагнитной энергии в тепло и другие виды энергии, при этом запасание энергии в электромагнитном поле отсутствует.
Мощность, поглощаемая резистором
Условные обозначения резистивного (а), емкостного (б) и индуктивного (в) элементов.
Индуктивным элементом называется такой элемент электрической цепи, который обладает только свойством накопления энергии магнитного поля. Математической моделью индуктивного элемента L является вебер-амперная характеристика, которая устанавливает зависимость суммарного магнитного потока, образованного в витках катушки, (потокосцепления ψ) от величины протекающего через катушку тока i. Уравнение, описывающее свойства индуктивного элемента имеет вид:
Емкостным элементом называют элемент электрической цепи, обладающий только свойством накапливать энергию электрического поля. Математической моделью емкостного элемента С является вольт-кулоновая характеристика, которая устанавливает зависимость напряжения u от сообщенного емкости C электрического заряда q и определяется выражением:
Мощность электрических колебаний в емкостном элементе под действием запасенной в ней энергии к любому моменту времени t определяется выражением:
6.Работа резистивного элемента в цепи постоянного тока. Привести схему и временные диаграммы.
7.Работа емкости в цепи постоянного тока. Привести схему и временные диаграммы.
8.Работа индуктивности в цепи постоянного тока. Привести схему и временные диаграммы.
9.Работа резистивного элемента в электрических цепях переменного тока. Какая мощность определяется и чему она равна за период. Привести схему и временные диаграммы.
10.Работа емкости в электрических цепях переменного тока. Какая мощность определяется и чему она равна за период. Привести схему и временные диаграммы.
11.Работа индуктивности в электрических цепях переменного тока. Какая мощность определяется и чему она равна за период. Привести схему и временные диаграммы.
12.Электрическая цепь переменного тока с последовательным соединением элементов R, L, C. Привести схему цепи и вывод закона Ома для нее.
Векторная диаграмма
Определение 1
Неразветвленная электрическая цепь – это электрическая цепь, характеризующаяся тем, что на всех ее участках протекает один и тот же ток.
Пример простейшей неразветвленной электрической цепи изображен на рисунке ниже.
Рисунок 1. Неразветвленная электрическая цепь. Автор24 — интернет-биржа студенческих работ
Рассмотрим схему неразветвленной электрической цепи переменного тока, которая представлена на рисунке ниже.
Ты эксперт в этой предметной области? Предлагаем стать автором Справочника Условия работы
Рисунок 2. Схема неразветвленной электрической цепи переменного тока. Автор24 — интернет-биржа студенческих работ
Вышепредставленная электрическая сеть состоит из следующих участков:
В данной электрической цепи конденсатор и катушка представлены активными и реактивными сопротивлениями.
Допустим, что нам, кроме сопротивлений, известен ток в цепи:
Произвольно выбираем условно-положительное направление тока, по часовой стрелке. Для мгновенных величин, согласно второму закону Кирхгофа, уравнение напряжений, в векторном виде, будет выглядеть следующим образом:
Готовые работы на аналогичную тему
Курсовая работа Расчет неразветвленной цепи переменного тока 420 ₽ Реферат Расчет неразветвленной цепи переменного тока 280 ₽ Контрольная работа Расчет неразветвленной цепи переменного тока 250 ₽
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость
Численно, векторы напряжений определяются, как произведение сопротивления соответствующего участка цепи и тока. На рисунке ниже изображена векторная диаграмма, которая соответствует данному уравнению.
Рисунок 3. Векторная диаграмма. Автор24 — интернет-биржа студенческих работ
За исходный принимается вектор тока, а потом проводятся векторы падения напряжений для каждого участка цепи, направления векторов которых выбираются в соответствии с характером сопротивления. При построении векторной диаграммы напряжений выбирается точка б, которая совпадает с началом вектора тока. Затем из этой точки проводится вектор U5.2, представляющий собой вектор реактивного напряжения индуктивности и опережающий по фазе вектор тока на 90 градусов, между точками 5 и 6 на схеме. Из его конца проводится вектор реактивного напряжения емкости (U4p), который отстает от тока на 90 градусов, между точками 4 и 5 на схеме. После этого откладывается вектор активного напряжения на резисторе, совпадающий с вектором тока (U3a), между точками 3 и 4 на схеме и т.д., если следовать по цепи противоположно направлению тока. Те точки, в которых сходятся начало следующего и конец предыдущего векторов, обозначаются такими же номерами, каким обозначены на схеме.
При данном построении векторной диаграммы, напряжение между двумя любыми точками рассматриваемой цепи возможно определить по фазе и величине, посредством проведения вектора на диаграмме между точками с такими же номерами. Например, напряжение между точками 5 и 2 можно выразить вектором, который проводится из точки 2 в точку 5 и т.д.
Топографическая векторная диаграмма – это векторная диаграмма, которая была построена в соответствии с чередованием составляющих электрической цепи.