Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π’Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ β€” Ρ‚ΠΎΡ‡ΠΊΠ°, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π°Ρ Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Ρ‘Π±Ρ€Π° ΠΈ Π½Π΅ лСТащая Π² плоскости основания.

ОснованиС β€” ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

АпофСма β€” высота Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, провСдСнная ΠΈΠ· Π΅Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Высота β€” ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ пСрпСндикуляра, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ³ΠΎ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΊ плоскости Π΅Ρ‘ основания (ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ этого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈ основаниС пСрпСндикуляра).

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ β€” сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, проходящСС Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΈ диагональ основания.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

НСкоторыС свойства ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

1) Если всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ

– ΠΎΠΊΠΎΠ»ΠΎ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ проСцируСтся Π² Π΅Ρ‘ Ρ†Π΅Π½Ρ‚Ρ€

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

– Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ основания Ρ€Π°Π²Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Если Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ основания Ρ€Π°Π²Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹, Ρ‚ΠΎ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Ρ‹.

Если ΠΎΠΊΠΎΠ»ΠΎ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ проСцируСтся Π² Π΅Ρ‘ Ρ†Π΅Π½Ρ‚Ρ€, Ρ‚ΠΎ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Ρ‹.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π’ΠΈΠ΄Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Для ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ справСдливо:

– Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Ρ‹;

– Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ β€” Ρ€Π°Π²Π½Ρ‹Π΅ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ;

– Π² Π»ΡŽΠ±ΡƒΡŽ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΡƒΡŽ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру;

– ΠΎΠΊΠΎΠ»ΠΎ любой ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру;

– ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ произвСдСния ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° основания Π½Π° Π°ΠΏΠΎΡ„Π΅ΠΌΡƒ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

УсСчённой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ΠΎΠΉ называСтся ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, Π·Π°ΠΊΠ»ΡŽΡ‡Ρ‘Π½Π½Ρ‹ΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ основаниСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈ сСкущСй ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ Π΅Ρ‘ основанию.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ВСтраэдр – Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π’ тСтраэдрС любая ΠΈΠ· Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ принята Π·Π° основаниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π—Π΄Π΅ΡΡŒ собраны основныС свСдСния ΠΎ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Ρ… ΠΈ связанных с Π½Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°Ρ… ΠΈ понятиях. ВсС ΠΎΠ½ΠΈ ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ΡΡ с Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ ΠΊ Π•Π“Π­.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° называСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ, Ссли Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π° основаниС высоты ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ (основаниС пСрпСндикуляра) являСтся Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ.

ΠšΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€Π° :
НС ΠΏΡƒΡ‚Π°ΠΉΡ‚Π΅ понятиС Β«ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Β» ΠΈ Β«ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ тСтраэдр». Π£ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° совсСм Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π²Π½Ρ‹ Ρ€Π΅Π±Ρ€Π°ΠΌ основания, Π° Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΌ тСтраэдрС всС 6 Ρ€Π΅Π±Π΅Ρ€ Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π²Π½Ρ‹Π΅. Π­Ρ‚ΠΎ Π΅Π³ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π›Π΅Π³ΠΊΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΈΠ· равСнства слСдуСт совпадСниС Ρ†Π΅Π½Ρ‚Ρ€Π° P ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ пирамидас основаниСм высоты, поэтому ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ тСтраэдр являСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ΠΎΠΉ.

Бвойство основания высоты ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π’ΠΎΡ‡ΠΊΠ° P (смотри рисунок) совпадаСт с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ вписанной окруТности Π² основаниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ссли выполняСтся ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… условий:
1) ВсС Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹ Ρ€Π°Π²Π½Ρ‹
2) ВсС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ‹ ΠΊ основанию
3) ВсС Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ‹ ΠΊ высотС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹
4) Высота ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Π° ΠΊΠΎ всСм Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌ граням

ΠšΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ : ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ всС ΠΏΡƒΠ½ΠΊΡ‚Ρ‹ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ‚ ΠΎΠ΄Π½ΠΎ ΠΎΠ±Ρ‰Π΅Π΅ свойство: Ρ‚Π°ΠΊ ΠΈΠ»ΠΈ ΠΈΠ½Π°Ρ‡Π΅ Π²Π΅Π·Π΄Π΅ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ (Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹ β€” это ΠΈΡ… элСмСнты). ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΌΠ΅Π½Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΡƒΡŽ, Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ ΡƒΠ΄ΠΎΠ±Π½ΡƒΡŽ для заучивания Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΡƒ: Ρ‚ΠΎΡ‡ΠΊΠ° P совпадаСт с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ вписанной окруТности основаниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ссли имССтся любая равная информация ΠΎ Π΅Π΅ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… гранях. Для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° достаточно ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ всС Π°ΠΏΠΎΡ„Π΅ΠΌΠ½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ Ρ€Π°Π²Π½Ρ‹.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π’ΠΎΡ‡ΠΊΠ° P совпадаСт с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ описанной ΠΎΠΊΠΎΠ»ΠΎ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ, Ссли Π²Π΅Ρ€Π½ΠΎ ΠΎΠ΄Π½ΠΎ ΠΈΡ… Ρ‚Ρ€Π΅Ρ… условий:
1) ВсС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π²Π½Ρ‹
2) ВсС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ‹ ΠΊ основанию
3) ВсС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ‹ ΠΊ высотС

Для Π½Π°Ρ‡Π°Π»Π° вспомним ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:

Π’Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π’Π²ΠΎΠ΄ΠΈΠΌ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ с Π½Π°Ρ‡Π°Π»ΠΎΠΌ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ A :

Рассмотрим Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ASH ΠΈ ABH :

Π˜Ρ‚ΠΎΠ³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ S :

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π’ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅, Π²Ρ‹ΠΏΠΈΡˆΠ΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ всСх Π²Π΅Ρ€ΡˆΠΈΠ½ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π§Ρ‚ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ, ΠΊΠΎΠ³Π΄Π° Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π·Π½Ρ‹Π΅

А Ρ‡Ρ‚ΠΎ, Ссли Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π½Π΅ Ρ€Π°Π²Π½Ρ‹ Ρ€Π΅Π±Ρ€Π°ΠΌ основания? Π’ этом случаС рассмотрим Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ AHS :

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x ΠΈ y этой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΡ‹ ΡƒΠΆΠ΅ Π·Π½Π°Π΅ΠΌ: x = y = 0,5. Π­Ρ‚ΠΎ слСдуСт ΠΈΠ· Π΄Π²ΡƒΡ… Ρ„Π°ΠΊΡ‚ΠΎΠ²:

Π˜Ρ‚Π°ΠΊ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ S :

Бвойства ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

1. Когда всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ‚ΠΎΠ³Π΄Π°:

2. Когда Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ плоскости основания ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Ρ‚ΠΎΠ³Π΄Π°:

3. Около ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру Π² Ρ‚ΠΎΠΌ случаС, Ссли Π² основании ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π²ΠΎΠΊΡ€ΡƒΠ³ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ (Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС). Π¦Π΅Π½Ρ‚Ρ€ΠΎΠΌ сфСры станСт Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния плоскостСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ проходят Ρ‡Π΅Ρ€Π΅Π· сСрСдины Ρ€Π΅Π±Π΅Ρ€ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ пСрпСндикулярно ΠΈΠΌ. Из этой Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π΄Π΅Π»Π°Π΅ΠΌ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊ ΠΎΠΊΠΎΠ»ΠΎ всякой Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΎΠΊΠΎΠ»ΠΎ всякой ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру.

4. Π’ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру Π² Ρ‚ΠΎΠΌ случаС, Ссли биссСкторныС плоскости Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… Π΄Π²ΡƒΠ³Ρ€Π°Π½Π½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² 1-Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ (Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС). Π­Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠ° станСт Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ сфСры.

По количСству ΡƒΠ³Π»ΠΎΠ² основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ дСлят Π½Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅, Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, элСмСнты, Π²ΠΈΠ΄Ρ‹, Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ сСчСния

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΡ‹ рассмотрим ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, основныС элСмСнты, Π²ΠΈΠ΄Ρ‹ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ сСчСния ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Π°Ρ информация сопровоТдаСтся наглядными рисунками для Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ восприятия.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° – это гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π° Π² пространствС; ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ состоит ΠΈΠ· основания ΠΈ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ (с ΠΎΠ±Ρ‰Π΅ΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ), количСство ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… зависит ΠΎΡ‚ количСства ΡƒΠ³Π»ΠΎΠ² основания.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° – это частный случай конуса.

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π Π°Π·Π²Ρ‘Ρ€Ρ‚ΠΊΠ° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ – Ρ„ΠΈΠ³ΡƒΡ€Π°, получСнная ΠΏΡ€ΠΈ β€œΡ€Π°Π·Ρ€Π΅Π·Π΅β€ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ρ‚.Π΅. ΠΏΡ€ΠΈ совмСщСнии всСх Π΅Π΅ Π³Ρ€Π°Π½Π΅ΠΉ Π² плоскости ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ…. Для ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠ° Π² плоскости основания выглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: свойства ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ прСдставлСны Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ.

Π’ΠΈΠ΄Ρ‹ сСчСния ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

1. Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ сСчСниС – сСкущая ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΈ диагональ основания. Π£ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Π°ΠΊΠΈΡ… сСчСния Π΄Π²Π° (ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ Π½Π° ΠΊΠ°ΠΆΠ΄ΡƒΡŽ диагональ):

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

2. Если сСкущая ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° основанию ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, ΠΎΠ½Π° Π΄Π΅Π»ΠΈΡ‚ Π΅Π΅ Π½Π° Π΄Π²Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹: ΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ (считая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹) ΠΈ ΡƒΡΠ΅Ρ‡Π΅Π½Π½ΡƒΡŽ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ (считая ΠΎΡ‚ основания). Π‘Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ являСтся ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ основанию ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²ΠΈΠ΄Ρ‹ сСчСния, Π½ΠΎ ΠΎΠ½ΠΈ Π½Π΅ Ρ‚Π°ΠΊ распространСны.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ свойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. УсСчСнная ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС?

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΠΎΠ΄ Π½Π΅ΠΉ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡŽΡ‚ ΠΎΠ±ΡŠΠ΅ΠΌΠ½ΡƒΡŽ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ, Ссли ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ всС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ плоского ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с ΠΎΠ΄Π½ΠΎΠΉ СдинствСнной Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² Π΄Ρ€ΡƒΠ³ΠΎΠΉ плоскости, Ρ‡Π΅ΠΌ этот ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Рисунок Π½ΠΈΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ 4 Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ Π΄Π°Π½Π½ΠΎΠΌΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° Π’Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ интСрСсно: ЛитовскиС статуты: Π΄Π°Ρ‚Ρ‹ ΠΈ история ΠΈΠ·Π΄Π°Π½ΠΈΠΉ, Ρ€Π΅Π³Π»Π°ΠΌΠ΅Π½Ρ‚, хронология принятия статутов

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ΠžΡΠΎΠ±Ρ‹ΠΌ Ρ‚ΠΈΠΏΠΎΠΌ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‚ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΈΡ† класса ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ идСальной симмСтриСй, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π§Ρ‚ΠΎΠ±Ρ‹ Ρ„ΠΈΠ³ΡƒΡ€Π° Π±Ρ‹Π»Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ, Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π΄Π²Π° ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… условия:

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ условиС ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‹ΠΌ: пСрпСндикуляр, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ ΠΊ основанию ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ (Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²), Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒ это основаниС Π² Π΅Π³ΠΎ гСомСтричСском Ρ†Π΅Π½Ρ‚Ρ€Π΅.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠ΅Ρ€Π΅ΠΉΠ΄Π΅ΠΌ ΠΊ Ρ‚Π΅ΠΌΠ΅ ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠΈ рассмотрим, ΠΊΠ°ΠΊΠΈΠ΅ свойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ Π΅Π΅. Π‘Π½Π°Ρ‡Π°Π»Π° ΠΏΠΎΠΊΠ°ΠΆΠ΅ΠΌ Π½Π° рисункС, ΠΊΠ°ΠΊ выглядит эта Ρ„ΠΈΠ³ΡƒΡ€Π°.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π•Π΅ основаниС являСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ. Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ стороны ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 4 ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° (ΠΎΠ½ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ равносторонними ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π΄Π»ΠΈΠ½Ρ‹ стороны ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈ высоты Ρ„ΠΈΠ³ΡƒΡ€Ρ‹). ΠžΠΏΡƒΡ‰Π΅Π½Π½Π°Ρ ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ высота пСрСсСчСт ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π΅ (Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ).

Π­Ρ‚Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° ΠΈΠΌΠ΅Π΅Ρ‚ 5 Π³Ρ€Π°Π½Π΅ΠΉ (ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°), 5 Π²Π΅Ρ€ΡˆΠΈΠ½ (Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΈΠ· Π½ΠΈΡ… ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ основанию) ΠΈ 8 Ρ€Π΅Π±Π΅Ρ€. Ось симмСтрии Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ порядка, проходящая Ρ‡Π΅Ρ€Π΅Π· высоту ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΡ‚ Π΅Π΅ Π² саму сСбя ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Π½Π° 90o.

ЕгипСтскиС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π² Π“ΠΈΠ·Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ.

Π”Π°Π»Π΅Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ всС характСристики этой Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

Π§Π΅Ρ‚Ρ‹Ρ€Π΅ основных Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°

НачнСм рассмотрСниС матСматичСских свойств ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ с Ρ„ΠΎΡ€ΠΌΡƒΠ» высоты, Π΄Π»ΠΈΠ½Ρ‹ стороны основания, Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° ΠΈ Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹. Π‘Ρ€Π°Π·Ρƒ скаТСм, Ρ‡Ρ‚ΠΎ всС эти Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ связаны Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ, поэтому достаточно Π·Π½Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π΅ ΠΈΠ· Π½ΠΈΡ…, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΎΡΡ‚Π°Π²ΡˆΠΈΠ΅ΡΡ Π΄Π²Π΅.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ извСстна высота h ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈ Π΄Π»ΠΈΠ½Π° a стороны ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ основания, Ρ‚ΠΎΠ³Π΄Π° Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ b Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΠΎ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для Π΄Π»ΠΈΠ½Ρ‹ ab Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹ (высота Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, опущСнная Π½Π° сторону основания):

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ b всСгда большС Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹ ab.

Оба выраТСния ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ для опрСдСлСния всСх Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… характСристик, Ссли извСстны Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π΄Π²Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ab ΠΈ h.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΈ объСм Ρ„ΠΈΠ³ΡƒΡ€Ρ‹

Π­Ρ‚Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π·Π½Π°Π΅Ρ‚ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ школьник. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности, которая ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€ΡŒΠΌΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Π°ΠΏΠΎΡ„Π΅ΠΌΡƒ ab ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Π°ΠΊ:

Если ab являСтся нСизвСстной, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ ΠΈΠ· ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ ΠΏΡƒΠ½ΠΊΡ‚Π° Ρ‡Π΅Ρ€Π΅Π· высоту h ΠΈΠ»ΠΈ Ρ€Π΅Π±Ρ€ΠΎ b.

ΠžΠ±Ρ‰Π°Ρ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности рассматриваСмой Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ складываСтся ΠΈΠ· ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ So ΠΈ Sb:

S = So + Sb = a2 + 2 Γ— a Γ— ab = a (a + 2 Γ— ab)

Рассчитанная ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ всСх Π³Ρ€Π°Π½Π΅ΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° рисункС Π½ΠΈΠΆΠ΅ Π² Π²ΠΈΠ΄Π΅ Π΅Π΅ Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠΈ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ОписаниС свойств ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΌ, Ссли Π½Π΅ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для опрСдСлСния Π΅Π΅ объСма. Π­Ρ‚Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° для рассматриваСмой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ вычисляСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π’ΠΎ Π΅ΡΡ‚ΡŒ V Ρ€Π°Π²Π΅Π½ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ части произвСдСния высоты Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΅Π΅ основания.

Бвойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ усСчСнной Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ эту Ρ„ΠΈΠ³ΡƒΡ€Ρƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ· исходной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΡ€Π΅Π·Π°Ρ‚ΡŒ Π²Π΅Ρ€Ρ…Π½ΡŽΡŽ Ρ‡Π°ΡΡ‚ΡŒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠžΡΡ‚Π°Π²ΡˆΠ°ΡΡΡ ΠΏΠΎΠ΄ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ срСза Ρ„ΠΈΠ³ΡƒΡ€Π° Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒΡΡ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ΠΎΠΉ усСчСнной.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Боковая ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ усСчСнной Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π° Π½Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΌΠΈ трапСциями.

Одним ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… свойств этой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ являСтся Π΅Π΅ объСм, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ рассчитываСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

V = 1/3 Γ— h Γ— (So1 + So2 + √(So1 Γ— So2))

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· основных Ρ„ΠΈΠ³ΡƒΡ€ Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. О Π΅Ρ‘ особСнностях рассказано Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π­Ρ‚Π° стСрСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π° Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Ρ‡Π°ΡΡ‚ΡŒ пространства, ΠΎΡ‚Π΄Π΅Π»Ρ‘Π½Π½ΡƒΡŽ плоскими ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ: ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ Π² основании ΠΈ гранями β€” Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, содСрТащими ΠΎΠ±Ρ‰ΡƒΡŽ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π² Π²ΠΈΠ΄Π΅ ΠΎΠ±Ρ‰Π΅ΠΉ стороны с Π½ΠΈΠΌ.

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ этой гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

ΠœΠ΅ΡΡ‚ΠΎ, ΠΊΡƒΠ΄Π° сходятся всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, являСтся Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ.

ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΎΡ‚ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ отходят Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ, носит Π½Π°Π·Π²Π°Π½ΠΈΠ΅ основания. НапримСр, ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ.

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠ΅ΡΡ Ρƒ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, с ΠΎΠ±Ρ‰Π΅ΠΉ стороной с основаниСм, носят Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ. Π£ Π½ΠΈΡ… противополоТная Π²Π΅Ρ€ΡˆΠΈΠ½Π° совпадаСт с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Высота Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ прСдставляСт собой Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ основания ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ.

На ΠΊΠ°ΠΆΠ΄ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ стороны ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ Π°ΠΏΠΎΡ„Π΅ΠΌΡƒ. Она опускаСтся ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΎ Π³Ρ€Π°Π½ΠΈ Π΄ΠΎ Ρ€Π΅Π±Ρ€Π° основания, Π±ΡƒΠ΄ΡƒΡ‡ΠΈ ΠΊ Π½Π΅ΠΌΡƒ пСрпСндикулярной.

Π‘ΠΎΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ€Π΅Π±Ρ€Π°ΠΌΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‚ сосСдниС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ.

Π£ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ нСсколько Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… сСчСний. Они Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Π² сСбя диагональ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° вмСстС с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π’ΠΈΠ΄Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄

Π’Π°ΠΊΠΈΠ΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚ΡŒΡΡ ΠΊ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Π²ΠΈΠ΄Π°ΠΌ, Π² зависимости ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° основания ΠΈ располоТСния Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

МоТно ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ разновидности ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄:

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ Π² Ρ‚ΠΎΠΌ случаС, Ссли Π² основании Π»Π΅ΠΆΠΈΡ‚ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ основания Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡ€ΠΈΡ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π½Π° Ρ†Π΅Π½Ρ‚Ρ€. ВСтраэдр рассматриваСтся ΠΊΠ°ΠΊ ΠΎΠ΄Π½Π° ΠΈΠ· разновидностСй ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π£ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· Π³Ρ€Π°Π½Π΅ΠΉ находится Π² плоскости, пСрпСндикулярной ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ Π² основании.

УсСчСнная β€” это Ρ‡Π°ΡΡ‚ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, находящаяся ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰Π΅ΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ основания. ΠŸΡ€ΠΈΡ‡Ρ‘ΠΌ эта ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π΄ΠΎΠ»ΠΆΠ½Π° Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒΡΡ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎ.

Бвойства ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π£ этой ΠΎΠ±ΡŠΡ‘ΠΌΠ½ΠΎΠΉ гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства ΠΏΡ€ΠΈ условии равСнства Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Ρ€Ρ‘Π±Π΅Ρ€:

ΠΊΡ€ΡƒΠ³ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π²ΠΎΠΊΡ€ΡƒΠ³ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° основания;

ΡƒΠ³ΠΎΠ», ΠΏΠΎΠ΄ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ‹ Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ, Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚Π°ΠΊΠΈΠΌ ΠΆΠ΅.

Π’ Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄Π½ΠΈ ΠΈ Ρ‚Π΅ ΠΆΠ΅ ΡƒΠ³Π»Ρ‹ с основаниСм, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΡ… Ρ€Ρ‘Π±Ρ€Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹.

Бвойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π£ Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ особыС свойства.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π£ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹.

КаТдая ΠΈΠ· Π½ΠΈΡ… являСтся Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ.

Π’Π½ΡƒΡ‚Ρ€ΡŒ любой Ρ‚Π°ΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру. ΠŸΡ€ΠΈ этом ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΊΠ°ΡΠ°Ρ‚ΡŒΡΡ основания ΠΈ всСх Π³Ρ€Π°Π½Π΅ΠΉ, имСя с ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· этих сторон ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅.

Π‘Π½Π°Ρ€ΡƒΠΆΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° сфСра, ΠΊΠ°ΡΠ°ΡŽΡ‰Π°ΡΡΡ всСх Π²Π΅Ρ€ΡˆΠΈΠ½.

НСтрудно Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. Для этого Π½Π°Π΄ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, находящСгося Π² Π΅Ρ‘ основании, Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ Π΄Π»ΠΈΠ½Ρ‹ Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹.

ΠžΡΠΎΠ±Ρ‹ΠΌ случаСм являСтся ситуация, ΠΊΠΎΠ³Π΄Π° Ρƒ вписанной ΠΈ описанной сфСр Ρ†Π΅Π½Ρ‚Ρ€Ρ‹ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚. Π’ этом случаС ΠΌΠΎΠΆΠ½ΠΎ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ссли ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒ всС плоскиС ΡƒΠ³Π»Ρ‹ Ρƒ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ, Ρ‚ΠΎ ΠΈΡ… сумма Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° числу «Пи». ΠŸΡ€ΠΈ этом, для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ…, достаточно эту Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° количСство Π³Ρ€Π°Π½Π΅ΠΉ.

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ объСма ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ повСрхности ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ с ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ расчСта

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΎΠ±ΡŠΡ‘ΠΌ ΠΌΠΎΠΆΠ½ΠΎ с использованиСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹.

Π³Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΈΠ΅ обозначСния:

S – ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ основания;

ΠŸΠΎΠ»Π½ΡƒΡŽ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ основания ΠΈ всСх Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ

Если стороны основания ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 3 см, Π° Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Ρ‘Π±Ρ€Π° β€” 4 см, Ρ‚ΠΎ ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ высоту Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

Π‘Π½Π°Ρ‡Π°Π»Π° ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° находят Π΄Π»ΠΈΠ½Ρƒ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ‹ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ. Она Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° ΠΊΠΎΡ€Π½ΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΈΠ· 18 (4,25 см), Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ являСтся диагональю ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π—Π΄Π΅ΡΡŒ рассматриваСтся Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°.

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ высоту. Она Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 4,5 см.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ основания составляСт 3 * 3 = 9 ΠΊΠ². см. НуТно ΡƒΡ‡Π΅ΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ это ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ со стороной 3 см. ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠ² значСния Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для ΠΎΠ±ΡŠΡ‘ΠΌΠ°, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅.

V = (1 / 3) * 9 * 4,5 = 13,5 ΠΊΡƒΠ±. см.

Для расчёта ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ повСрхности Π½Π°Π΄ΠΎ ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ основания ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон. Для этого сначала ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° находят Π΄Π»ΠΈΠ½Ρƒ Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹. Она Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° 4,27 см.

КаТдая боковая сторона ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ 12,81 ΠΊΠ². см, Π° основаниС β€” 9 ΠΊΠ². см. Π‘Π»ΠΎΠΆΠΈΠ² ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ всСх Π³Ρ€Π°Π½Π΅ΠΉ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ 60,24 ΠΊΠ². см. ΠŸΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности ΠΌΠΎΠΆΠ½ΠΎ, рассмотрСв Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΡƒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *