что такое непосредственный впрыск топлива бензин
Система непосредственного впрыска
Система непосредственного впрыска топлива является самой современной системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.
Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей. Передовики Audi (двигатели TFSI) и Volkswagen (двигатели FSI, TSI), которые практически полностью перешли на бензиновые двигатели с непосредственным впрыском.
Двигатели с непосредственным впрыском имеют в своем активе BMW (двигатели N54, N63), Infiniti (двигатели M56), Ford (двигатели EcoBoost), General Motors (двигатели Ecotec), Hyundai (двигатели Theta), Mazda (двигатели Skyactiv), Mercedes-Benz (двигатели CGI).
Применение системы непосредственного впрыска позволяет достичь до 15% экономии топлива, а также сокращения выброса вредных веществ с отработавшими газами.
Устройство системы непосредственного впрыска топлива
Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI (Fuel Stratified Injection – послойный впрыск топлива). Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.
Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПА) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.
Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.
Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.
Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.
Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.
В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.
Принцип действия системы непосредственного впрыска
Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:
• послойное ;
• стехиометрическое гомогенное ;
• гомогенное.
Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.
Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.
При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.
Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.
Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.
#10 Что такое впрыск топлива и как работает система впрыска?
Что такое впрыск топлива и как работает система впрыска?
Впрыск топлива — это система дозированной подачи топлива в цилиндры двигателя. Существует много разновидностей систем впрыска — механический, моновпрыск, распределенный, непосредственный. В данной статье мы расскажем про современные электронные системы подачи топлива на основе системы управления двигателем, как они работает и из каких датчиков состоят.
Как работает система впрыска топлива?
На рисунке схематично показан принцип работы распределенного впрыска.
Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход или давление в ресивере.
Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.
Датчики системы впрыска топлива
Для функционирования электронной системы управления двигателем не обязательно наличие всех датчиков. Комплектации зависят от системы впрыска, от норм токсичности. В программе управления есть флаги комплектации, которые информируют ПО о наличии или отсутствии каких-либо датчиков. Например, в системах Евро-2 отсутствуют датчик неровной дороги.
Датчик кислорода (ДК) — рассчитывает содержание О2 в отработанных газах. Используется только в системах с катализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода — до катализатора и после него). Датчик фазы нужен для более точного расчета времени впрыска в системах с фазированным впрыском.
Датчик положения коленвала (ДПКВ) — считывает частоту вращения коленвала и его положение. Служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.
Датчик массового расхода воздуха (ДМРВ) — определяет массовый расход воздуха, поступающего в двигатель. Служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.
Датчик температуры охлаждающей жидкости (ДТОЖ) — следит за температурой охлаждающей жидкости. Служит для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Сигнал ДТОЖ подается только на электронный блок управления, для индикации на панели используется другой датчик.
Датчик положения дроссельной заслонки (ДПДЗ) — определяет положение дросселя (нажата педаль «газа» или нет). Служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.
Датчик детонации — служит для контролем детонации двигателя. При обнаружении последней, блок управления двигателем включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания. В первых системах впрыска применялся резонансный датчик детонации, пришедший с системы GM. Сейчас повсеместно используются широкополосные датчики.
Датчик скорости (ДС) — определение скорость движения автомобиля. Используется при расчетах блокировки/возобновления топливоподачи при движении. Этот сигнал так же подается на приборную панель для расчета пробега. 6000 сигналов с ДС примерно соответствуют 1 км. пробега автомобиля.
Датчик фазы (ДФ) — определяет положение распредвала. Служит для точной синхронизации по времени впрыска в системах с фазированным (последовательным) впрыском. При аварии или отсутствие датчика система переходит на попарно — параллельную (групповую) систему подачи топлива.
Датчик неровной дороги — служит для оценки уровня вибраций двигателя. Это необходимо для правильной работы системы обнаружения пропусков воспламенения, чтобы определить причину неравномерности (применяется в связи с вводом норм токсичности Евро-3).
Исполнительные механизмы системы впрыска
По результатам опроса датчиков системы впрыска, программа электронного блока управления осуществляет управление исполнительными механизмами (ИМ).
Форсунка — электромагнитный клапан с нормированной производительностью (встречаются пьезоэлектрические). Служит для впрыска вычисленного для данного режима движения количества топлива.
Бензонасос — предназначен для нагнетания топлива в топливную рампу. Давление в топливной рампе поддерживается вакуумно-механическим регулятором давления. В некоторых системах регулятор давления топлива совмещен с бензонасосом.
Модуль зажигания — электронное устройство управления искрообразованием. Содержит в себе два независимых канала для поджига смеси в 1-4 и 2-3 цилиндрах. То есть реализуется принцип «холостой искры». В последних модификациях низковольтные элементы модуля зажигания помещены в электронный блок управления, а для получения высокого напряжения используются либо выносная двухканальная катушка зажигания, либо катушки зажигания непосредственно на свече.
Регулятор холостого хода — служит для поддержании заданных оборотов холостого хода. Представляет собой прецизионный шаговый двигатель, регулирующий обводной канал воздуха в корпусе дроссельной заслонки, для обеспечения двигателя воздухом, необходимым для поддержания холостого хода (7-12 кг./час) при закрытой дроссельной заслонке.
Вентилятор системы охлаждения — управляется электронным блоком управления по сигналам датчика температуры охлаждающей жидкости. Разница между включением/выключением как правило 4-5°С.
Сигнал расхода топлива — выдается на маршрутный компьютер — 16000 импульсов на 1 расчетный литр израсходованного топлива. Данные эти приблизительные, т.к рассчитываются они на основе суммарного времени открытия форсунок с учетом некоторого эмпирического коэффициента, который необходим для компенсации погрешностей измерения, вызванных работой форсунок в нелинейном участке диапазона, асинхронной топливоподачей и другими факторами. Как показывает практика, сигнал расхода топлива более — менее соответствует истине на системах с ДК.
Адсорбер — является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 не предусмотрен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг.
Электронный блок управления
Электронный блок управления — по сути специализированный микрокомпьютер, обрабатывающий данные, поступающие с датчиков и по определенному алгоритму управляющий исполнительными механизмами.
Сама программа хранится в микросхеме ПЗУ, английское название микросхемы — CHIP (чип), отсюда и пошло название чип-тюнинг, то есть изменение программы управления двигателем. Содержимое «чипа» — обычно делится на две функциональные части — собственно программа, осуществляющая обработку данных и математические расчеты и блок калибровок. Калибровки — набор (массив) фиксированных данных (переменных) для работы программы управления.
Следует иметь ввиду, что для правильной работы любой системы впрыска необходимо наличие полностью исправных датчиков и исполнительных механизмов.
Спасибо, что прочитали статью до конца
Удачи на дорогах
Теория и практика впрыска: прямой против распределенного. Какой выбрать двигатель, чтобы не разориться
Если спросить, что происходит, когда водитель нажимает или отпускает педаль «газа», скорее всего, услышите от владельцев бензиновых автомобилей, что при этом увеличивается или уменьшается подача топлива в мотор. Однако назвать правильным такой ответ можно только с большой натяжкой.
В действительности же, воздействуя на педаль «газа», водитель уменьшает или увеличивает подачу воздуха в цилиндры. Топлива же будет подано ровно столько, сколько требуется для приготовления смеси воздуха и бензина, заданной программой управления для конкретного режима работы двигателя и его фактического температурного состояния.
У карбюраторных моторов, давно ставших экспонатами политехнических музеев, количество подаваемого бензина и вовсе определялось разряжением воздуха в пространстве за дроссельной заслонкой, положение которой задавалось нажатием на педаль «газа». Точность такого способа дозирования топлива была невысока, что сказывалось на экономичности карбюраторных двигателей, количестве вредных выбросов в окружающую среду и в конечном итоге сделало карбюраторы достоянием истории.
На смену пришел впрыск, где подача бензина самотеком из жиклеров под действием разряжения воздуха была заменена распылением с помощью форсунок, к которым топливо поступает под давлением, развиваемым топливным насосом.
На самом ли деле прямой впрыск настолько хорош, что делает поражение MPI неизбежным? Чтобы разобраться в этом вопросе, сравним обе системы питания.
И там и там в отличие от моновпрыска каждый цилиндр двигателя обслуживается отдельной форсункой, но при распределенном впрыске форсунки распыляют бензин во впускной коллектор.
При прямом впрыске бензин подается непосредственно в камеру сгорания цилиндра. Это главное, что отличает моторы, в зависимости от производителя помечаемые индексами GDI (Mitsubishi), FSI (Volkswagen), HPi (Peugeot), CGI (Mercedes-Benz) и так далее, от двигателей MPI.
Что же хорошего сулит подача бензина прямо внутрь цилиндра? Как ни странно, ничего, если подойти к этому вопросу с точки зрения конструкции двигателя. Проблема состоит в том, что при прямом впрыске на испарение бензина и перемешивание его паров с воздухом отводится примерно в 10 раз меньше времени, чем когда бензин распыляется во впускной коллектор, а в цилиндры поступает уже в смеси с воздухом после того, как открылись впускные клапана.
Как в условиях столь короткого промежутка времени, отводимого при прямом впрыске на смесеобразование, добиться, чтобы смесь получилась качественной, ведь именно от этого зависит, каким будет результат последующего сгорания?
Отсюда другие отличия GDI, FSI, HPi, CGI и иже с ними от MPI. Во-первых, давление, с которым форсунка при прямом впрыске распыляет бензин, в десятки раз превышает давление, действующее в системах питания с распределенным впрыском (порядка 50-120 бар против 3-4). Это предполагает наличие у двигателей с прямым впрыском топливного насоса высокого давления, в котором нет необходимости при распределенном впрыске.
Но и это еще не все. Важнейшую роль в организации рабочего процесса в моторах с прямым впрыском играет движение воздуха и порции впрыснутого бензина внутри цилиндра. Именно ради этого днище поршней в двигателях с прямым впрыском приобрело сложную профилированную форму, которая также принципиально отличает их от поршней MPI-моторов.
Той же цели служат и впускные каналы в коллекторах двигателей с прямым впрыском. В GDI, FSI и подобных им моторах поток воздуха из впускных каналов либо способствует так называемому послойному смесеобразованию, когда пригодным для нормального сгорания становится только небольшое облако смеси, расположенное возле свечи зажигания, либо разрушает расслоение, когда нужно, чтобы смесь стала стехиометрической. В двигателях MPI впускные каналы предназначены лишь для впуска бензовоздушной смеси в цилиндры, поэтому здесь нет необходимости придавать каналам винтовую форму, оснащать их заслонками, закрытыми или открытыми в зависимости от режима работы двигателя, как это делается при прямом впрыске.
Наш вердикт
Производители себе на уме, но если спросить у белорусских владельцев бензиновых автомобилей, какой мотор лучше, MPI или FSI, скорее всего, услышим в ответ дифирамбы в адрес первого и ничего хорошего о втором. И вот вам правда жизни: оценка системы питания, которой теоретики и аналитики прочат безоговорочную победу, может измениться на противоположную, если учесть, чем в наших условиях эксплуатации оборачивается ее сложность.
Сергей БОЯРСКИХ
Фото автора
ABW.BY
Благодарим за консультации и помощь в организации фотосъемки «Ресурсный центр» на базе автомеханического колледжа имени академика М.С.Высоцкого
Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы
Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.
По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.
Прямой впрыск топлива: устройство системы непосредственного впрыска
Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.
Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.
Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.
Система непосредственного впрыска: конструктивные особенности
Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:
Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.
Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.
Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.
Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.
Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.
Как работает система непосредственного впрыска топлива
Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.
За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».
В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.
Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.
Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.
Что в итоге
Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.
Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.
Устройство и схема работы инжектора. Плюсы и минусы инжектора по сравнению с карбюратором. Часты неисправности инжекторных систем питания. Полезные советы.
Тюнинг топливной системы атмосферного и турбо двигателя. Производительность и энергопотребление бензонасоса, выбор топливных форсунок, регуляторы давления.
Установка карбюратора вместо инжектора, особенности процесса замены системы впрыска. Замена карбюратора на инжекторный электронный впрыск. Рекомендации.
Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи.