что такое навигационный модуль
Как выбрать подходящий модуль спутникового позиционирования для своего проекта
Вы доделали свой новый проект, и теперь ваше детище живёт и передвигается по миру. И осталась только одна проблема – вам нужно знать его местоположение с достаточно неплохой точностью. К счастью, у нас есть системы спутникового позиционирования! При помощи готового модуля можно получить все данные по местоположению, которые вам только могут понадобиться. Но как подойти к этому вопросу, и какие компоненты лучше всего подойдут для вашего проекта? Читайте в данном материале.
Все одинаковые, но совершенно разные
Работа с GPS может внушать некоторые опасения, но благодаря усилиям промышленности и отдельных энтузиастов в наше время эта задача оказывается удивительно простой. Большинство имеющихся на рынке модулей будут работать одинаково. Чаще всего они передают данные по стандартному последовательному интерфейсу, обычно на скорости 9600 бод; также бывают интерфейсы I2C и SPI. Сами сообщения также стандартизированы – они выдаются в формате NMEA-0183. Если вы хотите сами обрабатывать данные, по этому стандарту полно документации. Однако если вы очень торопитесь, для многих платформ с микроконтроллером можно найти готовый код, который всё сделает за вас. Такие проекты, как NeoGPS, Adafruit GPS и minmea примут входящий поток последовательных данных и выдадут все географические данные, которые вам только могли понадобиться. Так что же – GPS это просто GPS?
В зависимости от области применения, от вашего GPS-модуля вам могут потребоваться разные вещи. Передвигающиеся с большой скоростью платформы, автопилот которых полагается на GPS, будут лучше работать с большой частотой обновления данных. Пассивные трекеры вполне удовлетворятся обновлениями не чаще раза в секунду. Требования к точности тоже бывают разные – некоторым приложениям требуется сантиметровое разрешение. Также существуют особые возможности, помогающие в пограничных ситуациях, типа расчёта местоположения исходя из проделанного пути (навигационного счисления) или приёмников, способных работать с несколькими навигационными системами одновременно (GPS, ГЛОНАСС, Бэйдоу и т.п.). Чёткое понимание требований к прибору и бюджета – главное в деле правильного выбора подходящего оборудования.
Мне просто нужно знать, где он!
В эту группу попадают устройства на базе GP-20U7, а также уже устаревшего uBlox NEO-6M. Это дешёвый и простой способ недорого собрать ваш первый проект с GPS.
Мне нужен постоянный сигнал!
Если вам никак нельзя терять сигнал, или вы пытаетесь определить местоположение в загруженной городской территории, стоит обзавестись модулем, способным работать в таких условиях. В этих случаях могут помочь разъём для внешней антенны, позволяющий подключить антенну большего размера. Важно отметить, что распространённые коннекторы для плат U.FL рассчитаны на ограниченное количество подключений и их легко отломать, поэтому рассмотрите возможность покупки переходника U.FL to SMA. Антенны бывают всякие разные, но большинство из них будет лучше, чем стандартная небольшая керамическая пластинка, идущая в комплекте с многими модулями.
Качественная антенна с отдельным заземлением может значительно улучшить качество приёма
Точное определение местоположение требует получения хорошего сигнала от нескольких спутников – поэтому, чем больше выбор, тем легче этого достичь. Большая вероятность увидеть достаточно много спутников будет у модулей, способных распознавать различные навигационные системы. У нас есть китайская Бэйдоу, европейская Галилео, российская ГЛОНАСС – и если взять модуль, способный принимать дополнительный сигналы, у него будет огромное преимущество при работе в застроенной части города с ограниченным обзором неба.
Но иногда, несмотря ни на что, вы можете оказаться в ситуации, когда не видно ни единого спутника. В каком-нибудь туннеле невозможно поймать сигнал. Тогда могут пригодиться модули, позволяющие вести навигационное счисление. Когда сигнал пропадает, модуль использует встроенную инерционную систему для обновления местоположения до тех пор, пока вновь не поймает сигнал. Это может очень пригодиться в таких приложениях, которые, к примеру, строят маршрут и отслеживают повороты.
Мне нужны быстрые обновления!
Если вы собираете нечто, движущееся с большой скоростью, 5 Гц вам может показаться мало. Более частое обновление у модулей бывает от 10 Гц до 25 Гц, благодаря чему ваш быстро движущийся проект сможет куда лучше ориентироваться в пространстве. Конечно, если вы строите крылатую ракету, то вы вряд ли будете закупаться в Sparkfun – а в противном случае развлекайтесь! Эти устройства обычно обмениваются данными на больших скоростях по последовательному порту или I2C, чтобы чаще обновлять местоположение.
Мне нужна сантиметровая точность!
Для некоторых случаев точность прежде всего. Если вы управляете комбайном, и не хотите, чтобы он протаранил ограду, то метровая точность вас не устроит. В данном случае лучше всего использовать приёмники с технологией Real Time Kinematics (RTK). Они объединяют полученный со спутника сигнал с локальными данными коррекции, полученными с базовой станции, в идеале находящейся не далее 10 км от их местоположения.
RTK работает, добавляя локальные данные коррекции, полученные с базовой станции
Эти данные могут поступать по интернету или по радиосвязи LoRa, и позволять модулю выдавать местоположение с точностью до сантиметра, в идеальных условиях. Некоторые операторы предоставляют публичный доступ к своим станциям, однако возможно приобрести собственное оборудование и поднять станцию для личных нужд. Многие модули высшего класса могут работать в качестве базовой станции для других модулей, работающих поблизости.
Технология глобальной спутниковой навигации: какие бывают системы, параметры и функции
В этой статье мы расскажем про глобальные системы позиционирования, разработанные в США, России, ЕС и Китае; объясним, как поддержка технологий глобальной спутниковой навигации реализована в электронных устройствах, а также опишем ключевые и дополнительные функции современных навигационных приемников.
Система GPS (Global Positioning System) создавалась для применения в военных целях. Она начала работать в конце 80-х — начале 90-х годов, однако до 2000 года искусственные ограничения на определение местоположения существенно сдерживали ее возможности использования в гражданских целях.
Орбиты спутников системы GPS. Пример видимости спутников из одной из точек на поверхности Земли. Visible sat — это число спутников, видимых над горизонтом наблюдателя в идеальных условиях (чистое поле).
ГЛОНАСС
Российский аналог GPS — ГЛОНАСС (глобальная навигационная спутниковая система) — была развёрнута в 1995 году, но в связи с недостаточным финансированием и малым сроком службы спутников она не получила широкого распространения. Вторым рождением системы можно считать 2001 год, когда была принята целевая программа ее развития, благодаря которой ГЛОНАСС возобновил полноценную работу в 2010 году.
Сегодня на орбите работают 24 спутника ГЛОНАСС, они охватывают навигационным сигналом весь земной шар.
Новейшие потребительские устройства используют GPS и ГЛОНАСС как взаимодополняющие системы, подключаясь к ближайшим найденным спутникам, это значительно увеличивает скорость и точность их работы.
Пример: aвтомобильное GPS/ГЛОНАСС-навигационно-связное устройство на базе ОС Android, разработанное командой Promwad по заказу российского конструкторского бюро. Реализована поддержка GSM/GPRS/3G. Устройство автоматически обновляет информацию о дорожной обстановке в режиме реального времени и предлагает водителю оптимальный маршрут с учётом загруженности дорог.
Сейчас на стадии разработки находятся еще две спутниковые системы: европейская Galileo и китайская Compass.
Galileo
Галилео — совместный проект Европейского союза и Европейского космического агентства, анонсированный в 2002 году. Изначально рассчитывали, что уже в 2010 году в рамках этой системы на средней околоземной орбите будут работать 30 спутников. Но этот план не был реализован. Сейчас предположительной датой начала эксплуатации Galileo считается 2014 год. Однако ожидается, что полнофункциональное использование системы начнется не ранее 2020 года.
Compass
Это следующая ступень развития китайской региональной навигационной системы Beidou, которая была введена в эксплуатацию после запуска 10 спутников в конце 2011 года. Сейчас она обеспечивает покрытие в границах Азии и Тихоокеанского региона, но, как ожидается, к 2020 году система станет глобальной.
Сравнение орбит спутниковых навигационных систем GPS, ГЛОНАСС, Galileo и Compass (средняя околоземная орбита — MEO) с орбитами Международной космической станции (МКС), телескопа Хаббл и серии спутников Иридиум (Iridium) на низкой орбите, а также геостационарной орбиты и номинального размера Земли.
Поддержка ГНСС
Ключевые параметры навигационных приемников
Производители приемников используют различные методы уменьшения TTFF, включая скачивание и сохранения альманаха и эфемерид по беспроводным сетям передачи данных (т.н. метод Assisted GPS или A-GPS), это быстрее чем извлечение этих данных из сигналов ГНСС.
Холодный старт описывает ситуацию, когда приемнику нужно получение всей информации для определения места. Это может занять до 12 минут.
Теплый старт описывает ситуацию, когда у приемника есть почти вся необходимая информация в памяти, и он определит место в течении минуты.
Одним из ключевых параметров навигационных модулей в мобильных устройствах является энергопотребление. В зависимости от режима работы модуль потребляет различное количество энергии. Фаза поиска спутников (TTFF) характеризуется большим, а слежение меньшим энергопотреблением. Также производители реализуют различные схемы уменьшения энергопотребления, например, путем периодического перевода модуля в режим сна.
Как правило, все модули выдают данные по текстовому протоколу NMEA-0183, но кроме указанного текстового протокола каждый производитель имеет свой собственный двоичный протокол (Binary), который позволяет изменять конфигурацию модуля под конкретное использование либо получать доступ к дополнительному функционалу, а также доступ к сырым измерениям. Двоичный протокол удобен для использования на микроконтроллерах, т.к. при этом нет необходимости выполнять преобразование из текста в двоичные данные, тем самым экономя программную память путем исключения библиотеки работы со строками и времени на преобразование.
Стандарт NMEA-2000 — это развитие протокола NMEA-0183. В качестве физического уровня в NMEA-2000 используется CAN-шина, которая была выбрана в виду большей защищенности по сравнению с RS-232. С точки зрения протокола передачи данныхNMEA-2000 существенно отличается от своего предшественника, т.к. использует двоичный протокол, базирующийся на стандарте SAE J1939.
Частота обновления данных о местоположении и скорости всех модулей составляет 1 Гц, но при необходимости ее можно поднять до 5 или 10 Гц.
В зависимости от области применения модуль можно сконфигурировать под определенные динамические характеристики, которые он должен отслеживать (например, максимальное ускорение объекта). Это позволяет использовать оптимальный алгоритм и улучшать качество измерений.
Для выполнения навигационной задачи модуль должен одновременно принимать сигналы от нескольких спутников, т.е. иметь несколько приемных каналов. На сегодняшний день это число лежит в диапазоне от 12 до 88.
Точность определения местоположения по GPS составляет в среднем 15 м, она обусловлена используемым неточным сигналом, влиянием атмосферы на распространение радиосигнала, качеством кварцевых генераторов в приемниках и пр. Но с помощью корректирующих методов возможно улучшить точность определения местоположения. Эта технология называется Differential GPS. Существует два метода коррекции: наземный и спутниковый DGPS.
В наземных методах коррекции наземные станции дифференциальных поправок постоянно сверяют свое заведомо известное местоположение и сигналы от навигационных спутников. На базе этой информации вычисляются корректирующие величины, которые могут быть переданы с помощью УКВ- или ДВ-передатчика на мобильные DGPS-приемники в формате RTCM. На основании полученной информации потребитель может корректировать процесс определения собственного местоположения. Точность этого метода составляет 1—3 метра и зависит от расстояния до передатчика корректирующей информации и качества сигнала.
Спутниковые методы, такие как система WAAS (Wide Area Augmentation System), доступная в Северной Америке, и система EGNOS (European Geostationary Navigation Overlay System), доступная в Европе, шлют корректирующие данные с геостационарных спутников, таким образом достигается большая область приема, чем при наземных методах.
Спутниковые системы дифференциальной коррекции (SBAS — Space Based Augmentation Systems) позволяют улучшить точность, надежность и доступность навигационной системы за счет интеграции внешних данных в процессе расчета
Демонстрация принципа работы системы WAAS (Wide Area Augmentation System) на территории США
Одним из основных параметров, влияющих на точность определения местоположения и стабильность приема является чувствительность. Она, как правило, определяется качеством малошумящего усилителя на входе приемника и сложностью реализованных алгоритмов цифровой обработки. Типовые значения современных приемников лежат в диапазоне 143 дБм для поиска и 160 дБм для слежения.
Кроме определения местоположения ГНСС предоставляют информацию о точном времени. Как правило, все приемники имеют выход PPS (pulse per second, импульсов в секунду) — секундная метка (1 Гц), которая точно синхронизирована с временной шкалой UTC.
Дополнительные функции навигационных устройств
Счисление пути. На основе информации о направлении движения и пройденном пути (предоставляется дополнительными датчиками) приемник может рассчитывать свои координаты при отсутствии сигналов от спутников (например, в туннелях, на подземных стоянках и в плотной городской застройке).
Некоторые модули имеют возможность напрямую подключать флэш-память (например, по SPI) к модулю для записи трека c необходимой периодичностью. Эта функция позволяет отказаться от использования отдельного микроконтроллера, либо она может быть полезной для минимизации энергопотребления (т.е. система на кристалле может находиться в состоянии сна).
На этом поверхностный обзор технологий глобальной спутниковой навигации завершен. Спасибо за внимание. Примеры реализованных проектов на базе этих ГЛОНАСС и GPS можно посмотреть на странице разработок компании Promwad.
Что такое навигационный модуль
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Глобальная навигационная спутниковая система
НАВИГАЦИОННЫЕ МОДУЛИ ДЛЯ ИСПОЛЬЗОВАНИЯ В НАЗЕМНОЙ НАВИГАЦИОННОЙ АППАРАТУРЕ
Технические требования и методы испытаний
Global navigation satellite system. Navigation modules for ground based navigation equipment use. Technical requirements and test methods
Дата введения 2014-01-01
1 РАЗРАБОТАН Открытым акционерным обществом «Научно-технический центр современных навигационных технологий «Интернавигация» (ОАО «НТЦ «Интернавигация»)
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 363 «Радионавигация»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 28 августа 2013 года N 604-ст
1 Область применения
Настоящий стандарт распространяется на навигационные модули, входящие в состав аппаратуры спутниковой навигации, предназначенной для оснащения автомобильных транспортных средств, используемых для перевозки пассажиров, специальных и опасных грузов.
Настоящий стандарт устанавливает технические требования к навигационным модулям по их назначению.
2 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
глобальная навигационная спутниковая система; ГНСС: Навигационная спутниковая система, предназначенная для определения пространственных координат, составляющих вектора скорости движения, поправки показания часов и скорости изменения поправки показаний часов потребителя ГНСС в любой точке на поверхности Земли, акватории Мирового океана, воздушного и околоземного космического пространства.
навигационная аппаратура потребителя ГНСС; НАП ГНСС: Аппаратура, предназначенная для измерения параметров навигационных сигналов ГНСС и выделения навигационных сообщений с целью определения пространственных координат, составляющих вектора скорости движения, поправки показаний часов потребителя ГНСС и скорости изменений этой поправки.
навигационный космический аппарат ГНСС; НКА ГНСС: Космический аппарат, имеющий на борту аппаратуру, предназначенную для формирования и излучения навигационных сигналов ГНСС, необходимых потребителю ГНСС для определения пространственных координат, составляющих вектора скорости движения, поправки показаний часов и скорости изменения этой поправки.
2.4 навигационный модуль, используемый в аппаратуре потребителей спутниковой навигации: Радиотехническое устройство, основными функциями которого являются прием, обработка радионавигационных сигналов навигационных космических аппаратов ГНСС и определение пространственных координат и составляющих вектора скорости движения объекта навигации (потребителя ГНСС).
навигационный сигнал ГНСС: Радиосигнал, излучаемый навигационным космическим аппаратом ГНСС, несущий информацию о показаниях его часов, навигационное сообщение и предназначенный для потребителей ГНСС.
объект навигации: Объект, определяющий свои пространственные координаты, составляющие вектора скорости движения и поправку показаний часов.
2.7 холодный старт: Состояние НАП, при котором системное время, координаты местоположения объекта, на котором установлена аппаратура, альманах ГНСС и эфемериды НКА неизвестны.
2.8 горячий старт: Состояние НАП, при котором альманах ГНСС и эфемериды НКА известны, а системное время и координаты местоположения объекта, на котором установлена аппаратура, известны с некоторой ошибкой.
2.9 перезахват: Повторный захват сопровождаемого объекта при срыве сопровождения на время не более 60 с.
псевдодальность до НКА ГНСС: Разность между моментом приема фрагмента навигационного сигнала ГНСС, отсчитанным по шкале времени приемника потребителя ГНСС, и моментом излучения его навигационным космическим аппаратом ГНСС, отсчитанным по шкале времени навигационного космического аппарата ГНСС, умноженная на значение скорости света.
радиальная псевдоскорость НКА ГНСС: Измеренная радиальная скорость навигационного космического аппарата ГНСС относительно потребителя ГНСС, отличающаяся от геометрической радиальной скорости навигационного космического аппарата ГНСС на значение, обусловленное разницей между значениями частоты несущего колебания, излучаемого навигационным космическим аппаратом ГНСС, и частоты несущего колебания, формируемого в аппаратуре потребителя ГНСС.
3 Обозначения и сокращения
В настоящем стандарте применены следующие обозначения и сокращения:
— глобальная навигационная спутниковая система Российской Федерации;
— коэффициент стоячей волны по напряжению;
— навигационная аппаратура потребителей;
— навигационный космический аппарат;
— глобальная геоцентрическая координатная система отсчета Российской Федерации;
— система дифференциальной коррекции и мониторинга;
— геодезические координатные системы отсчета Российской Федерации;
— канал стандартной точности;
— открытый код доступа;
— глобальная навигационная спутниковая система Соединенных Штатов Америки;
— протокол информационного обмена;
— геометрический фактор точности определения местоположения потребителя ГНСС в пространстве;
— стандарт передачи дифференциальных поправок;
— Всемирная геодезическая система.
4 Технические требования по назначению
4.1 Настоящие технические требования к навигационным модулям по назначению устанавливаются в соответствии с требованиями интерфейсных контрольных документов на ГНСС ГЛОНАСС [1] и GPS [2].
4.2 Навигационный модуль должен обеспечивать:
— измерение псевдодальности до НКА ГНСС, радиальной псевдоскорости НКА ГНСС и фазы несущей частоты по сигналам ГЛОНАСС и GPS;
— определение и выдачу привязанных ко времени текущих координат места и текущего вектора скорости движения;
— прием и учет при решении навигационной задачи корректирующей информации в формате RTCM SC-104;
— выдачу сигнала синхронизирующего импульса (1pps);
— расчет в соответствии с интерфейсным контрольным документом на систему GPS [2] ионосферных поправок по данным, передаваемым в составе навигационных кадров GPS, и их учет при решении навигационной задачи;
— расчет модельных тропосферных поправок и их учет при решении навигационной задачи;
— автономный контроль достоверности навигационных измерений и исключение недостоверных измерений.
4.3 Навигационный модуль должен обеспечивать работу:
— по сигналам СТ ГЛОНАСС в диапазоне частот L1;
— по сигналам GPS, модулированным C/A кодами, в диапазоне частот L1.
4.4 Навигационный модуль должен обеспечивать работу в режимах:
— приема и обработки только сигналов ГЛОНАСС;
— совместного приема и обработки сигналов ГЛОНАСС и GPS.
4.5 Навигационный модуль должен обеспечивать определение навигационных параметров в системах координат ПЗ-90.11, СК-42, СК-95, ГСК-2011, WGS-84 с возможностью преобразования полученных значений из одной системы координат в другую по выбору пользователя.
4.6 Частота выдачи навигационных решений навигационным модулем должна быть не менее 1 Гц.
4.7 Навигационный модуль должен поддерживать стандартные унифицированные протоколы информационного обмена: NMEA 0183 [3], RTCM SC-104 (версия 2.3 и выше с поддержкой ГЛОНАСС).
4.8 Предельные аппаратурные погрешности навигационных определений по сигналам ГЛОНАСС и GPS (по уровню вероятности 0,95) при значениях пространственного геометрического фактора PDOP не более 3 не должны превышать:
Аппаратурная погрешность измерения псевдодальности (по уровню вероятности 0,95) не должна превышать 0,4 м.
1 Под аппаратурными погрешностями навигационного модуля понимаются погрешности, реализуемые им при проведении испытаний с использованием имитатора сигналов ГНСС в статике и динамике при отсутствии в сценариях испытаний погрешностей, обусловленных ошибками космического сегмента и среды распространения радиосигналов.
2 Выполнение требований по аппаратурным погрешностям навигационных определений должно обеспечиваться при частоте выдачи навигационных данных, равной 1 Гц.
4.9 Предельные погрешности навигационных определений по реальным сигналам СТ ГЛОНАСС и GPS (по уровню вероятности 0,95) при значениях пространственного геометрического фактора PDOP не более 3 не должны превышать: