что такое накал лампы в физике
Что такое накал лампы в физике. Конструкция, преимущество и недостатки ламп накаливания
Принцип действия лампы накаливания основан на явлении нагрева проводника при прохождении через него электрического тока. Вольфрамовая нить накала при подключении к источнику тока раскаляется до высокой температуры, в результате чего излучает свет. Световой поток, излучаемый нитью накала, близок к естественному, дневному свету, поэтому не вызывает дискомфорта при длительном использовании.
Достоинства и недостатки ламп накаливания
Из достоинств ламп накаливания можно выделить следующее:
Основным недостатком ламп накаливания является низкий коэффициент полезного действия. Только лишь десятая часть потребляемой лампой электрической энергии преобразуется в видимый световой поток; большинство электрической энергии преобразуется в тепловую энергию.
В нынешнее время лампа накаливания мощностью 100 Вт имеет такую конструкцию:
В зависимости от особенных условий эксплуатации некоторые конструктивные элементы могут отсутствовать (например, цоколь или держатели), быть видоизменёнными (например, цоколь), дополнены другими деталями (дополнительная колба). Но такие части, как нить, колба и электроды являются основными частями.
Принцип работы электрической лампы накаливания
Свечение электрической лампы накаливания обусловлено разогревом вольфрамовой нити, через которую проходит электрический ток. Выбор в пользу вольфрама при изготовлении тела свечения был сделан по той причине, что из многих тугоплавких токопроводящих материалов, он наименее дорогой. Но иногда нить накала электроламп изготавливается из других металлов: осмия и рения.
Мощность лампы зависит от того, какого размера нить используется. То есть, зависит от длины и толщины проволоки. Так у лампы накаливания 100 вт нить будет иметь большую длину, чем у лампы накаливания 60вт.
Некоторые особенности и предназначение конструктивных элементов вольфрамовой лампы
Каждая деталь в электролампе имеет своё предназначение и выполняет свои функции:
Существует несколько видов и форм цоколей в зависимости от предназначения осветительного прибора. Есть конструкции, не имеющие цоколя, но с неизменным принципом работы лампы накаливания. Самыми распространенными видами цоколя являются Е27, Е14 и Е40.
Вот некоторые виды цоколей, применяемые для различных типов ламп:
Кроме различных видов цоколя есть и различные виды колб.
Кроме перечисленных конструктивных деталей, лампы накаливания могут иметь и некоторые дополнительные элементы: биметаллические переключатели, отражатели, цоколи без резьбы, различные напыления и др.
История создания и усовершенствования конструкции лампы накаливания
За свою более чем 100 – летнюю историю существования лампы накаливания с вольфрамовой спиралью, принцип работы и основные конструкторские элементы почти не претерпели изменений.
А началось всё в 1840 году, когда была создана лампа, использующая для освещения принцип накаливания платиновой спирали.
1854 год – первая практичная лампа. Применялся сосуд с откачанным воздухом и бамбуковая обугленная нить.
1874 год – используется в качестве тела накала угольный стержень, помещённый в вакуумный сосуд.
1875 год – лампа с несколькими стержнями, которые раскаляются один за другим в случае сгорания предыдущего.
1876 год – использование каолиновой нити накала, которая не требовала откачки воздуха из сосуда.
1878 год – использование угольного волокна в разрежённой кислородной атмосфере. Это позволяло получать яркое освещение.
1880 год – создана лампа с угольным волокном, имеющая время свечения до 40 часов.
1890 год – использование спиральных нитей из тугоплавких металлов (окиси магния, тория, циркония, иттрия, металлического осмия, тантала) и наполнение колб азотом.
1904 год – выпуск ламп с вольфрамовой спиралью.
1909 год – наполнение колб аргоном.
С тех пор прошло более 100 лет. Принцип работы, материалы деталей, наполнение колбы практически не изменились. Эволюции подверглось лишь качество используемых материалов при производстве ламп, технические характеристики и небольшие дополнения.
Преимущества и недостатки ламп накаливания перед другими искусственными источниками света
Наряду с таким большим перечнем положительных факторов, лампы накаливания обладают и рядом существенных недостатков:
Несмотря на наличие существенных недостатков, электрическая лампа накаливания является безальтернативным прибором освещения. Низкий КПД компенсируется дешевизной производства. Поэтому в ближайшие 10 – 20 лет она будет вполне востребованным товаром.
Несмотря на активное наступление энергосберегающих лампочек, лампы накаливания так и остаются на сегодняшний день самым распространенным источником света. Принципиальная конструкция электрической лампы накаливания не меняется уже более 100 лет и состоит из цоколя, контактных проводников и стеклянной колбы, ограждающей тонкую спираль нити накала от воздействия окружающей среды. Принцип работы ламп накаливания основан на оптическом излучении, получаемом от разогретого до высокой температуры проводника, находящегося в инертной среде.
История
Тем не менее изобретателем современной электрической лампочики называют Томаса Эдисона. 1 января 1880 г. в Менло-Парке (США) была проведена демонстрация электрического освещения для домов и улиц, предложенного Томасом Эдисоном, на которой присутствовали три тысячи человек. Эдисон внес в конструкцию лампы накаливания Лодыгина важнейшие усовершенствования: он добился значительно удаления воздуха из лампы, благодаря чему накаленная нить светилась, не перегорая.
Эдисоном был сконструирова всем известный резьбовой цоколь современных ламп, который назван в его честь. В наши дни от полного названия сохранилась только первая буква «E» в его обозначении. Кроме того, Эдисон предложил и систему производства и распределения электроэнергии для освещения.
Все это позволило увеличить световую отдачу ламп накаливания с первоначальных 4-6 до 10-15 лм/Вт, а срок службы с 50-100 до привычного теперь значения 1000 ч. Развитие теплового принципа получения света нашло применение в галогенных лампах накаливания.
- Примечание. Почему светится раскаленный металл? Согласно квантовой теории, если электрону любым способом сообщить достаточную энергию, то он перейдет на более высокий энергетический уровень, a через 10 –13 с вернется в исходное основное состояние, испустив при этом фотон. Этим фактом обусловлено не только свечение раскаленного металла, но и «холодная» флюоресценция светляков, в которых электроны возбуждаются за счет энергии расщепления АТФ, а также свечение люминофоров, побывавших на солнце, испускающих зеленый свет в темноте.
Техническая информация
Световая отдача ламп накаливания относительно невысока. Она является самой низкой среди современных электрических ламп и лежит в интервале от 4 до 15 лм/Вт. Высокая яркость нити накала в сочетании с ее миниатюрными размерами позволяет использовать лампы накаливания в оптических системах и прожекторах. Лампы накаливания обладают широким диапазоном номинальных напряжений и мощностей. Этот вид ламп может работать в широком диапазоне температур окружающей среды, который ограничен лишь термостойкостью материалов, используемых при ее изготовлении (-100. +300°С). Световой поток ламп накаливания регулируется изменением рабочего напряжения, что может быть достигнуто светорегулятором (диммером) любой конструкции.
При этом недостатком является высокая рабочая температура и количество выделяемого при работе тепла. Лампы накаливания чувствительны к попаданию воды, поскольку из-за резкого охлаждения части стеклянной колбы произойдет ее разрушение, и потенциально пожароопасны из-за высокой рабочей температуры.
На сегодняшний день в мире отмечается устойчивая тенденция к снижению доли ламп накаливания в общем объеме осветительных приборов. В профессиональном секторе рынка светотехники развитых стран эта доля уже сегодня не превышает 10%, вытесняясь более экономичными галогенными и светодиодными осветительными устройствами.
Обеспечить комфорт и уют в доме невозможно без организации хорошего освещения. С такой целью наиболее часто сейчас используются лампы накаливания, которые можно применять в различных условиях сети (36 Вольт, 220 и 380).
Виды и характеристики
Лампа накаливания общего назначения (ЛОН) – это современное устройство, источник искусственного видимого светового излучения с низким КПД, но ярким свечением. Свое название она получила из-за наличия в корпусе специального тела накала, которое изготавливается из тугоплавких металлов или угольной нити. В зависимости от параметров этого тела определяется срок службы светильника, цена и прочие характеристики.
Фото – модель с вольфрамовой нитью
Несмотря на разные мнения, считается, что первым изобрел лампу ученый из Англии Деларю, но его принцип накаливания был далек от современных норм. После исследованиями занимались разные физики, впоследствии, Гебель презентовал первую лампу с угольной нитью (из бамбука), а после Лодыгин запатентовал первую модель из углеродной нити в вакуумной колбе.
В зависимости от конструктивных элементов и типа газа, защищающего нить накаливания, сейчас существую такие виды ламп:
Вакуумные модели являются самыми простыми и привычными. Получили свою популярность из-за низкой стоимости, но вместе с этим они имеют наименьший срок службы. Стоит отметить их простоту замены, ремонту не поддаются. Конструкция имеет следующий вид:
Фото – конструкция вакуумных ламп
Аргоновые лампы ГОСТ 2239-79 по яркости очень отличаются вакуумных, но практически полностью повторяют их конструкцию. Они имеют больший срок годности, нежели привычные. Это обязано тем, что нить из вольфрама защищена колбой с нейтральным аргоном, который противостоит высоким температурам горения. Как результат, источник света более яркий и долговечный.
Фото – аргоновый ЛОН
Криптовую модель можно распознать по очень высокой световой температуре. Она светится ярким белым светом, поэтому иногда может вызывать боль в глазах. Высокий показатель яркости обеспечен криптоном – высоко-инертным газом, у которого высокая атомная масса. Его применение позволило значительно уменьшить вакуумную колбу, но при этом не терять яркость источника света.
Галогенные светильники накаливания получили большую популярность благодаря своей экономной работе. Современная энергосберегающая лампа поможет не только сократить расходы на оплату электрической энергии, но и уменьшить траты на покупку новых моделей для освещения. Производство такой модели осуществляется на специализированных заводах, как и утилизация. Предлагаем для сравнения изучить потребляемую мощность перечисленных выше аналогов:
Благодаря небольшому размеру, наиболее часто электрические ксеноновые и галогеновые осветители используют как автомобильные фары. У них высокое сопротивление и отличная долговечность.
Классификация ламп производится не только исходя из наполняющего газа, а также, в зависимости от типов цоколей и назначения. Существуют такие виды:
Фото – формы ламп и типы цоколей
Достоинства и недостатки
Сравнение отдельных видов светильников накаливания позволит выбрать наиболее подходящий вариант, исходя из того, какая нужна мощность и световая отдача. Но у всех перечисленных видов светильников есть общие достоинства и недостатки:
Параметры
Технические характеристики любой модели обязательно включают в себя: световой поток лампы накаливания, цвет свечения (или цветовая температура), мощность и срок службы. Сравним перечисленные типы:
Фото – цветовая температура
Из всех перечисленных типов только галогенки можно отнести к энергосберегающим моделям. Поэтому многие хозяева стремятся заменить все источники света в своем жилище на более рациональные, к примеру, на диодные. Соответствие светодиодных ламп накаливания, сравнительная таблица:
Для лучшего объяснения энергозатрат предлагаем изучить соотношение ватт к люменам. Например, лампа дневного света, с вольфрамовой нитью накаливания 100 Вт – люмен 1200, соответственно, 500 Вт – более 8000.
При этом, часто использующаяся в производственных и бытовых условиях, люминесцентная модель, имеет похожие характеристики на ксеноновую. Благодаря таким характеристикам есть возможность обеспечить плавное включение ламп накаливания. Для этого используется специальный прибор – диммер для ламп накаливания.
Такой регулятор можно собрать своими руками, если есть схема, подходящая под Вашу лампу. Сейчас большой популярностью пользуются аналоги обычных вариантов, но с зеркальным напылением – рефлекторная модель Philips, импортные Osram и другие. Купить фирменную лампу накаливания можно в специализированных фирменных магазинах.
Конструкция, технические параметры и разновидности ламп накаливания
Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.
По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы — так появились галогеновые лампы. Вольфрам — термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.
История создания
Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им — неправильно.
Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:
В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока — до 40 %.
Вспомните учебный курс — еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.
Принцип действия
Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.
Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.
Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.
Строение
Обычная лампа состоит из следующих конструктивных элементов:
Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.
Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение — защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.
Колба
Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.
Газовая среда
Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.
В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.
Нить накала
По форме нить накаливания может быть разной — выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже — ленточные проводники.
Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.
Технические характеристики
Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны — до 75 Вт световая отдача увеличивается, при превышении — снижается.
Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.
Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель — у изделий мощностью 40 Вт.
Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.
Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.
При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.
Эксплуатационные параметры
При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.
Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.
В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):
Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:
Специальные лампы
Также существуют более специфические разновидности ламп накаливания:
Двухнитевая лампа бывает нескольких разновидностей:
Продолжим рассматривать специальные лампы накаливания:
Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья — на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД — 5 %.
Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К — в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.
Плюсы и минусы
С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.
Как увеличить срок службы
Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:
Вот несколько рекомендаций по продлению срока службы ламп накаливания:
Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.
Приобретать такие изделия сегодня можно в нескольких случаях — они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически — это давно устаревшие изделия.
Что такое накал лампы в физике
Зайдите на сайт под своим именем или зарегистрируйтесь, если еще не регистрировались.
Ла́мпа нака́ливания — электрический источник света, в котором так называемое тело накала нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает видимый свет. В качестве тела накала в настоящее время используется в основном спираль из вольфрама и сплавов на его основе.
Принцип действия
В лампе накаливания используется эффект нагревания проводника (тела накаливания) при протекании через него электрического тока (тепловое действие тока). Температура тела накала резко возрастает после включения тока. Тело накала излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 5770 K (температура поверхности Солнца). Чем меньше температура, тем меньше доля видимого света и тем более «красным» кажется излучение.
Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 5770 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (3410 °C) и, очень редко, осмий (3045 °C).
При практически достижимых температурах 2300—2900 °C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «жёлто-красным», чем дневной свет. Для характеристики качества света используется т. н. цветовая температура.
В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух. Первые изготавливали вакуумными; в настоящее время только лампы малой мощности (для ламп общего назначения — до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом, аргоном или криптоном). Повышенное давление в колбе газополных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить КПД и приблизить спектр излучения к белому. Колба газонаполненной лампы не так быстро темнеет за счёт осаждения материала тела накала, как у вакуумной лампы.
Конструкция
Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.
В конструкции ламп общего назначения предусматривается предохранитель — звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы — как правило, в ножке. Назначение предохранителя — предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга, которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. Из-за малой эффективности в настоящее время отказались от их применения.
Конструкция современной лампы. На схеме: 2 — полость колбы (вакуумированная или наполненная газом); 4, 5 — электроды (токовые вводы); 6 — крючки-держатели тела накала; 8 — внешнее звено токоввода, предохранитель; 10 — изолятор цоколя (стекло); 11 — контакт донышка цоколя. КолбаКолба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала. Для ламп большей мощности требуются колбы большего размера, для того чтобы осаждаемый металл распределялся на большую площадь и не оказывал сильного влияния на прозрачность. Газовая среда Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молекулярной массой. Смеси азота N2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже — криптон Kr или ксенон Xe (молекулярные массы: N2 — 28,0134 г/моль; Ar: 39,948 г/моль; Kr — 83,798 г/моль; Xe — 131,293 г/моль). Особой группой являются галогенные лампы накаливания. Принципиальной их особенностью является введение в полость колбы галогенов или их соединений. В такой лампе испарившийся с поверхности тела накала металл вступает в соединение с галогенами, и затем возвращается на поверхность нити за счёт температурного разложения получившегося соединения. Такие лампы имеют большую температуру спирали, больший КПД, срок службы и меньший размер колбы. Двойная спираль (биспираль) лампы (Osram 200 Вт) с токовводами и держателями Формы тел накала весьма разнообразны и зависят от функционального назначения ламп. Наиболее распространённым является из проволоки круглого поперечного сечения, однако находят применение и ленточные тела накала (из металлических ленточек). Поэтому использование выражения «нить накала» нежелательно — более правильным является термин «тело накала», включенный в состав Международного светотехнического словаря. Тело накала первых лампах изготавливалось из угля (температура возгонки 3559 °C). В современных лампах применяются почти исключительно спирали из вольфрама, иногда осмиево-вольфрамового сплава. Для уменьшения размеров тела накала ему обычно придаётся форма спирали, иногда спираль подвергают повторной или даже третичной спирализации, получая соответственно биспираль или триспираль. КПД таких ламп выше за счёт уменьшения теплопотерь из-за конвекции (уменьшается толщина ленгмюровского слоя). Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в десять — четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу — при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме. Цоколь НоменклатураПо функциональному назначению и особенностям конструкции лампы накаливания подразделяют на: Специальные лампы Фотолампа, перекальная лампа — разновидность лампы накаливания, предназначенная для работы в строго нормированном форсированном по напряжению режиме. По сравнению с обычными имеет повышенную световую отдачу (до 30 лм/Вт), малый срок службы (4-8 часов) и высокую цветовую температуру (3300-3400К, по сравнению с 2700К). В СССР выпускались фотолампы мощностью 300 и 500 Вт. Как правило, имеют матированную колбу. В настоящее время (XXI век) практически вышли из употребления, благодаря появлению более долговечных устройств сравнимой и более высокой эффективности. В фотолабораториях обычно осуществлялось питание таких ламп в двух режимах: Пилотное освещение — напряжение снижено на 20-30 % с помощью ЛАТРа. При этом лампа работает с недокалом и имеет низкую цветовую температуру и Номинальное напряжение История изобретенияКПД и долговечность Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет 5 %. С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %. Уменьшение напряжения питания хотя и понижает КПД, но зато увеличивает долговечность. Так понижение напряжения в два раза (напр. при последовательном включении) сильно уменьшает КПД, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к яркости, например, на лестничных площадках. Часто для этого при питании переменным током лампу подключают последовательно с диодом, благодаря чему ток в лампу идет только в течение половины периода. Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается, и лампа выходит из строя. Преимущественная часть износа нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода плавные пускатели. Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной. Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности. Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.
Преимущества и недостатки ламп накаливания
Интересные факты Материал взят из свободной энциклопедии Wikipedia
|