Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.
Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.
«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:
В совокупности эти три параметра образуют систему отсчета.
В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉
Прямолинейное равномерное движение
Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.
Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.
Мы можем охарактеризовать это движение следующими величинами.
Скалярные величины (определяются только значением)
Векторные величины (определяются значением и направлением)
Проецирование векторов
Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.
Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.
Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.
Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.
Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.
Скорость
→ → V = S/t
→ V — скорость [м/с] → S — перемещение [м] t — время [с]
Средняя путевая скорость
V ср.путевая = S/t
V ср.путевая — средняя путевая скорость [м/с] S — путь [м] t — время [с]
Задача
Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.
Решение:
Возьмем формулу средней путевой скорости V ср.путевая = S/t
Подставим значения: V ср.путевая = 210/2,5 = 84 км/ч
Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч
Уравнение движения
Основной задачей механики является определение положения тела в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).
Уравнение движения
x(t) = x0 + vxt
x(t) — искомая координата [м] x0 — начальная координата [м] vx — скорость тела в данный момент времени [м/с] t — момент времени [с]
Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v
Уравнение движения при движении против оси
x(t) — искомая координата [м] x0 — начальная координата [м] vx — скорость тела в данный момент времени [м/с] t — момент времени [с]
Графики
Изменение любой величины можно описать графически. Вместо того, чтобы писать множество значений, можно просто начертить график — это проще.
В видео ниже разбираемся, как строить графики кинематических величин и зачем они нужны.
Прямолинейное равноускоренное движение
Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.
Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.
СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».
Итак, прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.
Уравнение движения и формула конечной скорости
Основная задача механики не поменялась по ходу текста — определение положения тела в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.
Уравнение движения для равноускоренного движения
x(t) = x0 + v0xt + axt^2/2
x(t) — искомая координата [м] x0 — начальная координата [м] v0x — начальная скорость тела в данный момент времени [м/с] t — время [с] ax — ускорение [м/с^2]
Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:
Формула конечной скорости
→ → v = v0 + at
→ v — конечная скорость тела [м/с] v0 — начальная скорость тела [м/с] t — время [с] → a — ускорение [м/с^2]
Задача
Найдите местоположение автобуса через 0,5 часа после начала движения, разогнавшегося до скорости 60 км/ч за 3 минуты.
Решение:
Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:
Так как автобус двигался с места, v0 = 0. Значит a = v/t
Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.
3 минуты = 3/60 часа = 1/20 часа = 0,05 часа
Подставим значения: a = v/t = 60/0,05 = 1200 км/ч^2 Теперь возьмем уравнение движения. x(t) = x0 + v0xt + axt^2/2
Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:
Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.
Подставим циферки: x = 1200*0,5^2/2 = 1200*0,522= 150 км
Ответ: через полчаса координата автобуса будет равна 150 км.
Графики
Мы уже знаем, что такое графики функций и зачем они нужны. Для прямолинейного равноускоренного движения графики будут отличаться. Об этом — в видео ниже
Движение по вертикали
Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с^2, а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).
Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с2. В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с2.
Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.
Помните о том, что свободное падение — это не всегда движение по вертикали. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.
Как определить координаты движущегося тела? Для этого необходимо знать такие понятия, как механическое движение, пройденный путь, скорость, перемещение.
Механическое движение
При механическом движении происходит изменение положения тела в пространстве относительно других тел за промежуток времени. Оно бывает равномерным и неравномерным.
Равномерное движение
При равномерном движении тело за равные промежутки времени проходит одинаковые расстояния (т.е. движется с постоянной скоростью).
Путь, пройденный при равномерном движении равен: Sx=Vxt=x-xо
Следовательно, при равномерном движении координата тела изменяется по следующей зависимости:
Неравномерное движение
Неравномерное движение – движение, при котором тело за равные промежутки времени проходит неодинаковые расстояния (движется с непостоянной скоростью), то есть движется с ускорением.
Если тело движется неравномерно, то скорость тела в разные моменты отличается не только по величине, но и (или) по направлению. Средняя скорость тела при неравномерном движении определяется по формуле: V (ср)= S (весь)/t (весь)
Ускорение– величина, показывающая, как изменяется скорость за 1 секунду.
Рис. 2. Формула ускорения
Следовательно, скорость в любой момент времени можно найти следующим образом:
V=Vо+at
Если скорость с течением времени увеличивается, то a больше 0, если скорость с течением времени уменьшается, то a меньше 0.
Как найти путь при равноускоренном движении?
Рис. 3. Прямолинейное равноускоренное движение
Пройденный путь численно равен площади под графиком. То есть Sx=(Vox+Vx)t/2
Скорость в любой момент времени равна Vx=Vox+axt, следовательно Sx=Voxt+axt2/2
Так как перемещение тела равно разности конечной и начальной координат (Sx=X-Xo), то координата в любой момент времени вычисляется по формуле X=Xo+Sx, или
Движение тела по вертикали
Если тело движется по вертикали, а не по горизонтали, то такое движение всегда является равноускоренным. Когда тело падает вниз, то падает оно всегда с одинаковым ускорением – ускорением свободного падения. Оно всегда одинаковое: g=9,8 м/кв.с.
При движении по вертикали формула скорости приобретает вид: Vy=Voy+gt, где Vy и Voy – проекции начальной и конечной скоростей на ось OY.
Координату же можно рассчитать по формуле: Y=Yo+Voyt+gt2/2
Движение тела по окружности
При движении по окружности численное значение скорости может и не изменяться, но поскольку обязательно изменяется направление, то движение по окружности – это всегда равноускоренное движение.
Что мы узнали?
Тема «Определение координаты движущего тела», которую изучают в 9 классе, поможет ученикам систематизировать информацию о том, что движение может быть равномерным и неравномерным. Так же для того чтобы знать пройденный путь, нужно выбрать тело отсчета и использовать прибор для отсчета времени.
Равноускоренным движением тела называется движение, при котором его ускорение не меняется, ни по величине, ни по направлению.
Уравнение равноускоренного движения в проекции на ось х имеет вид:
Применение производной в кинематике
Если существует зависимость координаты от времени x(t), то зависимость скорости от времени можно получить, взяв производную по времени от этой зависимости.
Скорость ― это производная координаты тела по времени:
Например, если зависимость координаты тела при равноускоренном движении имеет вид
то взяв первую производную от координаты, мы получим зависимость скорости тела от времени:
Точно также, ускорение ― это производная от скорости тела:
На прошлом уроке мы с вами говорили о пути и перемещении тела. Давайте вспомним, что путь — это скалярная величина, равная длине траектории, которую описывает тело за некоторый промежуток времени.
А перемещением называется направленный отрезок прямой, соединяющий начальное и конечное положения тела.
Так как перемещение — это векторная величина, то есть имеет модуль и направление, то складывать и вычитать перемещения необходимо по правилам сложения и вычитания векторов. Однако при решении большинства задач, используется понятие не вектора, а проекции вектора на ось координат.
— А что такое проекция вектора и каковы её свойства?
На это вопрос мы с вами и попытаемся сегодня ответить. Начнём с простого — с понятия проекция точки на ось. Проекция точки — это основание перпендикуляра, опущенного из данной точки на ось.
На представленном рисунке точка А1 — это проекция точки А на ось Ox, а точка B1 — проекция точки B на ось Oy.
Теперь разберёмся с проекцией вектора на ось. Согласно определению, проекция вектора на ось — это длина отрезка между проекциями начала и конца вектора на эту ось, взятая со знаком «плюс» или «минус».
Знак «плюс» берут, если угол между вектором и осью острый, а «минус» — если угол тупой.
Обозначать проекцию вектора будем той же буквой, что и вектор, но с индексом внизу (например, ax — это проекция вектора a на ось Ox).
— А если вектор перпендикулярен оси?
Тогда проекция этого вектора равна нулю.
Проекцию вектора можно выразить через его модуль и угол между вектором и осью. Итак, пусть у нас есть вектор a направленный под некоторым острым углом к координатной оси Ox. Укажем проекцию этого вектора на ось.
У нас с вами получился прямоугольный треугольник, гипотенуза которого равна длине вектора a, а катет AB1 — это проекция вектора a на ось Ox.
Тогда, на основании определения косинуса острого угла, мы можем записать, что проекция вектора на ось равна модулю вектора, умноженному на косинус угла между вектором и осью:
— А можно ли найти модуль и направление вектора по его проекциям на координатные оси?
Чтобы ответить на этот вопрос рассмотрим вектор, лежащий в плоскости xOy. Вектор, лежащий в заданной плоскости, определяется двумя проекциями на оси координат.
Обратим внимание на важное свойство проекций: проекция суммы векторов на ось равна сумме их проекций на эту ось.
Но вернёмся к нашему прошлому уроку. На нём мы с вами говорили о том, что положение тела, которое совершило некоторое перемещение, можно найти графически. Для этого достаточно отложить вектор перемещения от начального положения этого тела. Однако в большинстве случаев необходимо уметь вычислять положение тела, то есть уметь определять его координаты. Давайте на примере решения задачи посмотрим, как можно определить координату движущегося тела, зная координату его начального положения и вектор перемещения.
Итак, два поезда идут по параллельным путям в противоположных направлениях и встречаются в шестидесяти километрах к востоку от железнодорожного вокзала. Продолжив движение через некоторое время t первый поезд удалился от места встречи на 50 километров в восточном направлении, а второй — на 80 километров в западном. Определите координаты каждого поезда относительно вокзала и расстояние между ними через промежуток времени t.
При равномерном прямолинейном движении МТ вдоль координаты ( , ) модуль скорости: . Здесь — координата МТ в начальный момент времени. Эту координату называют начальным условием. Если отсчет времени начинается от 0 ( ), то . Отсюда координата МТ в момент : .
В общем случае модуль перемещения МТ к моменту времени : .
Для двухмерного пространства ХОY и прямолинейного равномерного движения МТ координаты МТ в любой момент времени вычисляются по формулам:
, где и — начальные условия (координаты МТ при времени );
— проекции вектора скорости на оси и ;
При равноускоренном прямолинейном движении МТ в двухмерном пространстве (при ) и начальных условиях: , , , проекции скорости на координаты и :
;
.
Площадь под графиком (Рисунок 4), численно равная пройденному пути, является площадью трапеции:
.
Учитывая, что получим, что перемещение при равнопеременном движении:.
Перемещениеможет быть вычислено и по формуле: .
Координаты МТ в двухмерном пространстве вычисляются по формулам:
; .
Движение МТ по окружности с постоянной по модулю скоростью
При равномерном движении МТ по окружности (рисунок 7) радиус-вектор описывает за равные промежутки времени Dt равные углы Dj.
Отношение называется средней угловой скоростью.. При равномерном движении МТ по окружности =const и . Размерность угловой скорости: .
Пусть радиус-вектор совершит один полный оборот, т.е. повернется на угол Dj = 2p за время Dt = Т. Время Т одного полного оборота МТ называется периодом вращения. Таким образом: , где:
Один Герц – это частота, при которой МТ совершает один полный оборот за 1 секунду.
Угол поворота в радианах , где — длина дуги, а — радиус окружности.
Модуль линейной скорости МТ,вращающейся по окружности с радиусом , равен производной от длины дуги по времени: . Т.к. , то .
Таким образом,
Ускорение МТ при равномерном движении по окружности (Рисунок 8) можно определить следующим образом:
так как модуль скорости не меняется, то ускорение меняет только направление вектора скорости, т.е. является нормальным
При малом времени Dt длина дуги DS мало отличается от .
Модуль среднего ускорения : .
Модуль мгновенного ускорения:
.
В этом выражении v – частота вращения.
Контрольные вопросы:
1. Как направлены векторы мгновенной скорости и ускорения при прямолинейном движении?
2. Как вычислить величину перемещения при равномерном прямолинейном движении?
3. Как вычислить модуль скорости при равнопеременном прямолинейном движении?
4. Как вычислить путь при равнопеременном прямолинейном движении?
5. Что такое угловая скорость и как она связана с периодом вращения и линейной скоростью МТ?
6. Как направлено ускорение при равномерном движении МТ по окружности?
7. Как вычислить ускорение при равномерном движении МТ по окружности?
Движение материальной точки при действии гравитации
На практике весьма распространена задача по определению параметров движения тела при действии гравитации (Рисунок 9). В общем виде задача формулируется следующим образом:
Тело бросили с высоты h над поверхностью Земли, сообщив ему начальную скорость под углом a к горизонту.
Определить:
-время движения и время подъема;
-максимальную высоту подъема тела над поверхностью Земли;
В качестве тела отсчета выберем Землю. Начало системы координат поместим в точку О расположенную на поверхности Земли.
Пусть траектория тела находится в плоскости ХОУ. У поверхности Земли все тела движутся с постоянным ускорением , направленным вертикально вниз. Поэтому ускорения , .