что такое модуляция в радиосвязи
Теория радиоволн: аналоговая модуляция
Амплитудная модуляция
При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.
Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции — это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.
Данный спектр свойственен для модулирующего колебания постоянной частоты.
На графике, по оси Х представлена частота, по оси У — амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра.
В нормальном случае, при коэффициенте модуляции
Как данные передаются по радио?
В одном из комментариев к предыдущим статьям был задан вопрос, можно ли по виду сигнала определить вид его модуляции. Идея рассмотреть основные виды модуляции показалась довольно-таки интересной.
Попробуем разобраться, без формул и максимально просто, как можно передать данные из точки «А» в точку «В».
OOK (On-Off Keying)
Самый простой вид цифрового кодирования. Просто включаем-выключаем передатчик в соответствии с двоичным сигналом:
На спектре такой сигнал выглядит примерно так, их довольно много на частоте
Схема передатчика очень проста, поэтому активно используется в беспроводных пультах, радиокнопках и прочих устройствах ценой 1-2$. Никакого шифрования здесь обычно нет, частота и битовая последовательность жестко «зашиты», передать и принять сигнал может любой желающий, так что ставить такой пульт на дверь гаража, где стоит Lamborgini, я бы не стал, но для ночника у кровати вполне сойдет (такая лампа, купленная в ближайшем MediaMarkt, работает у меня 3 года, ложных срабатываний не было ни разу, принцип «неуловимого Джо» в действии).
Интересно отметить, что исторически это наверное один из самых первых способов радиопередачи. Если включать-выключать передатчик с помощью ключа и принимать сигнал на слух или на бумажную ленту, мы получим старую добрую азбуку Морзе.
Амплитудная модуляция (АМ)
АМ мы наверное сможем видеть еще долго — модуляция используется как в вещательных станциях, так и в передатчиках авиадиапазона 118-137 МГц. Отличительная особенность АМ — спектр симметричен относительно центральной частоты. «На глаз» даже можно примерно понять, что передается, речь или музыка. Скриншот из онлайн приемника Websdr Twente:
Исторически АМ был одним из первых способов приема и передачи речи — всем известная «школьная» схема детекторного приемника отличалась крайней простотой, и даже не требовала батареек для приема — для работы высокоомных наушников было достаточно энергии радиоволн. Любопытно, что такие приемники выпускались в СССР серийно аж до 60х годов:
Детекторный приемник «Комсомолец» (с) Википедия
Видимо, с доступностью как приемников, так и источников питания в глубинке были определенные проблемы, так что детекторный приемник долго оставался актуален.
Однополосная модуляция (USB, LSB, SSB)
Однополосная модуляция является частным случаем амплитудной. Как было сказано выше, спектр АМ сигнала симметричен относительно центра. Но можно передавать лишь «одну половину» сигнала, что обеспечивает большую дальность при той же мощности передатчика:
Однополосная модуляция (с) Википедия
Как видно из картинки, можно настроиться на верхнюю или нижнюю боковую полосу, такой режим в приемнике или передатчике соответственно обозначается USB или LSB.
В режиме однополосной модуляции работают служебные станции, передаются метеосводки на коротких волнах, также он используется радиолюбителями. Но не менее важен он еще и тем, что в режиме USB или LSB спектр сигнала фактически переносится с радиочастоты на звуковую без искажений — что позволяет принимать различные виды цифровых сигналов, рассмотренных ниже. Это важно иметь в виду при выборе радиоприемника — цифровые виды связи (FSK, PSK и пр) могут приниматься и декодироваться лишь в режиме однополосной модуляции, простой бытовой приемник с поддержкой «обычной» AM принять такие сигналы не сможет.
Частотная модуляция (FM)
В частотной модуляции работает всем известное FM-вещание. Интересно отметить, что в передатчике FM-станции кодируется не только звук — передается сложный сигнал, включающий моно и стерео каналы, пилот-тон, RDS и пр. Чтобы не путать с «обычной» FM, у инженеров такая модуляция обычно называется WFM (Wide FM). В программе HDSDR несложно увидеть спектр радиостанции после декодирования:
На сигнале (справа снизу) несложно видеть пилот-тон на частоте 19 КГц, RDS, моно и стерео-каналы FM-вещания. В отличие от WFM, радионяни, рации и прочие аналогичные устройства используют «узкую» FM (NFM, Narrow FM) модуляцию, где передается только звук.
Частотная модуляция активно используется и для цифровых сигналов, в этом случае для передачи бинарного кода может использоваться переключение двух частот. В качестве примера можно привести сигнал немецкой станции Pinneberg, наличие двух частот хорошо видно на спектре:
Pinneberg передает метеосводки судам на длинных, средних и коротких волнах. Частот в принципе, может быть и больше 2х. Пример такого сигнала — радиолюбительский FT8:
С помощью FT8 радиолюбители могут обмениваться короткими сообщениями на расстоянии в несколько тысяч километров при мощности всего лишь несколько ватт.
Интересно, что модуляция может быть и комбинированной — например в авиации используется система ACARS, передающая текстовые сообщения. Цифровой FM сигнал передается через АМ передатчик. Зачем так сложно? Вероятно, используется уже готовый передатчик, ко входу которого просто подключили цифровую схему, формирующую FM-сигнал. Legacy в чистом виде, но вероятно, это дешевле, чем менять миллионы передатчиков в аэропортах и самолетах во всем мире.
Фазовая модуляция (PSK)
Кроме частоты, мы можем менять и фазу сигнала, что дает нам фазовую модуляцию. Такие сигналы могут уверенно приниматься на больших расстояниях, и используются в частности, в спутниковой связи. Из радиолюбительских протоколов можно отметить PSK31, который одно время был весьма популярен.
С помощью PSK31 можно обмениваться информацией в виде «текстового чата», подключив трансивер к компьютеру. Фаз может быть больше 2х, например 4, 18 или 16, все зависит от скорости и канала связи.
Можно менять и фазу и амплитуду одновременно, что дает нам еще большую скорость, но требует более сложного кодирования и декодирования. В качестве примера такого сигнала можно привести QAM. Такой сигнал наглядно проще всего изобразить на фазовой плоскости:
Модуляция QAM используется при передаче данных в стандарте LTE и в цифровом телевидении DVB-T.
Orthogonal frequency-division multiplexing (OFDM)
Одним из современных методов модуляции является OFDM. Его суть состоит в том, что отдельные биты сигнала можно передавать параллельно, представляя сигнал в виде независимо работающих частотных каналов (subcarriers), каждый из которых передает свой отдельный бит. Есть определенные математические правила, гарантирующие что каналы не будут пересекаться и могут быть декодированы.
В качестве примера можно привести DRM, сигналы такого формата можно увидеть на вещательных диапазонах, разница между АМ и DRM хорошо видна на спектре:
Это цифровой сигнал шириной 10 КГц, в котором параллельно передается 206 несущих с интервалом 47 Гц. Стандарт DRM (Digital Radio Mondiale) используется для передачи цифрового радио на средних и коротких волнах, просьба не путать с другим стандартом Digital Rights Management.
OFDM используется и в WiFi (802.11a), структура сигнала там сложнее, желающие могут изучить PDF самостоятельно.
Code-division multiple access (CDMA)
Другой способ широкополосной передачи — разделение данных. Данные для нескольких получателей могут быть комбинированы в один сигнал с помощью специальной функции (например Walsh code), которая гарантирует как прямое, так и обратное преобразование. Одним из ключевых факторов и в OFDM и в CDMA является так называемая «ортогональность», получаемые сигналы не должны «смешиваться», чтобы из результирующего сигнала можно было извлечь исходные данные.
Кодирование CDMA используется в мобильных сетях 3G. Хороший пример разбора CDMA с помощью ручки и бумаги можно найти здесь, интересующимся рекомендую посмотреть.
Заключение
Все что приведено выше, это разумеется, очень краткое объяснение «на пальцах», в реальности, описание только одного декодера может занять в несколько раз больше текста чем вся статья целиком, да и вряд ли многим здесь это нужно — Хабр это все же не научный журнал. Впрочем, общее впечатление у читателей надеюсь все же осталось. При наличии интереса у аудитории (что будет определяться по оценкам текста:) какой-либо из сигналов можно будет разобрать более подробно.
В завершение интересно отметить, что различные схемы кодирования — это не просто какая-то математическая абстракция — все это активно используется, в том числе и в военных целях (например протокол STANAG модемов NATO). Этот скриншот сделан во время написания текста с помощью онлайн-приемника Websdr:
Как можно видеть, несмотря на наличие интернета практически в любой обитаемой точке планеты, возможность передать данные напрямую, анонимно и без посредников, весьма актуальна — каждая линия на графике это работающий прямо сейчас канал связи (и да, внимательные читатели могут заметить здесь даже сигналы азбуки морзе, несмотря на 2020 год).
Множество типов радиочастотной модуляции
Радиосвязь построена на простой концепции: постоянно изменяя характеристики синусоиды, мы можем использовать ее для передачи информации.
На этом этапе мы рассмотрели множество важных концепций, которые служат основой для успешного проектирования и анализа реальных радиочастотных схем и систем. Теперь мы готовы исследовать фундаментальный аспект радиотехники: модуляцию.
Что такое модуляция?
Общий смысл глагола «модулировать» означает «модифицировать, регулировать, изменять», и это определяет суть модуляции даже в специализированном контексте беспроводной связи. Модулировать сигнал – это просто преднамеренно изменять его, но, конечно, эта модификация выполняется строго определенным образом, поскольку целью модуляции является передача данных.
Мы хотим передавать информацию – единицы и нули, если мы имеем дело с цифровыми данными, или последовательность постоянно изменяющихся значений, если мы работаем в аналоге. Но ограничения, налагаемые беспроводной связью, не позволяют нам выражать эту информацию обычным способом; вместо этого мы должны разработать новый «язык», или можно сказать «код», который позволит нам передавать ту же информацию, но в рамках ограничений системы на основе электромагнитного излучения. В частности, нам нужен язык, который совместим с высокочастотными синусоидальными сигналами, поскольку такие сигналы являются единственным практическим средством «переноса» информации в типовой радиочастотной системе.
Эта высокочастотная синусоида, которая используется для передачи информации, называется несущей частотой (или просто несущая). Это название полезно, потому что оно напоминает нам о том, что цель радиочастотной системы заключается не в создании и передаче высокочастотной синусоиды. Скорее, целью является передача (низкочастотной) информации, и несущая – это просто средство, которое мы должны использовать для перемещения этой информации от радиочастотного передатчика к радиочастотному приемнику.
Схемы модуляции
В вербальном общении человеческое тело генерирует звуковые волны и модифицирует или модулирует их так, чтобы создавать большое количество гласных и согласных звуков. Разумное использование этих гласных и согласных приводит к передаче информации от говорящего к слушателю. Система, в соответствии с которой модулируются звуковые волны, называется языком.
В радиочастотной связи ситуация очень похожа. Устройство модулирует электрические волны в соответствии с предопределенной системой, называемой схемой модуляции (или способом модуляции). Так же, как существует много человеческих языков, существует множество способов, которыми можно модулировать несущую.
Сложные схемы модуляции помогают современным радиочастотным системам достичь большого расстояния и улучшить устойчивость к помехам
Возможно, что некоторые человеческие языки особенно эффективны в передаче определенных видов информации; если взять пример из древнего мира, возможно, греческий язык был лучше для философов, а латынь лучше приводила в систему законы. Однако нет никаких сомнений в том, что надежная связь возможна с любым надлежащим образом развитым языком, если только оратор и слушатель знают об этом. То же самое верно для радиочастотных систем. Каждая схема модуляции имеет свои преимущества и недостатки, но все они могут обеспечить отличную беспроводную связь, если выполнено основное требование, то есть приемник должен быть способен понять, что говорит передатчик.
Амплитуда, частота, фаза
Базовая синусоида – вещь простая. Если мы игнорируем смещение по постоянному напряжению, ее можно полностью охарактеризовать только двумя параметрами: амплитудой и частотой. У нас также есть фаза, которая вступает в игру, когда мы рассматриваем начальное состояние синусоиды, или когда изменения в волновом поведении позволяют нам отличать одну часть синусоиды от предыдущей. Фаза также имеет значение при сравнении двух синусоид; этот аспект фазы синусоиды стал очень важным из-за широкого использования в радиочастотных системах квадратурных (или «IQ») сигналов. Мы рассмотрим концепции IQ в этом учебнике позже.
Как обсуждалось выше, модуляция – это модификация, и можем изменить только то, что уже присутствует. У синусоид есть амплитуда, частота и фаза, и поэтому неудивительно, что способы модуляции классифицируются как амплитудная модуляция, частотная модуляция или фазовая модуляция. (На самом деле можно объединять эти категории, комбинируя амплитудную модуляцию с частотной или фазовой модуляцией.) В каждой из этих категорий есть две подкатегории: аналоговая модуляция и цифровая модуляция.
Амплитудная модуляция (АМ, англ. AM)
Аналоговая амплитудная модуляция состоит из умножения непрерывно изменяющейся синусоидальной несущей на смещенную версию непрерывно изменяющегося информационного (низкочастотного) сигнала. Под «смещенной версией» я подразумеваю, что мгновенная амплитуда низкочастотного сигнала всегда выше или равна нулю.
Предположим, что у нас есть несущая 10 МГц и низкочастотный сигнал 1 МГц:
Низкочастотный сигнал
Несущая частота
Если мы перемножим эти два сигнала, то получим сигнал следующей (неправильной) формы:
Несущая, умноженная на низкочастотный сигнал
Вы можете четко видеть взаимосвязь между низкочастотным сигналом (красный) и амплитудой несущей (синий).
Но у нас есть проблема: если вы посмотрите только на амплитуду несущей, то как сможете определить, находится ли значение низкочастотного сигнала в положительной или отрицательной полуволне? Это невозможно – и, следовательно, амплитудная демодуляция не будет правильно извлекать низкочастотный сигнал из модулированной несущей.
Смещенный низкочастотный сигнал
Если мы умножим смещенный низкочастотный сигнал на сигнал несущей, то получим следующее:
Несущая, умноженная на смещенный низкочастотный сигнал
Теперь амплитуда несущей может быть непосредственно соотнесена с поведением низкочастотного сигнала.
Самая простая форма цифровой амплитудной модуляции применяет ту же математическую связь с низкочастотным сигналом, чья амплитуда равна 0 или 1. Результат называется «амплитудная манипуляция» («on-off keying», OOK, или «манипуляция включено-выключено»): когда информационный сигнал равен логическому нулю, амплитуда несущей равна нулю («выключено»); когда информационный сигнал равен логической единице, амплитуда несущей равна максимальному значению («включено»).
Частотная модуляция (ЧМ, англ. FM) и фазовая модуляция (ФМ, англ. PM)
Частотная и фазовая модуляции тесно связаны, потому что частота и фаза тесно связаны между собой. Это не так очевидно, если вы считаете, что частота равна числу полных циклов в секунду – как число циклов в секунду связано с положением синусоиды в заданный момент во времени цикла? Но это имеет смысл, если вы считаете мгновенную частоту, т.е. частоту сигнала в заданный момент (несомненно, парадоксально описывать частоту как мгновенную, но в контексте практической обработки сигналов мы можем смело игнорировать сложные теоретические детали, связанные с этой концепцией).
В базовой синусоиде значение мгновенной частоты совпадает со значением «нормальной» частоты. Аналитическое значение мгновенной частоты появляется, когда мы имеем дело с сигналами, у которых частота изменяется во времени, т.е. частота является не постоянным значением, а скорее функцией времени, записанной как ω(t). В любом случае, важным моментом нашего текущего обсуждения относительно тесной взаимосвязи между частотой и фазой является следующее: мгновенная угловая частота является производной фазы по времени. Поэтому, если у вас есть выражение φ(t), которое описывает изменяющееся во времени поведение фазы сигнала, то скорость изменения φ(t) (по времени), дает вам выражение для мгновенной угловой частоты.
Позже в этой главе мы рассмотрим частотную и фазовую модуляции. А пока давайте закончим следующим графиком, который показывает математическую взаимосвязь в частотной модуляции между низкочастотным сигналом и сигналом несущей частоты, используемых ранее:
Частотная модуляция
Урок 2.2 Радиосигналы, передача информации, модуляция
В Уроке 2.1 была рассмотрена тема о радиоволнах и распределении частот в эфире. В этом уроке попытаемся выяснить в простой и доступной форме как это реализуется практически.
Радиоволны, это высокочастотные колебания электромагнитного поля, способные распространяться в свободном пространстве на значительные расстояния.
Самое привлекательное в этом то, что с помощью радиоволн можно передавать информацию.
Основными параметрами колебаний являются частота, амплитуда, фаза.
Если на передающей стороне изменять один из параметров колебаний, а на приемной стороне выделять это изменение, то таким способом можно передавать информацию на расстояние.
Процесс изменения одного из параметров колебаний в соответствии с передаваемой информацией на передающей стороне называется модуляцией.
Процесс выделения полезной информации из колебаний на приемной стороне, называется детектированием.
Высокочастотные колебания, параметр которых изменяется при передаче называется несущей.
Полезная информация, которая изменяет параметр несущей, называется модулирующим сигналом.
Если, модулирующий сигнал изменяет частоту несущей – то такая модуляция называется частотной. Модуляция частоты однотонным синусоидальным сигналом представлена на рисунке ниже.
Если модулирующий сигнал изменяет амплитуду несущей – то такая модуляция называется амплитудной. Модуляция амплитуды однотонным синусоидальным сигналом представлена на рисунке ниже.
Если модулирующий сигнал изменяет фазу несущей, то такая модуляция называется фазовой.
Простейший вид фазовой модуляции – фазовая манипуляция, когда фаза меняется скачкообразно.
Существует много видов модуляции. Все они имеют преимущества и недостатки.
Вы уже поняли, что частота несущей во много раз превышает частоту модулирующего сигнала. Модулирующий сигнал, например, речь, занимает область частот до 20 кГц, это при высоком качестве звука, в телефонии, где качество звука низкое — до 3 кГц. Сигналы этой частоты самостоятельно не способны распространяться в эфире на большие расстояния, но если мы ними промодулируем высокочастотный сигнал, например, 90 мГц, то сможем передать на большие расстояния.
Примеры наиболее распространенного использования модуляций:
Амплитудная модуляция – радиовещание на длинных, средних и коротких волнах. Передача видеосигнала в наземном телевизионном вещании.
Частотная модуляция – радиовещание на УКВ (и ФМ) диапазонах, передача звука в наземном телевизионном вещании, передача цветоразностных сигналов в наземном телевизионном вещании системы цветности СЕКАМ (была основной в СССР) и т.д.
Фазовая модуляция — передача цветоразностных сигналов в наземном телевизионном вещании системы цветности ПАЛ (основная в Европе).
При передаче информации с помощью радиосигналов основными задачами, с которыми приходится сталкиваться являются:
Чем выше частоты, тем больше каналов связи можно организовать. Но с ростом частот растет сложность и стоимость оборудования. Сейчас мы видим все более интенсивное освоение частот в диапазоне гигагерц (ГГц) и выше.
Структурная схема простого канала передачи звука на расстояние приведена ниже:
С развитием технического прогресса удается более рационально использовать частоты эфира, в котором так тесно. Хорошим тому примером является внедрение цифрового эфирного телевидения стандарта DVB T2. Если раньше, при простом аналоговом способе телевизионного вещания, на одной частоте дециметрового диапазона, например 430 МГц, располагался один телевизионный канал, то в стандарте DVB T2, на этой одной частоте можно расположить пакет из 8 телевизионных каналов с цифровым качеством. Это преимущество настолько явное, что уже идет повсеместное внедрение стандарта DVB T2 и отключение аналогового телевизионного вещания.