ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ Π² Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°
Π Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ, Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ/ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ Π½ΡΠ»Ρ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π°
ΠΠΎΠ΄ΡΠ»Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° (ΠΈΠ½ΠΎΠ³Π΄Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ) β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ Π΅ΠΌΡ ΠΆΠ΅, Π΅ΡΠ»ΠΈ ΡΠΈΡΠ»ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΡΠ°Π²Π½Π°Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΌΡ, Π΅ΡΠ»ΠΈ ΠΎΠ½ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅.
ΠΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° a ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠ΅ΡΡΠΎΡΠΊΠ°ΠΌΠΈ Ρ ΠΎΠ±Π΅ΠΈΡ ΡΡΠΎΡΠΎΠ½ ΠΎΡ Π½Π΅Π³ΠΎ β |a|.
ΠΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π·Π½Π°ΠΊΠΎΠΌ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΠΈΡΠ»Π° 5 ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ -5. ΠΡΠΈ ΡΡΠΎΠΌ Π½ΠΎΠ»Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΌ ΡΠ°ΠΌΠΎΠΌΡ ΡΠ΅Π±Π΅, Ρ.Π΅.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ
ΠΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° a β ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ (O) Π΄ΠΎ ΡΠΎΡΠΊΠΈ A Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΈΡΠ»Ρ a, Ρ.Π΅.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΌ
ΠΡΠ°ΡΠΈΠΊ ΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = |Ρ | Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
Π§Π΅ΠΌΡ ΡΠ°Π²Π½ΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»ΠΈ |3|, |-7|, |12,4| ΠΈ |-0,87|.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌΡ Π²ΡΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ:
ΠΠ±ΠΎΠ±ΡΡΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π°
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ?
ΠΠΎΠ΄ΡΠ»Ρ β ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π΄ΠΎ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π½ΠΈΠ±ΡΠ΄Ρ ΡΠΈΡΠ»Π° Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π½Π΅ Π±ΡΠ²Π°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ, ΡΠΎ ΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ Π²ΡΠ΅Π³Π΄Π° Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½. Π’Π°ΠΊ, ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° 3 ΡΠ°Π²Π΅Π½ 3, ΠΊΠ°ΠΊ ΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° β3 ΡΠ°Π²Π΅Π½ 3
ΠΡΠ΅Π΄ΡΡΓ‘Π²ΠΈΠΌ, ΡΡΠΎ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅Π»ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ ΡΠ°Π²Π½ΠΎ ΠΎΠ΄Π½ΠΎΠΌΡ ΡΠ°Π³Ρ. Π’Π΅ΠΏΠ΅ΡΡ Π΅ΡΠ»ΠΈ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΡΠΈΡΠ»Π° β3 ΠΈ 3, ΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π΄ΠΎ Π½ΠΈΡ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π±ΡΠ΄Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ ΡΠ°Π²Π½ΠΎ ΡΡΡΠΌ ΡΠ°Π³Π°ΠΌ:
ΠΠΎΠ΄ΡΠ»Ρ ΡΡΠΎ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π΄ΠΎ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π½ΠΈΠ±ΡΠ΄Ρ ΡΠΈΡΠ»Π°. ΠΠΎΠ΄ΡΠ»Ρ ΡΡΠΎ ΡΠ°ΠΊΠΆΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π»ΡΠ±ΡΠΌΠΈ Π΄Π²ΡΠΌΡ ΡΠΈΡΠ»Π°ΠΌΠΈ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ. Π’Π°ΠΊΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΈΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ, Π·Π°ΠΊΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊ ΠΌΠΎΠ΄ΡΠ»Ρ:
ΠΠ΄Π΅ x1 ΠΈ x2 β ΡΠΈΡΠ»Π° Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΎΡΠΌΠ΅ΡΠΈΠΌ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΡΠΈΡΠ»Π° 2 ΠΈ 5.
Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΈΡΠ»Π°ΠΌΠΈ 2 ΠΈ 5 ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΡΠ°Π·Π½ΠΎΡΡΡ ΠΈΠ· ΡΠΈΡΠ΅Π» 2 ΠΈ 5 ΠΈ Π·Π°ΠΊΠ»ΡΡΠΈΠΌ ΡΡΡ ΡΠ°Π·Π½ΠΎΡΡΡ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊ ΠΌΠΎΠ΄ΡΠ»Ρ:
ΠΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΈΡΠ»Π° 2 Π΄ΠΎ ΡΠΈΡΠ»Π° 5 ΡΠ°Π²Π½ΠΎ ΡΡΡΠΌ ΡΠ°Π³Π°ΠΌ:
ΠΡΠ»ΠΈ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ 2 Π΄ΠΎ 5 ΡΠ°Π²Π½ΠΎ 3, ΡΠΎ ΠΈ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ 5 Π΄ΠΎ 2 ΡΠΎΠΆΠ΅ ΡΠ°Π²Π½ΠΎ 3
Π’ΠΎ Π΅ΡΡΡ, Π΅ΡΠ»ΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ |5 β 2| ΠΏΠΎΠΌΠ΅Π½ΡΡΡ ΡΠΈΡΠ»Π° ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, ΡΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ:
Π’ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ, ΡΡΠΎ |2 β 5| = |5 β 2|. ΠΠΎΠΎΠ±ΡΠ΅, ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ:
ΠΡΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΡΠΈΡΠ°ΡΡ ΡΠ°ΠΊ: Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ x1 Π΄ΠΎ x2 ΡΠ°Π²Π½ΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ ΠΎΡ x2 Π΄ΠΎ x1.
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ
ΠΠΎΠ³Π΄Π° ΠΌΡ Π³ΠΎΠ²ΠΎΡΠΈΠΌ, ΡΡΠΎ |3|= 3 ΠΈΠ»ΠΈ |β3|= 3 ΠΌΡ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠ΅ ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ.
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΎΠ³ΠΎ ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ Π²ΠΌΠ΅ΡΡΠΎ x, Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ |x| Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ x, Π΅ΡΠ»ΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π±ΠΎΠ»ΡΡΠ΅ ΠΈΠ»ΠΈ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ. Π Π΅ΡΠ»ΠΈ Π²ΠΌΠ΅ΡΡΠΎ x ΠΏΠΎΠ΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ ΡΠΈΡΠ»ΠΎ ΠΌΠ΅Π½ΡΡΠ΅Π΅ Π½ΡΠ»Ρ, ΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ |x| Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ βx.
ΠΡΠΎΡΠΎΠΉ ΡΠ»ΡΡΠ°ΠΉ Π½Π° ΠΏΠ΅ΡΠ²ΡΠΉ Π²Π·Π³Π»ΡΠ΄ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΠ²ΡΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π·Π°ΠΏΠΈΡΡ |x| = βx Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π±ΡΠ΄ΡΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΡΠ°Π» ΡΠ°Π²Π΅Π½ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ. Π‘Π»Π΅Π΄ΡΠ΅Ρ ΠΈΠΌΠ΅ΡΡ Π²Π²ΠΈΠ΄Ρ, ΡΡΠΎ ΠΊΠΎΠ³Π΄Π° x
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΡΡΡΡ x = 5. Π’ΠΎ Π΅ΡΡΡ ΠΌΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° 5
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ x β₯ 0, Π²Π΅Π΄Ρ 5 β₯ 0
ΠΠΎΡΡΠΎΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΏΠ΅ΡΠ²ΡΡ ΡΠΎΡΠΌΡΠ»Ρ. Π ΠΈΠΌΠ΅Π½Π½ΠΎ | x | = x. ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ | 5 | = 5.
ΠΠΎΠ»Ρ ΡΡΠΎ ΡΠ²ΠΎΠ΅Π³ΠΎ ΡΠΎΠ΄Π° ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠ²ΠΎΠΉ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΠΈ Π΄Π°Π»Π΅Π΅ ΡΠΎΡ ΡΠ°Π½ΡΠ΅Ρ ΡΠ²ΠΎΠΉ Π·Π½Π°ΠΊ. ΠΠΈΠ·ΡΠ°Π»ΡΠ½ΠΎ ΡΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΡΠ°ΠΊ:
Π Π΅ΡΠ»ΠΈ Π²ΠΎΠ·ΡΠΌΡΠΌ ΡΠΈΡΠ»Π°, ΠΌΠ΅Π½ΡΡΠΈΠ΅ Π½ΡΠ»Ρ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ β3, β9, β15, ΡΠΎ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠΈΡΡΠ½ΠΊΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ°ΡΠΊΡΠΎΠ΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΌΠΈΠ½ΡΡ:
ΠΡΠΈΠΌΠ΅Ρ 3. ΠΡΡΡΡ x = β4 β 6. Π’ΠΎ Π΅ΡΡΡ ΠΌΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ β4 β 6,
ΠΠΎΡΠ΅Π½Ρ ΠΈΠ· ΡΠΈΡΠ»Π° 4 ΡΠ°Π²Π΅Π½ 2. Π’ΠΎΠ³Π΄Π° ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ΄
x ΠΊΠΎΡΠΎΡΡΠΉ Π±ΡΠ» ΡΠ°Π²Π΅Π½ β4β6 ΡΠ΅ΠΏΠ΅ΡΡ ΡΡΠ°Π» ΡΠ°Π²Π΅Π½ β4. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ x |β4 β 6| = |2 β 6| = |β4| = β(β4) = 4
ΠΠ° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΎΠ±ΡΡΠ½ΠΎ ΡΠ°ΡΡΡΠΆΠ΄Π°ΡΡ ΡΠ°ΠΊ:
Β«ΠΠΎΠ΄ΡΠ»Ρ ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΏΠ»ΡΡ, Π΅ΡΠ»ΠΈ ΠΏΠΎΠ΄ΠΌΠΎΠ΄ΡΠ»ΡΠ½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π±ΠΎΠ»ΡΡΠ΅ ΠΈΠ»ΠΈ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ; ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΌΠΈΠ½ΡΡ, Π΅ΡΠ»ΠΈ ΠΏΠΎΠ΄ΠΌΠΎΠ΄ΡΠ»ΡΠ½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»ΡΒ».
ΠΡΠΈΠΌΠ΅ΡΡ:
|2| = 2 β ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ°ΡΠΊΡΡΠ»ΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΏΠ»ΡΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ 2 β₯ 0
ΠΡΠΈΠΌΠ΅Ρ 4. ΠΡΡΡΡ x = 0. Π’ΠΎ Π΅ΡΡΡ ΠΌΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ Π½ΡΠ»Ρ:
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ x=0, Π²Π΅Π΄Ρ 0 = 0
ΠΡΠΈΠΌΠ΅Ρ 5. Π Π°ΡΠΊΡΡΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ |x|+ 3
ΠΡΠ»ΠΈ x β₯ 0, ΡΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ°ΡΠΊΡΠΎΠ΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΏΠ»ΡΡ, ΠΈ ΡΠΎΠ³Π΄Π° ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ΄ x + 3.
ΠΠΎΠΏΡΡΡΠΈΠΌ, ΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ |x|+ 3 ΠΏΡΠΈ x = 5. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ 5 β₯ 0, ΡΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΉΡΡ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ |x|+ 3 ΡΠ°ΡΠΊΡΓ³Π΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΏΠ»ΡΡ ΠΈ ΡΠΎΠ³Π΄Π° ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ΄:
ΠΠ°ΠΉΠ΄ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ |x|+ 3 ΠΏΡΠΈ x = β6. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ β6 |x| + 3 = 3 β x = 3 β (β6) = 9
ΠΡΠΈΠΌΠ΅Ρ 6. Π Π°ΡΠΊΡΡΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ x +|x + 3|
ΠΠ°ΠΉΠ΄ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ x +|x + 3| ΠΏΡΠΈ x = 4. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ 4 β₯ β3, ΡΠΎ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ Π½Π°ΡΠ΅ΠΌΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ x +|x + 3| ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΏΠ»ΡΡ, ΠΈ ΡΠΎΠ³Π΄Π° ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄ 2x+3, ΠΎΡΠΊΡΠ΄Π° ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² 4 ΠΏΠΎΠ»ΡΡΠΈΠΌ 11
ΠΠ°ΠΉΠ΄ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ x +|x + 3| ΠΏΡΠΈ x=β3.
ΠΡΠΈΠΌΠ΅Ρ 3. Π Π°ΡΠΊΡΡΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ
ΠΠ°ΠΊ ΠΈ ΠΏΡΠ΅ΠΆΠ΄Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ:
Π Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠ΄ΠΎΠ±Π½Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΡ Π·Π°ΠΏΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ, Π³Π΄Π΅ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΡΠ»ΡΡΠ°ΠΉ ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ x = 0
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊ:
ΠΡΠΈΠΌΠ΅Ρ 4. Π Π°ΡΠΊΡΡΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ
ΠΠΎ Π½Π°Π΄ΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ, ΡΡΠΎ ΠΏΡΠΈ x = β 1 Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΠΎΠ»Ρ. ΠΠΎΡΡΠΎΠΌΡ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ x ΡΠ»Π΅Π΄ΡΠ΅Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΡ Π·Π°ΠΏΠΈΡΡΡ ΠΎ ΡΠΎΠΌ, ΠΊΠ°ΠΊΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ x
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Ρ ΠΌΠΎΠ΄ΡΠ»ΡΠΌΠΈ
ΠΠΎΠ΄ΡΠ»Ρ, Π²Ρ ΠΎΠ΄ΡΡΠΈΠΉ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΠΏΠΎΠ»Π½ΠΎΡΠ΅Π½Π½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ. ΠΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠΊΡΠ°ΡΠ°ΡΡ ΠΈ Π²ΡΠ½ΠΎΡΠΈΡΡ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ. ΠΡΠ»ΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ Π²Ρ ΠΎΠ΄ΠΈΡ Π² ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½, ΡΠΎ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ Ρ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠΌ Π΅ΠΌΡ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΌ.
ΠΠ°ΠΊ ΠΈ Ρ ΠΎΠ±ΡΡΠ½ΠΎΠ³ΠΎ Π±ΡΠΊΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ, Ρ ΠΌΠΎΠ΄ΡΠ»Ρ Π΅ΡΡΡ ΡΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ |x| ΡΠ²Π»ΡΠ΅ΡΡΡ 1, Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ β|x| ΡΠ²Π»ΡΠ΅ΡΡΡ β1. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ 3|x+1| ΡΠ²Π»ΡΠ΅ΡΡΡ 3, Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ β3|x+1| ΡΠ²Π»ΡΠ΅ΡΡΡ β3.
ΠΡΠΈΠΌΠ΅Ρ 1. Π£ΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ |x| + 2|x| β 2x + 5y ΠΈ ΡΠ°ΡΠΊΡΡΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅ΠΌΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΡ|x| ΠΈ 2|x| ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠΌΠΈ ΡΠ»Π΅Π½Π°ΠΌΠΈ. Π‘Π»Γ³ΠΆΠΈΠΌ ΠΈΡ . ΠΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΡΡΠ°Π²ΠΈΠΌ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ:
Π ΠΈΡΠΎΠ³Π΅ ΠΈΠΌΠ΅Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅:
ΠΡΠΈΠΌΠ΅Ρ 2. Π Π°ΡΠΊΡΡΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ: β|x|
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π°
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π°
ΠΠ»Π³Π΅Π±ΡΠ° Π΄Π°Π΅Ρ ΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π°. ΠΠΎΠ΄ΡΠ»Ρ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ β ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΎΡΡΡΡΡΠ° Π΄ΠΎ ΡΠΎΡΠΊΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΡΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
ΠΡΠ»ΠΈ ΠΌΡ Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Β«aΒ» ΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΠΌ Π΅Π³ΠΎ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ A β ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ A Π΄ΠΎ Π½Π°ΡΠ°Π»Π° ΠΎΡΡΡΡΡΠ° (ΡΠΎ Π΅ΡΡΡ Π΄ΠΎ Π½ΡΠ»Ρ) Π΄Π»ΠΈΠ½Π° ΠΎΡΡΠ΅Π·ΠΊΠ° OA Π±ΡΠ΄Π΅Ρ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΌ ΡΠΈΡΠ»Π° Β«aΒ».
ΠΠ½Π°ΠΊ ΠΌΠΎΠ΄ΡΠ»Ρ: |a| = OA.
Π Π°Π·Π±Π΅ΡΠ΅ΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅:
Π’ΠΎΡΠΊΠ° Π, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΈΡΠ»Ρ β3, Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ 3 Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ² ΠΎΡ ΡΠΎΡΠΊΠΈ O (ΡΠΎ Π΅ΡΡΡ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΎΡΡΡΡΡΠ°). ΠΠ½Π°ΡΠΈΡ, Π΄Π»ΠΈΠ½Π° ΠΎΡΡΠ΅Π·ΠΊΠ° OB ΡΠ°Π²Π½Π° 3 Π΅Π΄ΠΈΠ½ΠΈΡΠ°ΠΌ.
Π§ΠΈΡΠ»ΠΎ 3 (Π΄Π»ΠΈΠ½Ρ ΠΎΡΡΠ΅Π·ΠΊΠ° OB) Π½Π°Π·ΡΠ²Π°ΡΡ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΌ ΡΠΈΡΠ»Π° β3.
ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ: |β3| = 3 (ΡΠΈΡΠ°ΡΡ: Β«ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° ΠΌΠΈΠ½ΡΡ ΡΡΠΈ ΡΠ°Π²Π΅Π½ ΡΡΡΠΌΒ»).
Π’ΠΎΡΠΊΠ° Π‘, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΈΡΠ»Ρ +4, Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ ΡΠ΅ΡΡΡΠ΅Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ² ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΎΡΡΡΡΡΠ°, ΡΠΎ Π΅ΡΡΡ Π΄Π»ΠΈΠ½Π° ΠΎΡΡΠ΅Π·ΠΊΠ° OΠ‘ ΡΠ°Π²Π½Π° ΡΠ΅ΡΡΡΠ΅ΠΌ Π΅Π΄ΠΈΠ½ΠΈΡΠ°ΠΌ.
Π§ΠΈΡΠ»ΠΎ 4 Π½Π°Π·ΡΠ²Π°ΡΡ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΌ ΡΠΈΡΠ»Π° +4 ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ ΡΠ°ΠΊ: |+4| = 4.
Π’Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΡΡΠΈΡΡ ΠΏΠ»ΡΡ ΠΈ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΊΠ°ΠΊ |4| = 4.
ΠΠ°ΠΏΠΈΡΡΠ²Π°ΠΉΡΡ Π½Π° Π·Π°Π½ΡΡΠΈΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠ² Ρ 1 ΠΏΠΎ 11 ΠΊΠ»Π°ΡΡΡ.
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π°
ΠΠ°Π²Π°ΠΉΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΠΌΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ² ΠΌΠΎΠ΄ΡΠ»Ρ. ΠΠ΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ, Π² ΠΊΠ°ΠΊΠΎΠΉ ΠΊΠ»Π°ΡΡ ΠΏΠ΅ΡΠ΅ΡΠ΅Π» ΡΠ΅Π±Π΅Π½ΠΎΠΊ β ΡΡΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΏΡΠΈΠ³ΠΎΠ΄ΡΡΡΡ Π²ΡΠ΅Π³Π΄Π°.
1. ΠΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° β ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅, Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ. ΠΠΎΡΡΠΎΠΌΡ ΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° Π½Π΅ Π±ΡΠ²Π°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ:
2. ΠΠΎΠ΄ΡΠ»Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΡΠ°Π²Π΅Π½ ΡΠ°ΠΌΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
3. ΠΠΎΠ΄ΡΠ»Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΡΠ°Π²Π΅Π½ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
4. ΠΠΎΠ΄ΡΠ»Ρ Π½ΡΠ»Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ.
5. ΠΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠΈΡΠ»Π° ΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΡΠ΅ ΠΌΠΎΠ΄ΡΠ»ΠΈ.
6. ΠΠΎΠ΄ΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°Π²Π΅Π½ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΉ ΡΡΠΈΡ ΡΠΈΡΠ΅Π».
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ
ΠΠ°ΠΊ ΠΌΡ ΡΠΆΠ΅ Π·Π½Π°Π΅ΠΌ, ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° β ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ Π½ΡΠ»Ρ Π΄ΠΎ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°. Π’ΠΎ Π΅ΡΡΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ β5 Π΄ΠΎ Π½ΡΠ»Ρ ΡΠ°Π²Π½ΠΎ 5.
ΠΠ°ΡΠΈΡΡΠ΅ΠΌ ΡΠΈΡΠ»ΠΎΠ²ΡΡ ΠΏΡΡΠΌΡΡ ΠΈ ΠΎΡΠΎΠ±ΡΠ°Π·ΠΈΠΌ ΡΡΠΎ Π½Π° Π½Π΅ΠΉ.
ΠΡΠ° Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Ρ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΌ. ΠΠ°Π²Π°ΠΉΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ .
Π Π΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅: |Ρ | = 5.
ΠΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ Π½Π° ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ Π΅ΡΡΡ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ, ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΠΊΠΎΡΠΎΡΡΡ Π΄ΠΎ Π½ΡΠ»Ρ ΡΠ°Π²Π½ΠΎ 5. ΠΡΠΎ ΡΠΎΡΠΊΠΈ 5 ΠΈ β5. ΠΠ½Π°ΡΠΈΡ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ: x = 5 ΠΈ x = β5.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ y = |Ρ |.
ΠΠ»Ρ x > 0 ΠΈΠΌΠ΅Π΅ΠΌ y = x.
ΠΡΠΎΡ Π³ΡΠ°ΡΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ².
ΠΠΎΡΠ΅Π½Ρ ΠΈΠ· ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°
ΠΠ½ΠΎ ΡΠ°Π²Π½ΠΎ a ΠΏΡΠΈ Π° > 0 ΠΈ βΠ°, ΠΏΡΠΈ Π°
ΠΠΎΠ΄ΡΠ»Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°
Π§Π΅ΠΌΡ ΡΠ°Π²Π΅Π½ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π° Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅? ΠΡΠΎ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· ΡΡΠΌΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΌΠ½ΠΈΠΌΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°:
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΌΠΎΠ΄ΡΠ»Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΡΠΈΡΠ΅Π»
ΠΠΎΠ΄ΡΠ»Ρ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° β ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΎΡΡΡΡΡΠ° Π΄ΠΎ ΡΠΎΡΠΊΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΡΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
ΠΠΎΠ΄ΡΠ»Ρ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈΠΌΠ΅ΡΡ:
ΠΠΎΠ΄ΡΠ»Ρ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΡΠΈΡΠ΅Π»
ΠΠΎΠ΄ΡΠ»Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, Π½ΡΠ»Ρ, ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ΅Π»
ΠΠ°ΠΊΡΠ΅ΠΏΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ Π²ΡΡΠ΅: