что такое модуль силы упругости
Сила упругости и закон Гука
теория по физике 🧲 динамика
Сила упругости — сила, которая возникает при деформациях тел в качестве ответной реакции на внешнее воздействие. Сила упругости имеет электромагнитную природу.
Деформация — изменение формы или объема тела.
Сила упругости обозначается как F упр. Единица измерения — Ньютон (Н). Сила упругости направлена противоположно перемещению частиц при деформации.
Если после окончания действия внешних сил тело возвращает прежние форму и объем, то деформацию и само тело называю упругими. Если после окончания действия внешних сил тело остается деформированным, то деформацию и само тело называют пластическими, или неупругими.
Примеры упругой деформации:
Примеры пластической деформации:
Закон Гука
При упругой деформации есть взаимосвязь между силой упругости, возникающей в результате деформации, и удлинением деформируемого тела. Эту взаимосвязь первым обнаружил английский ученый Роберт Гук.
Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению.
x — абсолютное удлинение (деформация), k — коэффициент жесткости тела.
Абсолютное удлинение определяется формулой:
l0 — начальная длина тела, l — длина деформированного тела, ∆l — изменение длины тела.
Коэффициент жесткости тела определяется формулой:
E — модуль упругости (модуль Юнга). Каждое вещество обладает своим модулем упругости. S — площадь сечения тела.
Важно! Закон Гука не работает в случае, если деформация была пластической.
Пример №1. Под действием силы 3Н пружина удлинилась на 4 см. Найти модуль силы, под действием которой удлинение пружины составит 6 см.
Согласно третьему закону Ньютона модуль силы упругости будет равен модулю приложенной к пружине силе. В обоих случаях постоянной величиной окажется только жесткость пружины. Выразим ее из закона Гука и применим к каждому из случаев:
Приравняем правые части формул:
Выразим и вычислим силу упругости, возникающую, когда удлинение пружины составит 6 см:
Если пружину растягивают две противоположные силы, то модули силы упругости и модули этих сил равны между собой:
Если груз подвешен к пружине, сила упругости будет равна силе тяжести, действующей на это тело:
Если пружины соединены параллельно, их суммарный коэффициент жесткости будет равен сумме коэффициентов жесткости каждой из этих пружин:
Если пружины соединены последовательно, их обратное значение суммарного коэффициента жесткости будет равен сумме обратных коэффициентов жесткости для каждой из пружин:
Пример №2. Две пружины соединены параллельно. Жесткость одной из пружин равна 1000 Нм, второй — 4000 Нм. Когда к пружинам подвесили груз, они удлинились на 5 см. Найти силу тяжести груза.
Переведем сантиметры в метры: 5 см = 5∙10 –2 м.
Запишем закон Гука с учетом параллельного соединения пружин:
Модуль силы тяжести согласно третьему закону Ньютона равен модулю силы упругости. Отсюда:
На рисунке представлен график зависимости модуля силы упругости от удлинения пружины. Какова жёсткость пружины?
Модуль упругости
Из Википедии — свободной энциклопедии
Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (принимать в итоге первоначальный вид после приложения силы) при приложении к нему силы. В области упругой деформации модуль упругости тела в общем случае зависит от напряжения и определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона начального линейного участка диаграммы напряжений-деформаций:
В наиболее распространенном случае зависимость напряжения и деформации линейная (закон Гука):
Если напряжение измеряется в паскалях, то, поскольку деформация является безразмерной величиной, единицей измерения Е также будет паскаль. Альтернативным определением является определение, что модуль упругости — это напряжение, достаточное для того, чтобы вызвать увеличение длины образца в два раза. Такое определение не является точным для большинства материалов, потому что это значение намного больше чем предел текучести материала или значения, при котором удлинение становится нелинейным, однако оно может оказаться более интуитивным.
Разнообразие способов, которыми могут быть изменены напряжения и деформации, включая различные направления действия силы, позволяют определить множество типов модулей упругости. Здесь даны три основных модуля:
Гомогенные и изотропные материалы (твердые), обладающие линейными упругими свойствами, полностью описываются двумя модулями упругости, представляющими собой пару любых модулей. Если дана пара модулей упругости, все другие модули могут быть получены по формулам, представленным в таблице ниже.
В невязких течениях не существует сдвигового напряжения, поэтому сдвиговый модуль всегда равен нулю. Это влечёт также и равенство нулю модуля Юнга.
или второй параметр Ламе
Модули упругости (Е) для некоторых веществ [1] :
Сила упругости
Что из себя представляет закон Гука для силы упругости
Закон Гука — основной закон теории упругости, выражающий линейную зависимость между напряжениями и малыми деформациями в упругой среде.
Если различные части твердого тела совершают неодинаковые перемещения, то в теле возникают деформации. Например, при растяжении резинового шнура, его части сместятся относительно друг друга, а сам шнур станет длиннее и тоньше — деформируется.
Упругие деформации — деформации, исчезающие после снятия внешней нагрузки (тело восстанавливает свою форму и размеры).
Пластические деформации — деформации, не исчезающие после снятия внешней нагрузки (тело сохраняет деформированную форму).
Деформация растяжения (сжатия) возникает при приложении к стержню, закрепленному на одном конце, силы на противоположном конце, направленной вдоль оси стержня и от него (к нему — в случае сжатия).
Деформация сдвига — деформация, при которой происходит смещение слоев тела друг относительно друга. В случае стержня — сила, приложенная к незакрепленному концу направлена поперек стержня.
Деформация изгиба — деформация, при которой в различных частях тела возникают растяжения и сжатие одновременно.
Деформация кручения — деформация, возникающая в стержне, один конец которого закреплен, а на свободный конец действуют параллельные и противоположно направленные силы, лежащие в плоскости, перпендикулярной оси стержня.
Далее речь будет идти только о деформациях растяжения (сжатия).
Если к вертикально расположенной пружине подвешивать тела различной массы и каждый раз при этом будет измеряться удлинение пружины с помощью шкалы, заметим, что удлинение пружины зависит от массы подвешенного груза.
Так можно установить зависимость удлинения пружины от силы тяжести, действующей на подвешенное к ней тело. Если против делений шкалы поставить числа, указывающие в ньютонах значения силы упругости пружины, то пружина будет градуирована. Такая градуированная пружина — это прибор для измерения силы, называемый пружинным динамометром (силомером).
Опыт показывает, что при сравнительно небольших удлинениях между силой упругости пружины и ее удлинением существует линейная зависимость.
Эта зависимость была установлена английский физиком Р. Гуком еще в XVII столетии и называется законом Гука.
Знак «минус» показывает, что сила упругости направлена в противоположную сторону удлинению. Коэффициент пропорциональности называется жесткостью пружины. Данное свойство зависит от геометрических размеров материала пружины и от механических свойств материала, из которого она изготовлена. В единой системе единиц измерений жесткость пружины выражается в ньютонах на метр (Н/м).
Формула справедлива не только для пружины (это лишь наглядный пример), но также при растяжении тонкого стержня, балки или консоли.
Таким образом, закон Гука определяет следующая формулировка.
Деформация, возникающая в упругом теле, пропорциональная приложенной к этому телу силе.
Модуль Юнга, коэффициент упругости — понятия, примеры
Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов строят график зависимости напряжения σ от относительного удлинения ε, который называется диаграммой растяжения.
Для участка О А диаграммы, на котором деформации малы, напряжение σ прямо пропорционально относительному удлинению ε. Эта зависимость выражается законом Гука в следующей форме:
Из формулы (2) легко можно получить уравнение (1), приведенное ранее. Если напряжение представляет собой силу, отнесенную к площади поперечного сечения стержня
Определение и формула обобщенного закона Гука
Обобщенный закон Гука устанавливает связь между напряжениями и деформациями в общем случае объемного напряженного состояния.
Поскольку деформации в направлении напряжения σ 1 в данном случае являются продольными, а деформации в направлении напряжений σ 2 и σ 3 — поперечными (см. рисунок), то, применяя формулы закона Гука для продольных и поперечных деформаций при линейном напряженном состоянии, находим, что
Коэффициент Пуассона — величина отношения относительного поперечного сжатия к относительному продольному растяжению.
Сложив эти величины, получим:
Аналогично получим выражения и для двух других главных деформаций. В результате запишем обобщенный закон Гука для изотропного тела, то есть зависимость между линейными деформациями и главными напряжениями в общем случае объемного напряженного состояния:
Данные выражения справедливы и для относительных деформаций по любым трем взаимно перпендикулярным направлениям:
При этом угловые деформации на соответствующих площадках будут вычисляться как:
Примеры решения задач
Модуль упругости
Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль упругости тела определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона диаграммы напряжений-деформаций:
где λ (лямбда) — модуль упругости; p — напряжение, вызываемое в образце действующей силой (равно силе, делённой на площадь приложения силы); — упругая деформация образца, вызванная напряжением (равна отношению изменения размера образца после деформации к его первоначальному размеру). Если напряжение измеряется в паскалях, то, поскольку деформация является безразмерной величиной, единицей измерения λ также будет паскаль. Альтернативным определением является определение, что модуль упругости — это напряжение, достаточное для того, чтобы вызвать увеличение длины образца в два раза. Такое определение не является точным для большинства материалов, потому что это значение намного больше чем предел текучести материала или значения, при котором удлинение становится нелинейным, однако оно может оказаться более интуитивным.
Разнообразие способов, которыми могут быть изменены напряжения и деформации, включая различные направления действия силы, позволяют определить множество типов модулей упругости. Здесь даны три основных модуля:
Гомогенные и изотропные материалы (твердые), обладающие линейными упругими свойствами, полностью описываются двумя модулями упругости, представляющими собой пару любых модулей. Если дана пара модулей упругости, все другие модули могут быть получены по формулам, представленным в таблице ниже.
В невязких течениях не существует сдвигового напряжения, поэтому сдвиговый модуль всегда равен нулю. Это влечёт также и равенство нулю модуля Юнга.
Формулы преобразования | |||||||||
---|---|---|---|---|---|---|---|---|---|
Упругие свойства гомогенных изотропных линейно-упругих материалов уникально определяются любыми двумя модулями упругости. Таким образом, имея два модуля, остальные можно вычислить по следующим формулам: | |||||||||
Модули упругости (Е) для некоторых веществ:
Материал | Е, МПа | Е, кгс/см² |
---|---|---|
Алюминий | 70000 | 713 800 |
Вода | 2030 | 20300 |
Дерево | 10000 | 102 000 |
Кость | 30000 | 305 900 |
Медь | 100000 | 1 020 000 |
Резина* | 10 | 102 |
Сталь | 200000 | 2 039 000 |
Стекло | 70000 | 713 800 |
См. также
Ссылки
Литература
Модуль объёмной упругости () | Модуль Юнга (
) | Параметры Ламе (
) | Модуль сдвига (
) | Коэффициент Пуассона (
) | en:P-wave modulus (
)
Модуль Юнга
Модуль Юнга (модуль упругости) — это физическая величина, которая характеризует свойства какого-либо материала сгибаться или растягиваться под воздействием силы; по сути именно от этого зависит жёсткость тела.
Это свойство любого материала, и оно зависит от температуры и оказываемого давления.
В физике упругость — это свойство твёрдых материалов возвращаться в свою первоначальную форму и размер после устранения сил, которые применялись при деформации.
Другими словами: когда тело деформируется, то появляется сила, которая стремится восстановить первоначальную форму и размер тела. Сила упругости является этой проявляющейся силой. Также она представляет собой следствие электромагнитного взаимодействия между частицами.
Низкое значение модуля Юнга означает, что изучаемое твёрдое тело является эластичным.
Высокое значение модуля Юнга означает, что изучаемое твёрдое тело является неэластичным или жёстким.
Примеры значений модуля Юнга (упругости) для:
Таблица
Большинство материалов имеют значение E очень высокого порядка, поэтому они записываются при помощи «гигапаскалей» ([ГПа]; ).
Материал | Модуль Юнга E, [ГПа] |
---|---|
Алмаз | 1220 |
Алюминий | 69 |
Дерево | 10 |
Кадмий | 50 |
Латунь | 97 |
Медь | 110 |
Никель | 207 |
Резина | 0,9 (≈ 1 МПа, мегапаскаль) |
Сталь | 200 |
Титан | 107 |
Единица измерения и формулы
Единица измерения модуля Юнга в СИ — Ньютон на метр в квадрате (Н/м²), т.е. Паскаль (Па).
Формулы
Существует несколько формул, из которых можно вычислить модуль Юнга. Например, закон Гука.
Закон Гука
Можно вычислить модуль Юнга через эти формулы (мы это и сделаем на примере). Из-за этого закона существуют несколько интересных равенств, которые могут быть полезны для расчётов.
Закон Гука (этот описывает явления в теле, в дифференциальной форме):
Закон Гука (этот описывает явления в теле)
Следует заметить, что этот закон действует до той точки, когда материал необратимо деформируется и уже не возвращается в свою первоначальную форму. В какой точке это происходит, уже зависит от материала. Если материал очень жёсткий (значит высокое показание модуля упругости), то эта точка может совпадать с разрывом/деформацией.
Другие формулы вычисления модуля Юнга (модуля упругости)
Либо можно выразить k (жёсткость тела):
Пример решения задачи (через закон Гука):
Проволока длиной 2,5 метра и площадью поперечного сечения 2,5 миллиметра² удлинилась на 1 миллиметр под действием силы 50 ньютонов. Определить модуль Юнга.
Будем искать через закон Гука (σ = E × ε).
Помним из закона Гука:
σ = F / S (помните, что Fупр/S — механическое напряжение, обозначается как σ)
ε = Δl/l (а это относительное удлинение, обозначается как ε)
Подставляем в формулу (σ = E × ε):
Например, в нашей таблице такой модуль Юнга имеет кадмий.