что такое модуль действительного числа
Что такое модуль действительного числа
В данной публикации мы рассмотрим определение, геометрическую интерпретацию, график функции и примеры модуля положительного/отрицательного числа и нуля.
Определение модуля числа
Модуль действительного числа (иногда называется абсолютной величиной) – это величина, равная ему же, если число положительное или равная противоположному, если оно отрицательное.
Модуль числа a обозначается вертикальными черточками с обеих сторон от него – |a|.
Противоположное число отличается от исходного знаком. Например, для числа 5 противоположным является -5. При этом ноль является противоположным самому себе, т.е.
Геометрическая интерпретация модуля
Модуль числа a – это расстояние от начала координат (O) до точки A на координатной оси, которая соответствует числу a, т.е.
График функции с модулем
График четной функции y = |х| выглядит следующим образом:
Чему равняются следующие модули |3|, |-7|, |12,4| и |-0,87|.
Решение:
Согласно приведенному выше определению:
Абсолютная величина. Модуль.
Абсолютными величинами называются — объем или размер события, которое изучается или явления, процесса, который выражен в соответствующих единицах измерения в конкретных условиях места и времени.Или, другими словами: это просто число без учёта знака (всегда с плюсом).
Абсолютная величина числа или модуль числа x — неотрицательное число, определение которого зависит от типа числа x. Обозначается: |x|.
Если x вещественный, то абсолютная величина – это непрерывная кусочно-линейная функция, которая определяется так, формула:
Обобщением этого понятия есть модуль комплексного числа z=x+iy, иногда называют абсолютной величиной. Его определяют формулой:
Абсолютные величины, виды:
Свойства модуля.
.
Так как частное =
, то
. В силу предыдущего свойства имеем
. Воспользуемся равенством
, которое справедливо в силу определения модуля числа.
Основные свойства абсолютной величины.
Вещественные числа.
Комплексные числа.
Алгебраические свойства абсолютной величины.
Для каждого имеют место следующие соотношения:
Как для вещественных, так и для комплексных a, b имеют место соотношения:
Числа. Модуль числа.
Модуль положительного действительного числа a – это само это число. Число в модуле:
Модуль отрицательного действительного числа а – это противоположное ему число:
В общем случае запись модуля числа выглядит так:
Модулем числа 5 будет 5, т.к. точка В(5) отстоит от начала отсчета на 5 единичных отрезков. Записывают так: |5| = 5.
Расстояние точки М(-6) от начала отсчета О соответствует 6 единичным отрезкам. Число 6 есть модуль числа -6. Записывают так: |-6| = 6.
Модуль числа бывает только положительным. Если рассматривать положительное число и нуль, то модуль их будет равен им же, а если рассматривать отрицательное число – то модуль равен противоположному числу. У противоположных чисел одинаковые модули:
Модуль нуля равен нулю, т.к. точка с координатой нуль совпадает с началом отсчета 0, то есть удалена от нее на 0 единичных отрезков:
Просмотрев определение модуля числа можно сделать вывод, что модуль числа соответствует числу под знаком модуля, не учитывая знак. Это утверждение поясняет из-за чего модуль числа иногда употребляется под значением абсолютной величины числа. Таким образом, модуль числа и абсолютная величина числа – это тоже самое.
К примеру, модуль целого числа −7 можно записать как ; модуль рационального числа 4,125 записывается как
, а модуль иррационального числа
имеет запись вида
.
Числа. Модуль числа.
Модуль положительного действительного числа a – это само это число. Число в модуле:
Модуль отрицательного действительного числа а – это противоположное ему число:
В общем случае запись модуля числа выглядит так:
Модулем числа 5 будет 5, т.к. точка В(5) отстоит от начала отсчета на 5 единичных отрезков. Записывают так: |5| = 5.
Расстояние точки М(-6) от начала отсчета О соответствует 6 единичным отрезкам. Число 6 есть модуль числа -6. Записывают так: |-6| = 6.
Модуль числа бывает только положительным. Если рассматривать положительное число и нуль, то модуль их будет равен им же, а если рассматривать отрицательное число – то модуль равен противоположному числу. У противоположных чисел одинаковые модули:
Модуль нуля равен нулю, т.к. точка с координатой нуль совпадает с началом отсчета 0, то есть удалена от нее на 0 единичных отрезков:
Просмотрев определение модуля числа можно сделать вывод, что модуль числа соответствует числу под знаком модуля, не учитывая знак. Это утверждение поясняет из-за чего модуль числа иногда употребляется под значением абсолютной величины числа. Таким образом, модуль числа и абсолютная величина числа – это тоже самое.
К примеру, модуль целого числа −7 можно записать как ; модуль рационального числа 4,125 записывается как
, а модуль иррационального числа
имеет запись вида
.
Числа. Модуль числа.
Модуль положительного действительного числа a – это само это число. Число в модуле:
Модуль отрицательного действительного числа а – это противоположное ему число:
В общем случае запись модуля числа выглядит так:
Модулем числа 5 будет 5, т.к. точка В(5) отстоит от начала отсчета на 5 единичных отрезков. Записывают так: |5| = 5.
Расстояние точки М(-6) от начала отсчета О соответствует 6 единичным отрезкам. Число 6 есть модуль числа -6. Записывают так: |-6| = 6.
Модуль числа бывает только положительным. Если рассматривать положительное число и нуль, то модуль их будет равен им же, а если рассматривать отрицательное число – то модуль равен противоположному числу. У противоположных чисел одинаковые модули:
Модуль нуля равен нулю, т.к. точка с координатой нуль совпадает с началом отсчета 0, то есть удалена от нее на 0 единичных отрезков:
Просмотрев определение модуля числа можно сделать вывод, что модуль числа соответствует числу под знаком модуля, не учитывая знак. Это утверждение поясняет из-за чего модуль числа иногда употребляется под значением абсолютной величины числа. Таким образом, модуль числа и абсолютная величина числа – это тоже самое.
К примеру, модуль целого числа −7 можно записать как ; модуль рационального числа 4,125 записывается как
, а модуль иррационального числа
имеет запись вида
.