что такое маточный раствор в сельском хозяйстве
Современные методы выделения и культивирования водорослей
2.2. Маточные растворы
2.2. Маточные растворы
2.2.1. Общие комментарии
Среда в основном состоит из трех компонентов: макроэлементов, микроэлементов и витаминов, которые готовят как маточные растворы в количестве 100мл на 1л при концентрации питательных веществ, превы- шающей необходимую дозу в конечном растворе в 100 или 1000 раз. Для получения среды берут небольшое количество маточного раствора, напри- мер, всего 1мл. Использование маточных растворов дает целый ряд пре- имуществ:
— позволяет избежать ошибок при взвешивании маленьких коли- честв солей;
— однажды приготовив маточный раствор, можно многократно легко готовить питательную среду. Теоретически, если приготовить 1л маточно- го раствора и использовать 1 мл этого раствора для приготовления 1л пи- тательной среды, то можно приготовить 1000л среды.
Методика приготовления маточных растворов заключается в сле- дующем:
– добавить приблизительно 80-90% необходимого объема дистилли- рованной или деионизированной воды в мензурку;
– растворить необходимое количество взвешенного вещества при по- стоянном перемешивании. Если маточный раствор включает несколько компонентов (например, растворы микроэлементов), необходимо сначала полностью растворить первый компонент, и только после этого добавить следующий. Большинство компонентов среды легко растворяется при перемешивании, однако для быстрого растворения некоторых веществ необ- ходимо нагревание или изменение рН среды;
– разбавить полученный раствор дистиллированной или деионизиро- ванной водой до необходимого объема.
Маточные растворы, содержащие субстраты, которые способствуют росту бактерий и грибов, должны быть подвергнуты стерилизации. Если маточные растворы имеют видимые признаки грибного или бактериально- го загрязнения, они должны быть приготовлены заново. Необходимо пре- дохранять растворы от испарения воды. При испарении воды концентра- ция раствора может увеличиваться до неизвестных значений. Если необхо- димо провести точные эксперименты, лучше всего использовать свежие маточные растворы макро- и микроэлементов. Ниже приводятся практиче- ские протоколы для приготовления растворов макроэлементов, микроэле- ментов и витаминов (Watanabe, 2005).
2.2.2. Макроэлементы
Маточные растворы макроэлементов необходимо готовить по от- дельности в виде сильно концентрированных растворов (см. 2.2.1.). Рас- творы фосфатов нельзя хранить в полиэтиленовых емкостях, так как фос- фат ионы хорошо адсорбируются полиэтиленом (Hassenteufel et al., 1963). Растворы силикатов не следует хранить в стеклянной посуде, так как стек- ло может переходить в раствор. Для этих целей лучше использовать теф- лоновую, полиэтиленовую или поликарбонатную посуду. Если необходи мо провести эксперимент без силикатов, маточные растворы следует хра- нить в стеклянной посуде.
2.2.3. Микроэлементы
Растворы микроэлементов обычно готовят в виде отдельных раство- ров или смешанных растворов. В некоторых случаях они добавляются не- посредственно в раствор в концентрациях от 0,1мг до 20мг на литр. Во многих, натриевая но этилендиаминтетрауксусная не во всех средах для пресноводных кислота) водорослей используется Na
EDTA в (ди- качестве хелатора. Когда используется EDTA, ее следует добавлять сразу же после добавления металлов. Практические рекомендации по последовательности приготовления растворов приводятся ниже (Watanabe, 2005).
2.2.3.1. Приготовление отдельных растворов
Отдельные (например, содержащие соли одного металла) растворы готовятся в концентрации, в 1000 раз превышающую концентрацию в ко- нечном растворе. Рецепты маточных растворов для приготовления пита- тельных сред приводятся в Приложении 1. Схема приготовления маточных растворов включает в себя два этапа:
– в дистиллированную или деионизированную воду (объемом при- мерно 800-950мл) добавляют необходимое количество микроэлементов. В случае растворения железа, кобальта, меди, марганца и цинка можно про- кипятить раствор в течение 5-10 минут для ускорения процесса;
– раствор доводят до конечного объема (1л) путем добавления дис- тиллированной или деионизированной воды.
Когда необходимо приготовить раствор микроэлементов небольшой концентрации, необходимо приготовить маточный раствор, очень точно взвешивая соль. Затем нужно разбавить раствор до получения необходи- мой концентрации (Watanabe, 2005).
2.2.3.2. Смешанный маточный раствор (рабочий маточный раствор)
При приготовлении смешанного маточного раствора следует соблю- дать следующую последовательность операций:
– в мензурку наливают приблизительно 80% необходимого объема дистиллированной или деионизированной воды (например, 800мл на 1 л раствора); – если в качестве хелатора используется тор, в первую очередь растворяют его;
EDTA или другой хела-
– добавляют необходимый объем каждого микроэлемента из от- дельного раствора, каждый раз хорошо перемешивая смешанный ма- точный раствор;
– доводят объем раствора до нужной величины дистиллированной или деионизированной водой и хранят его в холодильнике.
Для удобства лучше перелить маточные растворы в емкости ма- ленького объема. Например, если для приготовления конечного раство- ра требуется 1мл маточного раствора, 1мл раствора можно поместить в эппендорф и заморозить, или же разлить раствор в склянки по 10мл (Watanabe, 2005).
2.2.4. Витамины
Для культивирования водорослей обычно используют три витамина – витамин B
(цианокобаламин) и витамин H (биотин). Многие водоросли нуждаются только в одном или двух из этих витаминов, но внесение витаминов, в которых водоросли не нуждаются, не может причинить им никакого вреда (Provasoli, Carlucci, 1974). Кроме этих трех витаминов, в ре- цептах некоторых сред упоминаются и другие витамины. Например, для при- готовления среды для культивирования Phacotus lenticularis (Ehrenberg) Stein необходимо добавление никотинамида (Schlegel et al., 2000).
Витамины подвергаются многократному автоклавированию вместе с конечной средой. Несомненно, это приводит к их разрушению, но даже в этом случае они сохраняют свою эффективность. Лучше всего добавлять асептические растворы витаминов в среду после автоклавирования.
2.2.4.1. Приготовление отдельных растворов витаминов
Маточные растворы витаминов должны быть стерилизованы с ис- пользованием фильтров и помещены в емкости маленького объема (на- пример, 1-10мл эппендорфы или пробирки из поликарбоната) с соблюде- ние условий стерильности. В качестве альтернативы можно предложить следующий способ: первоначальный раствор может быть помещен в ма- ленькие пробирки и затем автоклавирован как окисленный раствор (рН=4,5-5), но при этом следует помнить, что некоторые пластмассы тают в автоклаве, а стеклянные пробирки могут разбиться при замораживании (Watanabe, 2005).
2.2.4.2. Смешанный маточный раствор витаминов
Для приготовления смешанного раствора, который обычно содержит все витамины, необходимо растворить аликвоту (обычно 1мл) каждого от- дельного маточного раствора в 100 или 1000мл дистиллированной или деионизированной воды. Конечный объем смешанного раствора может различаться в зависимости от необходимой концентрации того или иного витамина в растворе. Смешанный маточный раствор стерилизуется и по- мещается в маленькие емкости так, как было описано выше. Этот раствор лучше хранить в замороженном виде (Watanabe, 2005).
маточный раствор
маточный раствор (mother liquor): Остаточная жидкость после процессов кристаллизации и выделения.
47 маточный раствор (в металлургии драгоценных металлов): Жидкая фаза, образующаяся после выделения драгоценного металла или сопутствующих элементов из раствора в осадок.
13. Маточный раствор
Раствор, оставшийся после выпадения из него кристаллов
Полезное
Смотреть что такое «маточный раствор» в других словарях:
маточный раствор — (в металлургии драгоценных металлов) Жидкая фаза, образующаяся после выделения драгоценного металла или сопутствующих элементов из раствора в осадок. Примечание. Маточный раствор, содержащий драгоценный металл, используют в качестве продукта для… … Справочник технического переводчика
маточный раствор — pokristalizacinis tirpalas statusas T sritis chemija apibrėžtis Po kristalizacijos likęs tirpalas. atitikmenys: angl. mother solution rus. маточный раствор … Chemijos terminų aiškinamasis žodynas
маточный раствор — маточный щёлок … Cловарь химических синонимов I
Маточный раствор (в металлургии драгоценных металлов) — Маточный раствор (в металлургии драгоценных металлов): жидкая фаза, образующаяся после выделения драгоценного металла или сопутствующих элементов из раствора в осадок. Примечание. Маточный раствор, содержащий драгоценный металл, используют в… … Официальная терминология
Маточный раствор при производстве лекарств — Маточный раствор (mother liquor): остаточная жидкость после процессов кристаллизации и выделения. Примечание Маточный раствор может содержать непрореагировавшие материалы, промежуточные продукты, АФС и/или примеси в существенном количестве, а… … Официальная терминология
маточный щёлок — маточный раствор … Cловарь химических синонимов I
МАТОЧНЫЙ — [шн], маточная, маточное. 1. прил. к матка в 1 знач. (мед., анат.). Маточный зонд. Маточные кровотечения. 2. прил. к матка во 2 знач. Маточный косяк (косяк кобыл маток). 3. прил. к матка в 3 знач.; такой от которого или в котором рождается,… … Толковый словарь Ушакова
Соль поваренная* — (хлористый натрий, NaCl) как питательное вещество, известна человеку с незапамятных времен; на это указывает сходство названий ее у различных народов (греч. άλς, лат. sal, франц. sel, нем. Salz и проч.). Взрослый человек в среднем съедает в год С … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Соль поваренная — (хлористый натрий, NaCl) как питательное вещество, известна человеку с незапамятных времен; на это указывает сходство названий ее у различных народов (греч. άλς, лат. sal, франц. sel, нем. Salz и проч.). Взрослый человек в среднем съедает в год С … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Угленатровая соль* — или сода, Na2CO3, содержит 58,49% Na 2O и 41,51% CO 2. Она представляет белого цвета и неприятного щелочного (мыльного) вкуса порошковатое вещество уд. в. 2,4 (при 20°), плавится при темп. от 810° до 1098° (по различным данным) и при более… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Что такое маточный раствор в сельском хозяйстве
Для получения высоких урожаев качественной продукции важно хорошо знать биологические особенности томата и уметь удовлетворять требования растения в разные фазы роста и развития, т.е. правильно и своевременно применять агротехнические приемы в течение всей вегетации. Одной из главных составляющих технологии выращивания томата является организация эффективного минерального питания, т.к. требования к питанию у томата очень высокие.
В таблице №1 представлен рецепт для запитки кассет и кубиков под посев томата. Маточный раствор готовят в ёмкостях объёмом 200 л. Параметры исходного рабочего раствора: ЕС=1,6; рН=5,2. Запитку кассет производят при температуре раствора 18-20°С. Далее, с каждой подпиткой кассет, после получения всходов рассады ЕС рабочего раствора поднимают на 0,2-0,3 mS/cm, до ЕС=2,5 к моменту пересадки в кубики. Затем, когда рассада готова к пикировке, запитывают кубики раствором с ЕС= 2,2; рН=5,5. Температура раствора должна быть не ниже 18°С. Запитку кубиков производят в течение 3 дней.
Все маточные растворы составлены из расчёта на приготовление в дистиллированной воде, которая не содержит солей. При использовании обычной воды нужно учитывать её химический состав и проводить соответствующие корректировки.
Маточный раствор для запитки кассет и кубиков (табл. №1)
Бак А 200л
АгроМастер 3-11-38+4
Бак Б 200л
АгроМастер 3-11-38+4
После окончания запитки кубиков, баки заправляют следующим рецептом (таблица №2), который рассчитан уже на весь период выращивания рассады, до постановки на мат.
Далее, отслеживая развитие растений и вес кубика (при снижении веса кубика на 30-35%, проводится следующий полив), плавно повышается ЕС раствора, по 0,2-0,3 mS/cm, до 3,5.
Маточный раствор для выращивания рассады томата (табл. №2)
Бак А 200л
Бак Б 200 л
АгроМастер 3-11-38+4
За 5 дней до постановки рассады на мат поливочные установки заправляют следующим рецептом (таблица №3). Он предназначен для запитки минеральной ваты. Параметры поливочного раствора: ЕС 2,6-2,8; рН=5,2.
Доза полива по 100 мл через каждые 30 минут, доза вылива на капельницу 3500 мл.
Маточный раствор для запитки минеральной ваты (табл. №3)
Бак А 2 м 3
АгроМастер 3-11-38+4
Бак Б 2 м 3
После проведения запитки матов, поливочные установки заправляют рецептом маточного раствора (таблица №4), рассчитанным на первые две недели роста после постановки растений на мат. Параметры поливочного раствора: ЕС 3,0-3,2; рН=5,5. Рассаду выставляют на мат рядом с технологическим отверстием до массового зацветания 1-й кисти. После этого рецептура питания меняется (таблица №5), рассада ставится на технологические отверстия, а в мате прорезаются дренажные отверстия.
Маточный раствор для томата на первые две недели после постановки на мат (табл. №4)
Бак А 2 м 3
АгроМастер 3-11-38+4
Бак Б 2 м 3
С началом массового цветения 1-й кисти необходимо переходить на рецептуру с более высоким содержанием калия (таблица №5), ЕС поливочного раствора 3,0-3,2; рН=5,5.
Маточный раствор для томата, в период цветения 1-3 кисти (табл. №5)
Бак А 2 м 3
АгроМастер 3-11-38+4
Бак Б 2 м 3
Маточный раствор для томата, в период цветения 3-5 кисти (табл. №6)
Бак А 2 м 3
АгроМастер 3-11-38+4
Бак Б 2 м 3
ЕС рабочего раствора 3,0±0,2 (в зависимости от освещенности и состояния растений); рН=5,5.
Маточный раствор для томата, в период цветения 5-12 кисти (табл. №7)
Бак А 2 м 3
АгроМастер 3-11-38+4
Бак Б 2 м 3
ЕС рабочего раствора 2,8 (корректировка на солнечную погоду минус 0,2); рН=5,5
Далее проводится смена рецептов (стандартный N:К=1:1,5; генеративный N:K=1:1,7-1,9; либо вегетативный N:К=1:1,2-1,3) на основании анализов агрохимической лаборатории, состояния растений, и в зависимости от того, какие элементы накапливаются в субстрате.
В настоящее время тепличная культура огурца не менее популярна, чем культура томата. Практически это основная культура, выращиваемая в зимне-весеннем обороте. В зависимости от региона она занимает 75-80% площади теплиц. А площади под светокультурой огурца в РФ на начало 2019 года составляли 392 га, что в 1,5 раза больше площади, занятой под светокультурой томата.
Представленная схема рецептов для приготовления питательных растворов охватывает основной период вегетации огурца от посева семян, до периода массового цветения, и рассчитана на получение высокого урожая качественной продукции.
В таблице №1 представлен рецепт для запитки кубиков под посев среднеплодного огурца. Маточный раствор готовят в ёмкостях объёмом 200 л. Параметры рабочего раствора: ЕС=1,5; рН=5,5. Запитку кубиков производят раствором с температурой 18-20° С в течение 3 дней.
Маточный раствор для запитки кубиков (табл. №1)
Бак А 200 л
Бак Б 200 л
АгроМастер 3-11-38+4
После окончания запитки кубиков баки заправляют следующим рецептом (таблица №2), который рассчитан на весь период выращивания рассады до посадки в мат.
Маточный раствор для выращивания рассады огурца (табл. №2)
Бак А 200 л
Бак Б 200 л
АгроМастер 3-11-38+4
Маточный раствор для запитки минеральной ваты (табл. №3)
Бак А 2 м 3
Бак Б 2 м 3
АгроМастер 3-11-38+4
После проведения запитки матов, поливочные установки заправляют следующим рецептом (таблица №4) для приготовления маточного раствора рассчитанного на первые две недели после посадки растений в мат с параметрами ЕС поливочного раствора 2,5±0,2 mS, рН=5,5. После посадки растений в мат производится прорезка дренажных отверстий.
Маточный раствор для огурца на первые две недели после постановки на мат (табл. №4)
Бак А 2 м 3
АгроМастер 3-11-38+4
Бак Б 2 м 3
С началом массового цветения осуществляется переход на следующий рецепт (таблица №5) с более высоким содержанием калия, ЕС поливочного раствора 2,5±0,2 mS, рН=5,5.
Маточный раствор в период массового цветения огурца (табл. №5)
Бак А 2 м 3
АгроМастер 3-11-38+4
Бак Б 2 м 3
Далее проводится смена рецептов на основе анализов агрохимической лаборатории и в зависимости от того, какие элементы накапливаются, а какие остаются в дефиците.
Получение высокого урожая качественной продукции, который складывается в течение достаточно длительного процесса выращивания томата и огурца в защищенном грунте, невозможно без применения специальных агрохимикатов направленного действия, имеющих в своем составе биологически активные компоненты, т.к. в теплице постоянно возникают различные стресс-факторы, которые влияют на продуктивность растений.
Стрессовые ситуации (низкие или высокие температуры и влажность, недостаточная или избыточная инсоляция, пестицидные обработки, химический ожог, механические повреждения и т.д.) приводят к затуханию метаболизма и прекращению усвоения питательных элементов, а соответственно к остановке роста и развития растений, что существенно влияет на урожайность и качество продукции. В таких условиях минеральное питание растений необходимыми элементами становится малоэффективным. Растение, по сути, биологическая фабрика, которая с помощью фотосинтеза преобразует химические элементы и их соединения в сложные органические комплексы: белки, жиры и углеводы. Процесс усвоения и «переработки» элементов питания достаточно энергоемкий, поэтому, в условиях стресса, для сохранения жизнеспособности он отключается, необходимые элементы питания не усваиваются без биологически активных соединений. Поэтому, для сохранения и усиления метаболизма, а соответственно сохранения и повышения урожайности, в условиях стресса необходимо добавлять в питательный раствор (как для корневого питания, так и для листовых подкормок) специальные агрохимикаты стимулирующие физиологическую активность растения.
Основной принцип действия антистрессантов заключается в том, что специально подобранные биологически активные вещества растительного происхождения запускают, поддерживают и стимулируют физиологические процессы растительного организма, улучшают усвоение питательных элементов, восстанавливая рост и развитие растения.
Первым применяется мощнейший стимулятор развития корневой системы – Максифол Рутфарм. От степени развитости корневой системы напрямую зависит способность усвоения питательных веществ, общее состояние растений и скорость их развития.
На огурцах первое внесение Максифол Рутфарм проводится сразу после высадки рассады, затем после первого сбора, и далее 1 раз в месяц с расходом 4-5 л/га.
Для стимуляции и восстановления вегетативного роста после стрессового периода, полученного при посадке, рекомендуется листовая обработка Максифол Старт 1,0-1,5 л/га с расходом рабочего раствора 200-500 л. Этот агрохимикат содержит экстракт водорослей Ascophillum nodosum, макро-, мезо- и микроэлементы, способствующие восстановлению ростовых процессов после неблагоприятных условий. Агрохимикат укрепляет и стимулирует растение для дальнейшего развития.
В момент цветения и завязывания плодов многократно возрастает потребность растения в микроэлементах, таких как бор, цинк и марганец. Для восполнения такой потребности растений разработан агрохимикат Максифол Завязь содержащий кроме биологически активных фитоингредиентов экстракта водорослей Ascophillum nodosum все необходимые элементы в правильном соотношении. Этот агрохимикат стимулирует цветение, улучшает формирование и способствует сохранению завязи, даже в неблагоприятных условиях. Норма расхода при некорневой обработке 1,0-1,5 л./га. Расход рабочего раствора – 500-1000 л/га.
В течение вегетации рекомендуется внесение агрохимиката – Аминофол NPK. Это специальный агрохимикат со свойствами иммунопротектора, который содержит макроэлементы NPK и высокий процент протеиногенных аминокислот. Применение Аминофол NPK помогает преодолевать не только стрессовые ситуации, стимулируя метаболизм, рост и развитие растений, но и повышает устойчивость растений ко многим заболеваниям, т.к. фосфор и калий присутствуют в нём в форме фосфита калия, который обладает превентивным фунгицидным действием, запуская механизм синтеза фитоалексинов – антибиотиков продуцируемых самим растением. Расход агрохимиката при листовых подкормках – 2-3 л/га, при фертигации – 3-6 л/га
В любой стрессовой ситуации высокоэффективно применение Аминофол плюс – 2-4 л/га по листу, или инновационного продукта Максифол Динамикс, который вносится некорневым способом, с нормой расхода 2-3 л/га, либо использовать самый мощный стимулятор метаболизма Максифол Экстра с дозировкой 0,5-1,0 л/га. Эти агрохимикаты способны стимулировать метаболизм и поддерживать физиологическую активность растения в период стресса.
Все растения образующие сочные плоды испытывают физиологический дефицит кальция. Кальций – необходимый питательный элемент, выполняющий скелетные функции. Кроме того, он усиливает обмен веществ в растениях, влияет на активность ферментов, играет важную роль в передвижении углеводов, оказывает влияние на превращение азотистых веществ. Кальций влияет на физико-химическое состояние протоплазмы – ее вязкость, проницаемость и другие свойства, от которых зависит нормальное протекание биохимических процессов. В сочных плодах 90% кальция содержится в клеточных стенках, мембранах и ламеллах, где соединения кальция с пектиновыми веществами склеивают между собой стенки отдельных клеток. По этой причине все сочные плоды испытывают особую физиологическую потребность в этом элементе. Это связано с тем, что в период роста плодов происходит активное деление клеток и, параллельно увеличивается количество потребляемой влаги, что естественным образом снижает концентрацию кальция в местах локализации, ослабляя склеивающие функции. В результате, у огурца может отмирать точка роста, а плоды не будут иметь достаточной твердости. На томатах может происходить опадение завязи, а на плодах развиваться вершинная гниль.
АгроБор Са предназначен для восполнения дефицита кальция с помощью листовых подкормок. Удобрение содержит 20% СаО и 0,9% бора, который стимулируя перенос сахаров из листьев в плоды, помогает и передвижению туда кальция. Применяется от образования завязи 3-5 кисти и далее с интервалом 7-14 дней весь период плодоношения в дозе 1,5-2,0 л/га. В стрессовых ситуациях для аналогичных целей может применяться специальный агрохимикат Максифол Качество с нормой расхода 1,0-1,5 л/га.
Хорошкин А.Б. кандидат с/х наук,
ведущий специалист ГК «АгроМастер»
Юнг Д.В. агроном-консультант
по защищённому грунту ГК «АгроМастер»
Агротехнический метод
Севооборот — один из основных агротехнических приемов в защите растений, предотвращающий накопление патогенов. При составлении севооборота в первую очередь учитывают биологические особенности возбудителей болезней и продолжительность сохранения их в почве. Культура должна возвращаться на поле не раньше, чем в почве погибнет основной запас инфекционного начала; не допускается чередование растений, поражаемых одними и теми же патогенами. Так, после капусты на участках, зараженных килой, запрещается помещать брюкву, репу, турнепс и другие крестоцветные. После картофеля не следует размещать томат и наоборот, так как обе культуры поражаются фитофторозом (P. infestans). Очень важно также соблюдение пространственной изоляции между полями одной и той же культуры разного возраста, товарных посевов и семенными участками, иначе возможно перезаражение.
Обработка почвы. Такие приемы обработки, как лущение стерни, ранняя глубокая зяблевая вспашка, подавляют возбудителей, сохраняющихся на растительных остатках, благодаря развитию сапрофитной микрофлоры, в том числе и антагонистов патогенных организмов. При уходе за пропашными культурами (боронование, рыхление междурядий, окучивание) уничтожаются сорняки, улучшаются физические свойства почвы, создаются благоприятные условия для роста и развития растений, что способствует повышению их устойчивости к патогенам.
Удобрения. Неправильное (несбалансированное или несвоевременное) применение удобрений может быть причиной снижения устойчивости растений к болезням. Так, при одностороннем внесении азота или избыточных его дозах пшеница сильнее поражается ржавчиной, в то же время калийные и фосфорные удобрения, а также микроэлементы играют защитную роль. Например, микродозы соединений меди снижают поражаемость картофеля фитофторозом, борсодержащие удобрения предотвращают гниль сердечка свеклы, обработка семян зерновых культур солями молибдена повышает устойчивость к ржавчине, головне и другим болезням. Известкование кислых почв уменьшает пораженность капусты килой и черной ножкой, свеклы — корнеедом.
Сроки посева, посадки и уборки урожая. Соблюдение оптимальных сроков посева и уборки сдерживает развитие многих заболеваний. В большинстве случаев ранний посев обеспечивает более высокий урожай и меньшую пораженность растений болезнями, чем поздний. Это относится, в частности, к яровой пшенице, которая при раннем сроке
посева меньше поражается корневыми гнилями. Ранняя посадка раннеспелых сортов картофеля позволяет убрать урожай до массового развития фитофтороза, при этом следует учитывать, что при посадке картофеля в непрогретую почву усиливается его заболеваемость ризоктониозом.
Химический метод основан на использовании различных органических и неорганических соединений, токсичных для фитопатогенных организмов. Такие химические вещества называются фунгицидами. Они бывают контактного и системного действия. Контактные препараты оказывают местное действие, а системные подавляют возбудитель как в месте внесения, так и в других частях растения. К фунгицидам контактного действия, применяемым против возбудителей грибных болезней, относят бордоскую жидкость, хлорокись меди, каптан, купрозан и др.; системного действия — бенлат (фундазол), байтан-универсал, беномил, тилт, ридомил и др. Препаративными формами фунгицидов являются смачивающиеся порошки (с. п.), концентраты эмульсий (к. э.), пасты, гранулированные препараты, порошки, водные растворы (в. р.), концентрированные суспензии (к. с.), аэрозоли, растворы для ультрамалообъемного опрыскивания (УМО).
Поскольку химические препараты могут загрязнять окружающую среду и растительную продукцию, необходим строгий санитарно-эпидемический контроль. Использование каждого препарата должно регламентироваться так называемым периодом ожидания от последней обработки до уборки урожая. Допускаются только препараты, указанные в «Списке химических и биологических средств борьбы с вредителями, болезнями растений и сорняками и регуляторов роста растений, разрешенных для применения в сельском хозяйстве».
Подавление развития возбудителей болезней биологическим методом основывается на антагонизме, существующем в природе между отдельными живыми организмами, в частности микроорганизмами и продуктами их жизнедеятельности. Например, при одновременном высеве на субстрат актин ом ицеты вытесняются бактериями из-за более высокого темпа размножения. Однако этого не происходит, если актиномицет способен выделять специфические продукты обмена, подавляющие развитие бактерий, так называемые антибиотические вещества. Они обладают высокой физиологической активностью по отношению к определенным группам организмов (вирусам, бактериям, ак-тиномицетам, грибам и т. д.). К антибиотическим веществам относятся фитонциды, продуцируемые растениями. Высокой фитонцидностью отличаются лук, чеснок, хрен, черемуха, тополь, сосна, можжевельник, цитрусовые и некоторые другие растения. Например, антибиотик има-нин, выделенный из зверобоя, подавляет жизнеспособность возбудителей корневых гнилей клевера, развитие табачной мозаики, бронзовос-ти томата.
Наиболее приемлемы следующие направления использования антагонистов: 1) создание условий, благоприятных для накопления в почве микробов-антагонистов; 2) применение культуры антагонистов; 3) применение антибиотиков.
Грибы, паразитирующие на других видах своего царства, называют микофильными. По способу питания их делят на биотрофов и не-кротрофов. Примером биотрофов является Darluca filum, паразитирующий на ржавчинных грибах, Cicinnobolus sgn. Ampelomyces — на мучнисто-росяных грибах, Trichothecium — на грибах родов плазмо-пара, питиум, биполярис и других, Dactylella — на грибах родов питиум, фитофтора и других ложно-мучнисто-росяных, Fusarium orobanc-hes — на различных видах заразих.
В качестве паразитов второго порядка могут быть использованы мухи-минеры фитомизы (Phytomiza orobanchiae Kolt.), личинки которой повреждают семена заразих.
Однако биологический метод используется еще слабо. Необходимость расширения работ по его использованию очевидна, так как метод безвреден дая человека, животных и растений и не связан с загрязнением окружающей среды.
Физические приемы связаны с использованием высоких и низких температур, радиационных излучений, ультразвука, токов высокой частоты и др. Так, для подавления возбудителей пыльной головни пшеницы и ячменя семена на 2 ч погружают в воду, нагретую до 47°, а затем охлаждают и просушивают до кондиционной влажности. В парниках и теплицах применяют термическое обеззараживание почвы, а также биотермическое обеззараживание субстратов, которые готовят из самосогревающихся компосгов. Интенсивно развивающиеся в них аэробные термофильные микроорганизмы (бактерии, актиномицеты) способствуют быстрому разложению органических веществ и разогреванию компоста до 60. 65°. В таких условиях фитопатогены погибают. К физическим приемам относится очистка семян от склероциев возбудителя спорыньи (Claviceps purpurea Tul.) в солевом растворе.
Механические приемы включают обрезку больных побегов и ветвей плодовых деревьев, прочистку посевов от пораженных растений, удаление промежуточных хозяев, являющихся возбудителями ржавчины хлебных злаков, — барбариса, крушины и др.
Карантин растений — это система государственных мероприятий, направленных на предотвращение заноса с территории других стран карантинных возбудителей болезней растений (внешний карантин), а в случае проникновения — на локализацию их очагов (внутренний карантин). Карантинным объектом называют тот возбудитель болезни растений, который отсутствует или ограниченно распространен на территории страны, но может вызывать существенные поражения растений. Перечень карантинных объектов периодически обновляют и утверждают.
Интегрированная защита растений
Под интегрированной з ащитой понимают идеальную комбинацию биологических, агротехнических, химических, физических и других методов против комплекса болезней (вредных организмов) в конкретной эколого-географической зоне на определенной культуре. Ее назначение — регулирование численности вредных видов до хозяйственно
не ощутимых размеров при сохранении деятельности природных полезных организмов.
Интегрированная защита базируется на ряде следующих взаимосвязанных элементов:
1. Высокая агротехника, обеспечивающая полноценное развитие растений, обладающих устойчивостью к возбудителям болезней, а также профилактика или подавление отдельных видов вредных организмов.
2. Выращивание сортов, устойчивых к болезням.
3. Использование эффективных приемов подавления численности вредных организмов (биологических, химических, физических и др.) на основе прогноза развития болезни.
Активные средства защиты рекомендуется применять с учетом экономического порога вредоносности, т. е. такой плотности популяции вредного вида, при которой их применение целесообразно. Экономические пороги вредоносности зависят от эколого-географических особенностей зоны и культуры.
Интегрированная защита в большей мере, чем отдельные защитные мероприятия, способствует достижению высоких экономических показателей при наиболее полном соблюдении экологических требований и минимальном отрицательном воздействии на окружающую среду.
Методы учета болезней растений
Используются два метода: наблюдения на стационарных участках и маршрутные обследования.
Стационарные участки выделяют в базовом хозяйстве на 2—3 полях массива, где культура поражается болезнями, характерными для данной зоны. Наблюдения проводят в течение всей вегетации, не реже чем через каждые 10 дней. При равномерном поражении болезнью пробы растений берут по диагонали или по двум диагоналям участка: при неравномерном — по нескольким параллельным линиям; при очаговом поражении измеряют площади очагов. Если на определенной территории от одной и той же болезни одновременно наблюдалась гибель отдельных растений, то показатели суммируют.
Маршрутные обследования дают представление о поражении культур болезнями на территории всего района. Их проводят ежегодно на одних и тех же массивах в 2—3 наиболее типичных хозяйствах района. Наблюдениями должно быть охвачено не менее 10% посевов (посадок) обследуемой культуры. Все данные записывают в специальный журнал.
За вегетационный период необходимо делать 3 обследования зерновых культур: например, в фазу полных всходов, в период колошение—цветение и перед уборкой урожая. Обязательно отмечают дату
появления первых симптомов, чтобы примерно рассчитать время максимального развития болезни.
Для оценки состояния растений по диагонали, двум полудиагона-лям или равномерно по всему участку сообразно с его конфигурацией отбирают пробные образцы и тщательно их осматривают на корню. В других случаях из проб составляют сноп.
При фитопатологических обследованиях устанавливают причины болезни, ее распространенность, развитие и вредоносность. Распространенность определяют путем подсчета больных и здоровых растений (или их органов) в пробе по формуле � = (а • 100): N, где � — число больных растений, %; а — число больных растений, шт.; N — общее число растений, шт. Распространенность болезни в хозяйстве, районе является средневзвешенной величиной (Рс, %) и вычисляется по формуле Рс = ES : So, где ESp — сумма произведений площади в гектарах на соответствующий ей процент распространенности болезни; So — сумма обследованных площадей, га.
Развитие болезни, или степень повреждения растений (либо его однородных органов), характеризуется количеством пятен, налетов, пустул и т. п. на площади пораженного органа. Степень повреждения оценивают по специальным шкалам и выражают в баллах или процентах. По рекомендациям К. М. Степанова и А. Е. Чумакова (1972), основой должна служить 3—4-балльная шкала с подробными характеристиками каждого балла применительно к каждому заболеванию. Например, 0 — отсутствие поражения; 1 балл — поражено до 10% поверхности; 2 — поражено от 11 до 25% поверхности; 3 — поражено от 26 до 50% поверхности; 4 — поражено свыше 50% поверхности.
Развитие болезни отражает усредненную степень поражения одного растения (или растений) на определенном участке (или территории). Для этого вычисляют среднее арифметическое из однородных показателей степени поражения отдельных органов:
Развитие болезни в хозяйстве (районе) отражает средневзвешенный процент;
Используя данные о распространенности и развитии болезней, определяют размеры ущерба — вредоносность болезни. Вредоносность болезни проявляется в снижении урожая или ухудшении его качества и не бывает одинаковой для одного вида или сорта растений. Она зависит от условий выращивания, степени патогенности возбудителя и часто связана с поражением растений другими вредными организмами.
Коэффициент вредоносности выражает потери урожая, приходящиеся на ту или иную единицу поражения (балл, процент); В = (Уз—У6) 100 : Уз, где В — вредоносность, или потери, %; Уз — урожай здоровых растений, ц/га; У6 — урожай больных растений, ц/га. С помощью коэффициента вредоносности можно оценить хозяйственную и экономическую эффективность проведенных мероприятий.
Под биологической эффективностью понимают снижение развития болезни на участках, где применяли какое-либо защитное мероприятие по сравнению с контрольным участком.