что такое луч волны
Учебники
Журнал «Квант»
Общие
Кикоин А.К. Лучи и волны //Квант. — 1985. — № 11. — С. 23-24.
По специальной договоренности с редколлегией и редакцией журнала «Квант»
Содержание
В начале XIX века, благодаря работам по интерференции и дифракции света, окончательно утвердилось представление о том, что распространение света в пространстве представляет собой волновой процесс. Однако задолго до этого возникла, сформировалась и продолжает существовать и в наши дни так называемая геометрическая оптика. В этом разделе физики изучаются законы распространения света на основе представлений о световых лучах. Говорится о падающих, отраженных и преломленных лучах, о расходящихся, сходящихся и параллельных пучках лучей и т. п.
«Лучевая» картина света позволяет описать многое из того, что происходит, когда свет падает на зеркала, призмы или линзы («Физика 10», глава 6). При этом говорится о ходе лучей, например в призме, линзе или какой-то более сложной оптической системе.
Значит ли это, что через призмы и линзы проходят не световые волны, а лучи, что от зеркал отражаются не волны, а лучи? Что представляют собой световые лучи? Какова их физическая сущность?
Оказывается, за лучами не кроется никакой физической реальности. Световые лучи — это линии, вдоль которых распространяется световая волна. Все законы геометрической оптики могут быть получены из волновой теории как предельный случай, когда размеры препятствий на пути света много больше длины световой волны. Таким образом, использование понятия светового луча вовсе не обязательно для понимания того, что происходит при распространении света. Оно просто облегчает рассмотрение.
Убедимся в этом на нескольких конкретных примерах.
Призма
Пусть на стеклянную призму треугольного сечения, находящуюся в воздухе (рис. 1), падает плоская световая волна. В какой-то момент времени волновая поверхность (волновой фронт) достигнет в точке С поверхности призмы.
Начиная с этого момента, нижний край выбранного нами участка DC волновой поверхности (точнее, участка линии пересечения волновой поверхности с плоскостью чертежа) распространяется в стекле, в то время как верхний продолжает еще распространяться в воздухе. Когда верхний конец (точка D) достигнет призмы в точке А, сферическая волна, распространяющая от нижнего конца (точка С), дойдет до точки Е, причем расстояние СЕ будет примерно в полтора раза меньше, чем DA, так как скорость света в стекле приблизительно в полтора раза меньше, чем в воздухе. Далее сферическая волна, центром которой является точка С, достигнет второй грани призмы в точке В. В свою очередь из точки А тоже будет распространяться сферическая волна. К тому моменту, когда волна в стекле распространится на расстояние ЕВ, волна из А пройдет больший путь (скорость света в воздухе больше, чем в стекле!). Таким образом, новым фронтом волны по другую сторону призмы (вернее, участком линии его пересечения с плоскостью чертежа) станет отрезок ВК. Значит, роль призмы состоит в том, что фронт CD световой волны преобразовался в ВК. И произошло это потому, что скорость света в стекле меньше, чем в воздухе.
Такова волновая картина прохождения света через призму. Для сравнения на этом же рисунке синим цветом показана также и обычно приводимая картина хода луча в призме (см., например, § 56 «Физики 10»). Из рисунка 1 видно, что лучи — это просто прямые, перпендикулярные волновым поверхностям (волновым фронтам). «Преломление лучей света» в действительности означает поворот фронта волны. Угол поворота волнового фронта — это ∠ СНВ. Таков же, очевидно, и угол преломления лучей.
Как видно, «лучевая» картина проще, чем «волновая», поэтому обычно ею и пользуются.
Собирающая линза
Пусть на двояковыпуклую стеклянную линзу, находящуюся в воздухе, падает плоская световая волна (рис. 2).
С того момента, когда волновая поверхность (точнее, выбранная ее часть) коснется своей серединой первой поверхности линзы в точке С, путь всех ее точек (кроме середины) проходит частью в воздухе, а частью в стекле. По мере удаления от середины волнового фронта к его краям доля «стеклянной» части пути уменьшается, поэтому, когда середина волны достигнет в точке С’ второй поверхности линзы, все остальные участки волнового фронта продвинутся на большее расстояние (самое большое расстояние пройдут крайние точки). В результате получается, что по выходе из линзы плоский волновой фронт АСВ превратится в сферический А’С’В’. Центр этой сферической волны — точка F — называется, как известно, фокусом линзы. Понятно, что если, наоборот, сферическая волна выходит из точечного источника, расположенного в фокусе линзы, то после линзы она преобразуется в плоскую волну.
Синим цветом на рисунке 2 показан ход лучей в собирающей линзе.
Рассеивающая линза
Рисунок 3 иллюстрирует случай, когда плоская волна падает на двояковогнутую стеклянную линзу, находящуюся в воздухе.
После того как волновая поверхность коснется в точках А и В линзы, крайние участки будут отставать от других частей волнового фронта (так как проходят в стекле, где скорость света меньше, чем в воздухе). В результате плоская волна АСВ превратится в сферическую А’С’В’. Но центр этой сферической волны (точка F) находится по ту же сторону от линзы, откуда пришла плоская волна. Точку F тоже называют фокусом линзы, но фокусом мнимым, так как преломленный свет сюда реально не попадает. Синим цветом и здесь показан соответствующий ход лучей.
Читатель без труда сумеет сам построить волновые картины прохождения света через линзы, когда на них падают не плоские, а сферические волны. После прохождения линзы они преобразуются в сферические же волны, но с другими радиусами. Из таких картин можно получить и формулу линзы, такую же, разумеется, как и из геометрической оптики.
Принцип Гюйгенса.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
До сих пор мы занимались геометрической оптикой и изучали распространение световых лучей. При этом понятие луча мы считали интуитивно ясным и не давали ему определения. Основные законы геометрической оптики были сформулированы нами как постулаты.
Теперь мы займёмся волновой оптикой, в которой свет рассматривается как электромагнитные волны. В рамках волновой оптики понятие луча уже можно строго определить. Базовым постулатом волновой теории является принцип Гюйгенса; законы геометрической оптики оказываются его следствиями.
Волновые поверхности и лучи.
Чтобы дать строгое определение волновой поверхности, давайте вспомним сначала, что такое фаза колебаний. Пусть величина совершает гармонические колебания по закону:
Вне зависимости от того, какие волны рассматриваются, мы можем сказать, что в каждой точке пространства, захваченной волновым процессом, происходят колебания некоторой величины; такой величиной является набор координат колеблющейся частицы в случае механической волны или набор координат векторов, описывающих электрическое и магнитное поля в электромагнитной волне.
Фазы колебаний в двух различных точках пространства, вообще говоря, имеют разное значение. Интерес представляют множества точек, в которых фаза одна и та же. Оказывается, совокупность точек, в которых фаза колебаний в данный момент времени имеет фиксированное значение, образует двумерную поверхность в пространстве.
Коротко говоря, волновая поверхность есть поверхность постоянной фазы. Каждому значению фазы отвечает своя волновая поверхность. Набору различных значений фазы соответствует семейство волновых поверхностей.
С течением времени фаза в каждой точке меняется, и волновая поверхность, отвечающая фиксированному значению фазы, перемещается в пространстве. Следовательно, распространение волн можно рассматривать как движение волновых поверхностей! Тем самым в нашем распоряжении оказываются удобные геометрические образы для описания физических волновых процессов.
Например, если точечный источник света находится в прозрачной однородной среде, то волновые поверхности являются концентрическими сферами с общим центром в источнике. Распространение света выглядит как расширение этих сфер. Мы это уже видели выше в ситуации с лампочкой.
Коль скоро через точку проходит единственная волновая поверхность, то однозначно определено и направление перпендикуляра к волновой поверхности в данной точке.
Сферическая волна.
Рис. 1. Сферическая волна |
Ну а световые лучи, как мы заметили, оказываются в этом случае обычными прямолинейными геометрическими лучами с началом в источнике. Помните закон прямолинейного распространения света: в прозрачной однородной среде световые лучи являются прямыми линиями? В геометрической оптике мы сформулировали его как постулат. Теперь мы видим (для случая точечного источника), как этот закон следует из представлений о волновой природе света.
В теме «Электромагнитные волны» мы ввели понятие плотности потока излучения:
Как видим, плотность потока излучения в сферической волне обратно пропорциональна квадрату расстояния до источника.
Поскольку энергия пропорциональна квадрату амплитуды колебаний электромагнитного поля, мы приходим к выводу, что амплитуда колебаний в сферической волне обратно пропорциональна расстоянию до источника.
Плоская волна.
Рис. 2. Плоская волна |
В дальнейшем, выводя законы отражения и преломления из принципа Гюйгенса, мы будем использовать именно плоские волны. Но сначала разберёмся с самим принципом Гюйгенса.
Принцип Гюйгенса.
Ключевая идея Гюйгенса состояла в том, что локальные возмущения могут порождаться не только посторонними объектами типа камня или поплавка, но также и распространяющейся в пространстве волной!
Принцип Гюйгенса. Каждая точка пространства, вовлечённая в волновой процесс, сама становится источником сферических волн.
Эти сферические волны, распространяющиеся во все стороны от каждой точки волнового возмущения, называются вторичными волнами. Последующая эволюция волнового процесса состоит в наложении вторичных волн, испущенных всеми точками, до которых волновой процесс уже успел добраться.
Принцип Гюйгенса даёт рецепт построения волновой поверхности в момент времени по известному её положению в момент времени (рис. 3 ).
Рис. 3. Принцип Гюйгенса: движение волновых поверхностей |
Но, конечно, для построения волновой поверхности мы не обязаны брать вторичные волны, испущенные точками, лежащими непременно на одной из предыдущих волновых поверхностей.Искомая волновая поверхность будет огибающей семейства вторичных волн, излучённых точками вообще всякой поверхности, вовлечённой в колебательный процесс.
На базе принципа Гюйгенса можно вывести законы отражения и преломления света, которые раньше мы рассматривали лишь как обобщение экспериментальных фактов.
Вывод закона отражения.
Предположим, что на поверхность раздела двух сред падает плоская волна (рис. 4 ). Фиксируем две точки этой поверхности.
Рис. 4. Отражение волны |
В точке проведена нормаль к отражающей поверхности. Угол есть, как вы помните, угол падения.
Вывод закона преломления.
Рис. 5. Преломление волны |
Из прямоугольных треугольников и легко видеть, что и (для краткости обозначено ). Имеем, таким образом:
Поделив эти уравнения друг на друга, получим:
Получился хорошо известный нам закон преломления:
Обратите внимание: физический смысл показателя преломления (как отношения скоростей света в вакууме и в среде) прояснился опять-таки благодаря принципу Гюйгенса.
Давайте разберемся: что же такое свет?
Он вокруг нас и позволяет нам видеть мир. Но спросите любого из нас, и большинство не сможет объяснить, что такое на самом деле этот свет. Свет помогает нам понимать мир, в котором мы живем. Наш язык это отражает: во тьме мы передвигаемся на ощупь, свет мы начинаем видеть вместе с наступлением зари. И все же мы далеки от полного понимания света. Если вы приблизите луч света, что в нем будет? Да, свет движется невероятно быстро, но разве его нельзя применить для путешествий? И так далее и тому подобное.
Конечно, все должно быть не так. Свет озадачивает лучшие умы на протяжении веков, но знаковые открытия, совершенные за последние 150 лет, постепенно приоткрывали завесу тайны над этой загадкой. Теперь мы более-менее понимаем, что она такое.
Физики современности не только постигают природу света, но и пытаются управлять ей с беспрецедентной точностью — и значит, свет очень скоро можно заставить работать самым удивительным способом. По этой причине Организация Объединенных Наций провозгласила 2015 году Международным годом Света.
Свет можно описать всевозможными способами. Но начать стоит с этого: свет — это форма излучения (радиации). И в этом сравнении есть смысл. Мы знаем, что избыток солнечного света может вызвать рак кожи. Мы также знаем, что радиационное облучение может вызвать риск развития некоторых форм рака; нетрудно провести параллели.
Электричество и магнетизм кажутся совершенно разными вещами. Но ученые вроде Ганса Христиана Эрстеда и Майкла Фарадея установили, что те глубоко переплетаются. Эрстед обнаружил, что электрический ток, проходящий через провод, отклоняет иглу магнитного компаса. Между тем, Фарадей обнаружил, что перемещение магнита вблизи провода может генерировать электрический ток в проводе.
Математики того дня использовали эти наблюдения для создания теории, описывающей это странное новое явление, которое они назвали «электромагнетизм». Но только Джеймс Клерк Максвелл смог описать полную картину.
Вклад Максвелла в науку сложно переоценить. Альберт Эйнштейн, который вдохновлялся Максвеллом, говорил, что тот изменил мир навсегда. Среди прочих вещей, его вычисления помогли нам понять, что такое свет.
В конце 1880-х, через несколько лет после смерти Максвелла, немецкий физик Генрих Герц первым официально продемонстрировал, что теоретическая концепция электромагнитной волны Максвелла была верной.
«Я уверен, что если бы Максвелл и Герц жили в эпоху Нобелевской премии, они бы точно одну получили», — говорит Грэм Холл из Университета Абердина в Великобритании — где работал Максвелл в конце 1850-х.
Максвелл занимает место в анналах науки о свете по другой, более практической причине. В 1861 году он обнародовал первую устойчивую цветную фотографию, полученную с использованием системы трехцветного фильтра, которая заложила основу для многих форм цветной фотографии сегодня.
Красный свет на одном конце радуги — это электромагнитное излучение с длиной волны от 620 до 750 нанометров; фиолетовый цвет на другом конце — излучение с длиной волны от 380 до 450 нм. Но в электромагнитном излучении есть и больше, чем видимые цвета. Свет с длиной волны длиннее красного мы называем инфракрасным. Свет с длиной волны короче фиолетового называем ультрафиолетовым. Многие животные могут видеть в ультрафиолетовом, некоторые люди тоже, говорит Элефтериос Гулильмакис из Института квантовой оптики Макса Планка в Гархинге, Германия. В некоторых случаях люди видят даже инфракрасный. Возможно, поэтому нас не удивляет, что ультрафиолетовый и инфракрасный мы называем формами света.
Любопытно, однако, что если длины волн становятся еще короче или длиннее, мы перестаем называть их «светом». За пределами ультрафиолетового, электромагнитные волны могут быть короче 100 нм. Это царство рентгеновских и гамма-лучей. Вы когда-нибудь слышали, чтобы рентгеновские лучи называли формой света?
«Ученый не скажет «я просвечиваю объект рентгеновским светом». Он скажет «я использую рентгеновские лучи», — говорит Гулильмакис.
Между тем, за пределами инфракрасных и электромагнитных длин волны вытягиваются до 1 см и даже до тысяч километров. Такие электромагнитные волны получили названия микроволн или радиоволн. Кому-то может показаться странным воспринимать радиоволны как свет.
«Нет особой физической разницы между радиоволнами и видимым светом с точки зрения физики, — говорит Гулильмакис. — Вы будете описывать их одними и теми же уравнениями и математикой». Только наше повседневное восприятие различает их.
Таким образом, мы получаем другое определение света. Это очень узкий диапазон электромагнитного излучения, которое могут видеть наши глаза. Другими словами, свет — это субъективный ярлык, который мы используем только вследствие ограниченности наших органов чувств.
Если вам нужны более подробные доказательства того, насколько субъективно наше восприятие цвета, вспомните радугу. Большинство людей знают, что спектр света содержит семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. У нас даже есть удобные пословицы и поговорки про охотников, которые желают знать место нахождения фазана. Посмотрите на хорошую радугу и попробуйте разглядеть все семь. Это не удалось даже Ньютону. Ученые подозревают, что ученый разделил радугу на семь цветов, поскольку число «семь» было очень важным для древнего мира: семь нот, семь дней недели и т. п.
Некоторые считали, что свет движется в форме волн или ряби, через воздух или загадочный «эфир». Другие думали, что эта волновая модель ошибочна, и считали свет потоком крошечных частиц. Ньютон склонялся ко второму мнению, особенно после серии экспериментов, которые он провел со светом и зеркалами.
Проблема в том, что были в равной степени убедительные доказательства того, что свет представляет собой волну. Одна из самых наглядных демонстраций этого была проведено в 1801 году. Эксперимент с двойной щелью Томаса Юнга, в принципе, можно провести самостоятельно дома.
Возьмите лист толстого картона и аккуратно проделайте в нем два тонких вертикальных разреза. Затем возьмите источник «когерентного» света, который будет излучать свет только определенной длины волны: лазер отлично подойдет. Затем направьте свет на две щели, чтобы проходя их он падал на другую поверхность.
Вы ожидаете увидеть на второй поверхности две ярких вертикальных линии на тех местах, где свет прошел через щели. Но когда Юнг провел эксперимент, он увидел последовательность светлых и темных линий, как на штрих-коде.
Когда этот свет проходит через две щели, каждая волна гасит другую, образуя темные участки. Когда же рябь сходится, она дополняется, образуя яркие вертикальные линии. Эксперимент Юнга буквально подтвердил волновую модель, поэтому Максвелл облек эту идею в твердую математическую форму. Свет — это волна.
Во второй половине девятнадцатого века, физики пытались выяснить, как и почему некоторые материалы абсорбируют и излучают электромагнитное излучение лучше других. Стоит отметит, что тогда электросветовая промышленность только развивалась, поэтому материалы, которые могут излучать свет, были серьезной штукой.
К концу девятнадцатого века ученые обнаружили, что количество электромагнитного излучения, испускаемого объектом, меняется в зависимости от его температуры, и измерили эти изменения. Но никто не знал, почему так происходит. В 1900 году Макс Планк решил эту проблему. Он выяснил, что расчеты могут объяснить эти изменения, но только если допустить, что электромагнитное излучение передается крошечными дискретными порциями. Планк называл их «кванта», множественное число латинского «квантум». Спустя несколько лет Эйнштейн взял его идеи за основу и объяснил другой удивительный эксперимент.
Физики обнаружили, что кусок металла становится положительно заряженным, когда облучается видимым или ультрафиолетовым светом. Этот эффект был назван фотоэлектрическим.
Атомы в металле теряли отрицательно заряженные электроны. Судя по всему, свет доставлял достаточно энергии металлу, чтобы тот выпустил часть электронов. Но почему электроны так делали, было непонятно. Они могли переносить больше энергии, просто изменив цвет света. В частности, электроны, выпущенные металлом, облученным фиолетовым светом, переносили больше энергии, чем электроны, выпущенные металлом, облученным красным светом.
Если бы свет был просто волной, это было бы нелепо.
Эйнштейн понял, что фотоэлектрический эффект проще понять, если представить свет в терминологии планковских квантов.
Он предположил, что свет переносится крошечными квантовыми порциями. Каждый квант переносит порцию дискретной энергии, связанной с длиной волны: чем короче длина волны, тем плотнее энергия. Это могло бы объяснить, почему порции фиолетового света с относительно короткой длиной волны переносят больше энергии, чем порции красного света, с относительно большой длиной.
Также это объяснило бы, почему простое увеличение яркости света не особо влияет на результат.
Свет поярче доставляет больше порций света к металлу, но это не изменяет количество энергии, переносимой каждой порцией. Грубо говоря, одна порция фиолетового света может передать больше энергии одному электрону, чем много порций красного света.
Эйнштейн назвал эти порции энергии фотонами и в настоящее время их признали фундаментальными частицами. Видимый свет переносится фотонами, другие виды электромагнитного излучения вроде рентгеновского, микроволнового и радиоволнового — тоже. Другими словами, свет — это частица.
При этом у физиков не возникло проблем с раздвоением личности света. Это в какой-то мере сделало свет полезным вдвойне. Сегодня, опираясь на работы светил в прямом смысле слова — Максвелла и Эйнштейна, — мы выжимаем из света все.
Оказывается, что уравнения, используемые для описания света-волны и света-частицы, работают одинаково хорошо, но в некоторых случаях одно проще использовать, чем другое. Поэтому физики переключаются между ними, примерно как мы используем метры, описывая собственный рост, и переходим на километры, описывая поездку на велосипеде.
Некоторые физики пытаются использовать свет для создания шифрованных каналов связи, для денежных переводов, к примеру. Для них имеет смысл думать о свете как о частицах. Виной всему странная природа квантовой физики. Две фундаментальные частицы, как пара фотонов, могут быть «запутаны». Это значит, что они будут иметь общие свойства вне зависимости от того, как далеки будут друг от друга, поэтому их можно использовать для передачи информации между двумя точками на Земле.
Еще одна особенность этой запутанности в том, что квантовое состояние фотонов изменяется, когда их считывают. Это значит, что если кто-то попытается подслушать зашифрованный канал, в теории, он сразу выдаст свое присутствие.
Другие, как Гулильмакис, используют свет в электронике. Им полезней представлять свет в виде серии волн, которые можно приручить и контролировать. Современные устройства под названием «синтесайзеры светового поля» могут сводить световые волны в идеальной синхронности друг с дружкой. В результате они создают световые импульсы, которые более интенсивные, кратковременные и направленные, чем свет обычной лампы.
За последние 15 лет эти устройства научились использовать для приручения света с чрезвычайной степенью. В 2004 году Гулильмакис и его коллеги научились производить невероятно короткие импульсы рентгеновского излучения. Каждый импульс длился всего 250 аттосекунд, или 250 квинтиллионных секунды.
Используя эти крошечные импульсы как вспышку фотоаппарата, они смогли сделать снимки отдельных волн видимого света, которые колеблются намного медленнее. Они буквально сделали снимки движущегося света.
«Еще со времен Максвелла мы знали, что свет — это осциллирующее электромагнитное поле, но никто даже и подумать не мог, что мы можем сделать снимки осциллирующего света», — говорит Гулильмакис.
Сто лет назад фотоэлектрический эффект показал, что видимый свет влияет на электроны в металле. Гулильмакис говорит, что должна быть возможность точно контролировать эти электроны, используя волны видимого света, измененные таким образом, чтобы взаимодействовать с металлом четко определенным образом. «Мы можем управлять светом и с его помощью управлять материей», — говорит он.
Это может произвести революцию в электронике, привести к новому поколению оптических компьютеров, которые будут меньше и быстрее наших. «Мы сможем двигать электронами как заблагорассудится, создавая электрические токи внутри твердых веществ с помощью света, а не как в обычной электронике».
Вот еще один способ описать свет: это инструмент.
Впрочем, ничего нового. Жизнь использовала свет еще с тех пор, когда первые примитивные организмы развили светочувствительные ткани. Глаза людей улавливают фотоны видимого света, мы используем их для изучения мира вокруг. Современные технологии еще дальше уводят эту идею. В 2014 году Нобелевская премия по химии была присуждена исследователям, которые построили настолько мощный световой микроскоп, что он считался физически невозможным. Оказалось, что если постараться, свет может показать нам вещи, которые мы думали никогда не увидим.