что такое лопасть вертолета
Конструкция лопасти несущего винта вертолета
Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).
Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.
Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.
При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.
Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:
Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.
При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.
Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.
Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего — стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.
Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.
К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора — нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части — к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.
Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5—6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.
При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.
Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.
Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.
Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.
Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.
Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.
Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти — 2 мм.
Предотвратить обледенение возможно двумя путями.
Первый путь — это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.
Второй путь — это оборудование лопастей противо-обледенительными устройствами.
Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может
быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.
Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.
Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.
Будущее покажет, какой из этих способов найдет себе более широкое применение.
Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.
Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.
Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.
Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади
Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05—0,08 (среднее значение 0,065).
Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9—12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.
Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.
Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.
Устройство и работа несущего винта вертолета
Для того чтобы самолет или планер летал, нужна подъемная сила, а эта сила создается крылом. Поэтому главным в самолете является крыло, ибо в конечном счете Весь самолет может быть сведен в летающее крыло, без фюзеляжа, без оперения.
У вертолета роль крыла играет несущий винт. Даже если в летательном аппарате ничего больше нет, кроме несущего винта, мы можем принципиально назвать его «вертолетом».
Наверное, многие в детстве делали себе такой «вертолет», состоящий только ив одного винта, вырезанного из куска жести. Стартовым устройством для него служила обыкновенная катушка от ниток, вращающаяся на стержне.
Однако роль несущего винта вертолета гораздо более многогранна, чем роль крыла самолета.
Созданием подъемной силы еще не ограничивается назначение несущего винта.
Когда вы посмотрите на вертолет в горизонтальном полете, вы неизбежно обратите внимание на то, что фюзеляж носом наклонен к горизонту. При этом наклоненным вперед оказывается и несущий винт.
Полная аэродинамическая сила R, развиваемая несущим винтом и направленная перпендикулярно к плоскости вращения концов лопастей, в этом случае может быть разложена на две составляющие: направленную вертикально подъемную силу, которая поддерживает вертолет на заданной высоте, и силу, направленную по касательной к траектории полета, Р, которая на вертолете является силой тяги. За счет этой силы вертолет летит вперед. Таким образом, несущий винт в поступательном полете одновременно является и тянущим винтом.
Однако и этим не ограничивается роль несущего винта. У вертолета в отличие от самолета нет рулевых поверхностей, таких, как элероны, триммеры, рули направления и высоты. Да они и не имели бы смысла, так как во время полета не обдувались бы потоком воздуха и в силу этого не могли бы служить целям управления.
Ведь мы знаем, что для изменения положения тела, к нему нужно приложить внешнюю силу. В полете вертолет окружен воздухом, поэтому внешняя сила может быть только результатом взаимодействия каких-либо частей вертолета с воздушной средой. Для того чтобы возникла сила сопротивления воздуха, тело должно перемещаться с большей скоростью. Когда вертолет висит в воздухе, то этому условию не отвечает ни одна его часть, кроме винта. Поэтому роль органа управления вертолетом также возложена на несущий винт. Действуя ручкой управления, летчик с помощью особых устройств, о которых будет рассказано в следующих главах, добивается такого положения, которое равносильно изменению плоскости вращения несущего винта. При этом изменяет свое направление и полная аэродинамическая сила воздушного винта и обе ее составляющие. И если подъемная сила всегда направлена вертикально вверх, то вторая составляющая — по касательной к траектории полета.
В зависимости от угла наклона полной аэродинамической силы меняется не только направление, но и величины ее составляющих. Следовательно, управляя несущим винтом, летчик может изменять не только направление полета, но и скорость полета.
Для подъема или спуска вертолета летчик также воздействует на лопасти несущего винта, уменьшая или увеличивая одновременно и на одинаковую величину угол установки всех лопастей.
Если на вертолете отказывает двигатель, то, уменьшая углы атаки лопастей, летчик ставит несущий винт в положение самовращения (авторотации). Поддерживаемый подъемной силой, создаваемой винтом на этом режиме работы, вертолет совершает безопасный планирующий спуск.
Из сказанного выше ясно, что для понимания устройства и полета вертолета надо разобраться прежде всего в работе несущего винта; для того чтобы вертолет успешно мог летать, конструктор должен обеспечить надежность прежде всего несущего винта.
Летчики, инженеры, техники и механики, летающие на вертолетах и обслуживающие их, прежде всего должны следить за безукоризненным состоянием несущего винта.
Итак, несущий винт — вот что главное в вертолете
Пропеллерный режим возникает при вертикальном подъеме или висении вертолета.
Режим косой обдувки возникает при поступательном полете вертолета.
Режим самовращения возникает при отключении двигателя вертолета от несущего винта в полете, при этом винт вращается под действием потока воздуха.
Режим вихревого кольца возникает при снижении вертолета. При таком режиме поток воздуха, проходя сквозь ометаемую винтом поверхность сверху вниз, вновь подходит к винту сверху.
Однако в некоторых частных случаях, например, в пропеллерном режиме, его работа схожа с работой самолетного винта. Когда самолет находится на земле или летит горизонтально, его винт обдувается со стороны плоскости вращения (по оси). Когда вертолет находится на земле, висит в воздухе или поднимается вертикально вверх, его несущий винт также обдувается со стороны плоскости вращения (по оси). Различие при этом состоит только В ТОМ, что у самолета струи воздуха проходят через плоскость вращения винта в горизонтальном направлении, спереди назад, тогда как у вертолета — в вертикальном направлении, сверху вниз. При этом несущий винт захватывает воздух из зоны А сверху и отбрасывает его, закручивая, вниз, в зону. На место частиц воздуха, забранных из зоны А, поступают частицы воздуха из окружающей среды и частично из зоны Б, но уже вне плоскости вращения винта.
До того, как несущий винт был приведен во вращение, воздух над винтом н под ним находился в состоянии покоя С началом вращения винта приборы, внесенные с область действия винта, но находящуюся вдали от него, покажут наблюдателю, что в сечении 0—0 воздух по-прежнему находится в состоянии относительного покоя. Его давление равно атмосферному, а скорость. Расстояние от сечения 0—0, где еще не наблюдается влияния винта, до плоскости вращения винта есть величина переменная, которая зависит от вязкости среды и точности применяемых нами приборов. Чем точнее прибор, тем он дальше от винта зарегистрирует наличие скорости воздуха, частички которого будут устремлены к винту.
Если бы воздух был лишен сил вязкости, то действие винта сказалось бы бесконечно далеко.
Фактически ввиду того, что воздух представляет собой вязкую среду, влияние винта перестает ощущаться уже на расстоянии десятков метров.
Перенося наши приборы из сечения 0—0 все ближе к сечению, мы заметим постепенный прирост скорости воздуха, подсасываемого винтом. Та скорость, которую воздух имеет, подходя к сечению, называется индуктивной скоростью подсасывания. На основании закона сохранения энергии кинетическая энергия (энергия скорости движения) не может увеличиться без того, чтобы не уменьшался другой какой-либо вид энергии. И действительно, наряду с ростом скорости воздуха до ш, мы замечаем, что давление воздуха р0 при этом падает. Это значит, что увеличение скорости воздуха произошло за счет уменьшения давления. За винтом сечение потока сжимается и происходит еще большее увеличение скорости воздуха. Казалось бы, должно было последовать дальнейшее падение давления. Однако сразу за винтом давление растет до р-2. Не противоречит ли это закону сохранения энергии? Да, противоречит, если мы не примем во внимание того обстоятельства, что воздух извне (от винта) получил добавочную энергию (механическую). Механическая энергия винта, преобразуюсь в кинетическую и потенциальную энергию потока, увеличивает и скорость и давление воздуха одновременно.
В сечении сразу за винтом прибор нам показывает, что воздух по сравнению с сечением имеет скорость и», называемую скоростью отбрасывания. Причем скорость отбрасывания оказывается вдвое больше скорости подсасывания.
Далеко за винтом, в сечении (теоретически на бесконечном удалении), скорость и давление воздуха восстанавливаются до первоначальных значений. Энергия потока при этом из-за наличия сил вязкости рассеивается в пространстве.
Таково действие винта на воздух, которое является следствием приложения к винту энергии вращения. Этому действию соответствует ответное действие воздуха на винт, которое проявляется в виде силы тяги, являющейся проекцией полной аэродинамической силы R на ось, проходящую через втулку винта перпендикулярно плоскости его вращения. Если динамометр, соединенный с винтом, при остановленном винте показывал нулевое значение тяги, то по мере роста оборотов тяга будет все больше и больше возрастать. На режиме висения и вертикального подъема на всех других режимах полета
Величину тяги, создаваемой винтом, можно не только замерить, но и подсчитать.
Лопасти несущего винта вертолета
Условия работы лопасти несущего винта вертолета во многом отличаются от условий работы крыла самолета. Основная особенность в том, что действующие на нее нагрузки являются переменными во времени. Поэтому при выборе материала элементов лопасти в качестве главных выдвигаются следующие требования:
— усталостная прочность: трещино стойкость (сопротивление распространению усталостной трещины) и слабая чувствительность к концентраторам напряжений;
— неизменность механических свойств материала элементов и их соединений от заданного времени эксплуатации, температуры и атмосферных условий окружающей среды;
— технологические требования: возможности производства по обеспечению заданных форм сечения элементов конструкции; повышение ресурса элементов конструкции методами упрочнения; контроль за качеством соединений и заданными геометрическими
размерами при изготовлении элементов конструкции в процессе сборки лопасти; ремонтопригодность конструкции лопасти в процессе ее эксплуатации.
Кроме перечисленного, необходимо учитывать стоимость материала и технологического процесса изготовления лопасти и стоимость ее эксплуатации.
С учетом вышеизложенных требований выбирают тот материал, а который имеет максимальные удельную прочность — и удельный Е модуль упругости — р.
При формировании лонжерона лопасти из гибридных композиционных материалов стремятся к максимальной их совместимости с материалом матрицы, например, по величине динамического удлинения, степени адгезии, по коэффициенту линейного и объемного расширения, влагоёмкости, времени старения, чувствительности к ударным нагрузкам.
Чувствительность к ударным нагрузкам определяется величиной ударной вязкости. Для волокнистых композитов ударная вязкость характеризуется отношением. Одним из способов повышения ударной вязкости композитов является введение в их состав более прочных и менее жестких волокон, например стеклянных или органических — в углепластики.
В процессе развития вертолетостроения основной силовой элемента лопасти — лонжерон — выполнялся из дерева, легированных сталей, алюминиевых сплавов, нержавеющей стали, титановых сплавов. В настоящее время широко практикуется изготовление лонжерона из композиционных материалов.
Агрегаты каркаса — обшивка, нервюры, хвостовой стрингер, ранее изготовляемые из фанеры, полотна, алюминиевых сплавов, в современных лопастях изготавливаются также из КМ.
Дерево нашло применение в практике Ухтомского вертолетного завода им. Ы.И. Камова в период его становления. Определяющими в выборе этого материала являлись следующие соображения: древесина малочувствительна к концентраторам напряжений, трещино стойкая; она не требует сложного технологического оборудования при изготовлении лонжерона и каркаса лопасти; затраты на изготовление лопасти не велики.
Центральная часть лонжерона выполнялась из дельта- древесины (склеенные тонкие листы древесины), носовая часть профиля состояла из набора склеенных сосновых реек. Хвостовая часть представляла собой каркас из фанерной обшивки, приклеенной к пенопласту. Поверхность лопасти покрывалась полотном и влагостойким лаком.
В процессе эксплуатации выявились существенные недостатки деревянной лопасти:
— несмотря на влагостойкое покрытие поверхности лопасти элементы конструкции насыщались влагой, что приводило к изменению центра тяжести сечения (смещался назад) и уменьшению критической скорости флаттера лопасти;
— пропитка антисептиками не устраняла в процессе эксплуатации гнилостного разрушения древесины, при том что ее механические свойства ухудшались.
В практике Московского вертолетного завода им. М.Л. Миля в лопастях НВ применялась смешанная конструкция — лонжерон выполнялся из стальной трубы, а в элементах каркаса использовалось дерево и полотно.
Требования прочности, жесткости и аэродинамики с учетом технологических возможностей привели к необходимости изменения форм сечения лонжерона по радиусу с цилиндрической на эллиптическую. Металлургическая промышленность не располагала оборудованием для формирования данного лонжерона из одной заготовки. Поэтому конструкторы вынуждены были ввести телескопические стыки, соединенные стальными заклепками, с использованием упрочняющей технологии (дорнирование отверстий), плавные переходы жесткости в месте стыка, продольную шлифовку внутренней и внешней поверхностей каждой части лонжерона.
Учитывая характер аэродинамических нагрузок по хорде профиля, переднюю часть профиля лопасти выполняли из фанеры, а заднюю — из полотна в комлевой части лопасти и фанерной обшивки в средней и концевой ее части.
Аэродинамические нагрузки и центробежная сила, действующая на каркас, через нервюры передавались на лонжерон. Передача сил и моментов на лонжерон осуществлялась через фланцы, приклепанные к лонжерону и стенке нервюры.
В процессе эксплуатации выявился ряд недостатков принятой конструктивно-силовой схемы лопасти. Наличие стыков и заклепочных соединений существенно усложнило процесс достижения необходимого ресурса лопасти. Использование в хвостовой части без моментной обшивки (полотна) приводило к тому, что под действием внешних аэродинамических сил и центробежной силы воз духа, находящегося внутри каркаса, существенно искажался профиль лопасти, что ухудшало его аэродинамические характеристики.
Введение дренажного отверстия на нижней поверхности в конце лопасти привело к местным потерям на перетекание воздуха внутри каркаса под действием центробежных сил. Устранение этого недостатка за счет отказа от полотна и переход па фанерную обшивку по всей поверхности лопасти существенно увеличило массу лопасти и сдвигало центр масс лопасти назад. В результате совместной деятельности конструкторов, технологов и металлургов по устранению отмеченных недостатков был создан лонжерон заданного переменного сечения без стыков, а хвостовую часть лопасти стали выполнять из дюралюминевой обшивки, подкрепленной сотовым блоком, не изменяющей форму под действием аэродинамических нагрузок.
Для трубчатого лонжерона применяется обычно труба из высоколегированной стали типа ЗОХГСА или 40ХНМА, закаленной и отпущенной на прочность (с^ = 1100—1300 МПа). После горячей и холодной прокатки, формообразования и закалки наружная и внутренняя поверхности трубы полируются. На внешней и внутренней поверхностях лонжерона создается наклеп виброударным способом, повышающий предел выносливости до а ю = 280—300 МПа mi» при постоянной части нагружения ат= 200—250 МПа.
В конструкции лопасти, основанной на стальной трубе, лонжерон обычно защищен каркасом и не может быть механически поврежден в эксплуатации.
Процесс прессования не позволяет изменять форму сечения по заданному закону, поэтому требуемую высоту профиля по длине лопасти можно обеспечить только за счет фрезерования внешней поверхности. В результате конструктор имеет возможность разрабатывать конструктивно-силовую схему лопасти только прямоугольной формы в плане (сужение r| = 1).
Контакт поверхности лонжерона с потоком воздуха привел к необходимости защиты этой поверхности от эрозионного повреждения.
Была сделана попытка формирования лонжерона лопасти из многослойного тонкого листа нержавеющей стали, соединенного в монолит при помощи склейки. Предполагалось создание конструкции, обладающей большой стойкостью к распространению усталостной трещины. Органическим недостатком данной конструкции была невозможность обеспечения качественной склейки и устранения выявленных дефектов клеевых поверхностей.
Лопасти с лонжероном замкнутой формы позволяют использовать технические средства постоянного контроля усталостных разрушений материала лонжерона. Система сигнализации повреждения цельнометаллических лонжеронов состоит из сигнализатора давления воздуха и заглушек на концах лонжерона ( 2.3.2). Внутренняя полость лонжерона заполняется воздухом под давлением, превышающим давление начала срабатывания сигнализатора.
В случае появления в лонжероне трещины давление воздуха в нем падает. Информация о разгерметизации полости лонжерона поступает от сигнализатора давления в виде выдвижения красного колпачка сильфона, установленного в комлевой части каждой лопасти.
Индикация давления воздуха в лонжеронах в кабину экипажа не выводится, т.к. процесс роста трещины до разрушения лонжерона в несколько раз превышает время максимально возможной длительности полета вертолета. Контроль за состоянием лопасти осуществляется при меж полетном осмотре по положению сигнализатора.
Давление воздуха в лонжероне создается с учетом температуры окружающего воздуха и с учетом давления начала срабатывания сигнализатора.
В лопастях вертолета Ми-26 стальные трубчатые лонжероны по наружной поверхности облицованы стеклолентой, за счет чего при возникновении трещины в лонжероне исключается возможность обнаружения повреждения лонжерона с помощью пневматической системы сигнализации. Для обеспечения надежного функционирования системы сигнализации повреждения лонжерона по всей длине его внешней поверхности укладываются двойные фторопластовые шнуры ( 2.3.3) и после обмотки лентами из стеклоткани производится полимеризация в пресс-форме. Фторопластовые шнуры вытягиваются, образуя воздушные каналы диаметром
2 мм, открытые со стороны внешней поверхности трубы лонжерона. Появление усталостной трещины в зоне воздушных каналов приводит к падению давления в полости лонжерона и срабатыванию сигнализатора. Каналы выполняются двойными по технологическим соображениям — всегда имеется вероятность обрыва фторопластового шнура при его вытягивании из полости длиной 14 м.
Анизотропность композиционных материалов открыла широкие возможности применения их в лопастях НВ. Применение КМ позволяет направленно формировать жесткостные характеристики лопасти (изгибные и крутильные) за счет соответствующей ориентации армирующих волокон композита с учетом сложного характера ее нагружения.
Вертолетостроение является наиболее передовой отраслью авиационной техники, здесь стали смело применять КМ в таком ответственном и сложно нагружаемом агрегате, как лопасть НВ.
Эффективность применения КМ в силовых элементах лопастей определяется рядом преимуществ этих материалов по сравнению с металлами. В частности, аэродинамические и аэроупругие параметры лопастей композитов могут выбираться без учета ограничений, вызываемых технологическими процессами получения катаных, экструдированных (прессованных) или механически обработанных металлических конструктивных элементов.
Композитным конструкциям можно придать сложные аэродинамические формы, а регулируемая анизотропия материала позволяет создавать требуемую жесткость в пределах заданных аэродинамических и аэроупругих параметров. В результате достигается большая аэродинамическая эффективность винтов, определяемая отношением подъемной силы к аэродинамическому сопротивлению.
С помощью КМ, обладающих более высокой удельной прочностью, изготавливают лопасти меньшей массы, чем металлические. Снижение массы лопастей, в свою очередь, оказывает влияние па центробежные силы, инерцию ротора, частотные и другие характеристики.
Регулируемая в широких пределах анизотропия КМ позволяет получать необходимые конструктивные и демпфирующие параметры лопасти.
Частота собственных колебаний лопасти может быть изменена не только перераспределением массы, но и выбором армирующих волокон, имеющих низкий или высокий модуль упругости, включая их гибридизацию (смешивание), степени армирования и ориентации армирующих волокон относительно оси лопасти. Крутильная жесткость лопасти может быть существенно увеличена за счет добавления слоев с ориентацией ± 45° относительно размаха лопасти при незначительном изменении частот продольных колебаний.
Одним из возможных критериев оптимальности панели из КМ, обеспечивающим минимум ее массы, является условие совпадения траектории армирования с траекторией максимального главного напряжения. Как правило, КМ представляет собой совокупность однонаправленных или тканевых слоев с различными толщинами и углами ориентации волокон. Свойства такого материала определяются свойствами отдельных слоев и структурой.
Эффективная реализация достоинств композитов в конструкциях лопастей требует решения комплекса задач, связанных с выбором взаимно согласованных исходных компонентов (волокон и матрицы), определением рациональной структуры материала, соответствующей характеру внешних нагрузок и других воздействий с учетом специфических свойств материала и технологических ограничений при разработке элементов лопасти.
Механическое поведение КМ определяется высокой прочностью армирующих волокон, жесткостью матрицы и прочностью связи на границе «матрица — волокно».
Наибольшее применение получили стеклопластиковые КМ на эпоксидной матрице. Это объясняется в первую очередь низкой стоимостью стеклопластика. Дальнейшее развитие конструкции лопасти из КМ связано с использованием гибридных композиций
— сочетания углеволокна с органоволокном и других подобных вариантов.
Углепластик, обладая высокой прочностью, чувствителен к ударным нагрузкам. Введение менее жесткого материала и защита поверхности лонжерона от каких-либо повреждений предоставляет возможности широкого применения подобных композиций.
Лонжерон с замкнутым коробчатым сечением £)-образной формы может быть изготовлен методом намотки однонаправленной лентой на оправке. Этот метод изготовления лонжеронов лопасти широко применяется при крупном серийном производстве, где целесообразно максимально автоматизировать процесс изготовления. В практике ОКБ Н.И. Камова выбрана технология изготовления лонжерона частями методом выкладки из различных тканей или лент однонаправленного материала на оправках.
Листы материала лонжерона собирают в пакеты и подвергают предварительной опрессовке в автоклаве при невысокой температуре. Листы при этом слипаются, пакеты приобретают необходимые для дальнейшей сборки форму и жесткость, а полимеризации связующего практически не происходит. После опрессовки пакеты представляют собой профиль открытого контура.
Затем пакеты собираются совместно с центровочными грузами, нагревательным элементом и комлевыми пластинами в один блок, внутри которого располагается технологическая резиновая пресс- камера. Блок пакетов с пресс- камерой помещают в специальную пресс-форму, внутренний контур которой соответствует внешнему контуру носовой части лопасти.
В пресс-камеру подается сжатый азот, а пресс-форму нагревают. При этом лонжерон приобретает необходимую форму, связующее полимеризуется и все элементы лонжерона прочно склеиваются между собой. По окончании процесса прессования лонжерон извлекают из пресс-формы, удаляют из него пресс-камеру и обрезают припуски. Такой способ производства позволяет получить лонжерон замкнутого контура из различных армирующих наполнителей на разных связующих, в любом сочетании с неограниченными возможностями по их размещению в конструкции. К сборочному приспособлению для изготовления лонжерона заданного сечения предъявляется ряд требований при назначении режимов давления, нагрева, охлаждения и выдержки при отвердении. Эти требования направлены для исключения остаточных деформаций и коробления за счет температурных напряжений и неравномерности распределения массы материала и толщин в процессе формирования лонжерона.
Тип исходных КМ для лонжеронов выбирается в зависимости от летно-технических данных вертолета. Для малонагруженных лопастей вертолетов используется дешевая стеклоткань сатинового переплетения. Для высоконагруженных лопастей используются гибридные КМ на основе высокопрочной стеклоткани, углеродной ленты и технической ткани на эпоксидном связующем.
Применение гибридных КМ позволяет основной силовой элемент — лонжерон — изготавливать с практически любым заданным распределением масс и жесткостей по длине лопасти.
В силу требований, предъявляемых к лопастям, и учитывая действующие нагрузки, хвостовые секции лопасти должны отвечать следующим требованиям: прочность конструкции, минимальная масса, жесткость конструкции, достаточный ресурс (не менее ресурса лонжерона лопастей), гладкость аэродинамической поверхности, возможность изготовления в серийном производстве, возможность ремонта в полевых условиях и др.
В эксплуатации хорошо зарекомендовали себя хвостовые секции лопасти трёхслойной сотовой конструкции. Такая секция имеет обшивку, торцевые нервюры и стрингеры из технической ткани на основе органических волокон и заполнитель из сот. Применение в конструкции хвостовых секций самого легкого КМ дает возможность снизить массу секций по сравнению со стеклопластиком и увеличить ресурс.
Большой опыт, накопленный при эксплуатации вертолетов «Ка», показал, что лопасти из КМ имеют наилучшие эксплуатационные качества. Важнейшие из них состоят в следующем:
— большой запас прочности при фактически неограниченном по условиям выносливости ресурсе. Практический срок службы лопастей из КМ определяется степенью их естественного износа, зависящего от условий эксплуатации;
— повышение срока службы не только лопастей несущего винта, но и всего вертолета за счет снижения статических и динамических нагрузок в несущей системе, благоприятных частотных характеристик и уменьшения уровня вибраций вертолета. Это обеспечивается технологическим процессом, который позволяет изготавливать лонжерон с переменными по длине формой сечения и толщиной стенки, а также применять совместно разные типы армирующего материала с разной ориентацией. Эти важнейшие качества дают существенные преимущества не только перед металлическими лопастями, но и перед другими конструкциями лопастей из КМ;
— высокая степень ремонтопригодности. Благодаря ценным свойствам КМ — высокой стойкости к концентраторам напряжений и низкой скорости разрушения материала — достигается простота и доступность ремонта даже крупных повреждений лопасти в полевых условиях;
— высокая стойкость лопастей практически ко всем видам агрессивных веществ, топливам, ядохимикатам, маслам и пр.;
— стабильность летно-технических характеристик лопасти в процессе длительной эксплуатации в любых климатических условиях. Длительный опыт эксплуатации вертолетов с лопастями из КМ показал, что изменения механических свойств материала настолько незначительны, что они не влияют ни на летно-технические характеристики, ни на срок службы лопастей.
На характеристики КМ в процессе эксплуатации оказывает влияние влажность.