ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈΠ»ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΠΌ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠΌ.
ΠΠ»ΠΎΠ±Π°Π»ΡΠ½ΡΠΉ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡΡΡ Π»ΠΈΠ±ΠΎ Π² ΡΠΎΡΠΊΠ°Ρ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°, Π»ΠΈΠ±ΠΎ Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΎΡΡΠ΅Π·ΠΊΠ°.
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°
(ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°)
ΠΠ΅ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠ²ΠΎΠ΅ΠΉ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ.
ΠΠ΅ΡΠ²ΠΎΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°
(ΠΠ΅ΡΠ²ΠΎΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°)
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠΎΡΠΎΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°
(ΠΡΠΎΡΠΎΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°)
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ ΠΏΠΎ Π·ΡΠ±Π°ΠΌ? Π’Π΅Π±Π΅ ΠΎΡΠ²Π΅ΡΠΈΡ ΡΠΊΡΠΏΠ΅ΡΡ ΡΠ΅ΡΠ΅Π· 10 ΠΌΠΈΠ½ΡΡ!
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ:
ΠΡΠΎΡΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΡΠ°Π»ΠΈΡΡ Π²ΠΎΠΏΡΠΎΡΡ?
ΠΠ΄Π΅ΡΡ Π²Ρ Π½Π°ΠΉΠ΄Π΅ΡΠ΅ ΠΎΡΠ²Π΅ΡΡ.
ΠΠΊΡΡΡΠ΅ΠΌΡΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠΌ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡ. ΠΠΎΠ΄ ΠΏΠΎΠ½ΡΡΠΈΠ΅ΠΌ Β«ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡΒ» ΠΈΠ»ΠΈ ΠΏΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ/ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Π΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ (Ρ).
ΠΡΠ»ΠΈ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ ΠΈΠ»ΠΈ, ΠΈΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅/ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅, ΡΠΎ ΡΡΠ° ΡΠΎΡΠΊΠ° Π½ΠΎΡΠΈΡ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. ΠΠ· ΡΡΠΎΠ³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΏΡΠΈ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π±ΡΠ΄Π΅Ρ Π½Π°Π·Π²Π°Π½Π° ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, ΠΈ, Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, ΠΏΡΠΈ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ° ΡΠΎΡΠΊΠ° Π±ΡΠ΄Π΅Ρ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°. Π ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΡΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ ΡΠΎΡΠΊΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² (ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ²/ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ²) ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°ΡΡΡΡ ΠΈΠΊΡΡ, Π² ΠΊΠΎΡΠΎΡΡΡ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠΎΠ΄ ΠΏΠΎΠ½ΡΡΠΈΠ΅ΠΌ Β«ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈΒ» ΠΈΠΌΠ΅Π΅ΡΡΡ Π² Π²ΠΈΠ΄Ρ ΡΠ° ΡΠΎΡΠΊΠ° Π½Π° Π½Π΅ΠΉ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΡΠ²Π»ΡΡΡΠ΅Π΅ΡΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΡΡΠ΅Π΄ΠΈ Π²ΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ, ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ°Π΅ΠΌΡΡ Π΅Ρ Π² Π»ΡΠ±ΠΎΠΉ ΠΈΠ· Π΄ΡΡΠ³ΠΈΡ ΡΠΎΡΠ΅Π΄Π½ΠΈΡ ΡΠΎΡΠ΅ΠΊ. ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ Π² ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΡΡΠ½ΠΊΡΠΈΡ, Π΄ΠΎΡΡΠΈΠ³Π½ΡΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ, ΠΏΡΠ΅ΠΊΡΠ°ΡΠ°Π΅Ρ ΠΏΠ°Π΄Π°ΡΡ, Π°, Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π΅Π΅ ΡΠΎΡΡ, ΡΠΎ Π΄Π°Π½Π½Π°Ρ ΡΠΎΡΠΊΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΠΎΡΠΊΡ Π΅Π΅ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°.
ΠΠ»Ρ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Π²ΠΎΠΏΡΠΎΡ Π½ΡΠΆΠ½ΠΎ ΠΎΡΡΡΠΊΠ°ΡΡ ΡΠΎΡΠΊΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π΅Ρ ΠΏΠ°Π΄Π°ΡΡ. ΠΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠ², ΡΡΠΎ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½ΠΎ 0, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΠΏΠΈΡΠ°ΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅:
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ Π΄Π°Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π° 4:
ΠΠΎΠ»ΡΡΠΈΠ²ΡΠ΅Π΅ΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅ ΠΏΠΎΡΠ»Π΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Ρ ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ :
Π Π°ΡΠΏΠΈΡΠ΅ΠΌ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ Π² ΠΈΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅, ΡΡΠΎΠ±Ρ ΠΈΠ·Π±Π°Π²ΠΈΡΡΡΡ ΠΎΡ ΡΡΠ΅ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ:
ΠΡΠΎ ΠΆΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ°ΠΊ:
Π’Π΅ΠΏΠ΅ΡΡ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΡΠ°ΠΊΠΎΠΌ Π²ΠΈΠ΄Π΅:
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Ρ = 1
ΠΠ½Π°ΠΊΠ°ΠΌΠΈ Β«+Β» ΠΈ Β«-Β» ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
ΠΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ Π±ΡΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Ρ = 1, ΡΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
Π’ΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ , Π΄ΠΎΡΡΠΈΠ³Π½ΡΠ² ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΠΉ Π·Π½Π°ΠΊ Ρ ΠΏΠ»ΡΡΠ° Π½Π° ΠΌΠΈΠ½ΡΡ. ΠΠ½Π°Ρ ΡΡΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΠΉΡΠΈ ΠΊ ΠΏΠΎΠΈΡΠΊΡ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Π² Π·Π°Π΄Π°Π½ΠΈΠΈ.
ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½ΡΠΆΠ½ΠΎ Π½Π°ΡΠ°ΡΡ Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ»Π΅Π΄ΡΡΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ Π² Π·Π°Π΄Π°Π½ΠΈΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΡΠΈΡΠ°Π²Π½ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΊ 0 ΠΈ Π½Π°ΡΠ°ΡΡ ΡΠ΅ΡΠ°ΡΡ ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅Π΅ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΠ·Π±Π°Π²ΠΈΠΌΡΡ ΠΎΡ ΠΌΠΈΠ½ΡΡΠΎΠ² Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ:
ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ:
ΠΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Ρ = 1,5.
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
Π Π·Π°ΡΠ΅ΠΌ ΠΏΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΅Π΅ ΠΊ 0:
ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ:
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ, Π΅ΡΠ»ΠΈ x 3/2, ΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ y’ > 0, ΠΈ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ.
x =3/2=1,5 β ΡΡΠΎ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°.
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΡ ΡΠΎΡΠΊΡ, ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΡΠ°Π²Π½ΠΎΠΉ 0, Π»ΠΈΠ±ΠΎ ΠΎΠ½Π° Π²ΠΎΠ²ΡΠ΅ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΡΠΎ ΠΏΠΎΠ΄ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Π΅ΡΡΡ ΡΠ° ΡΠΎΡΠΊΠ°, ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ°Π΅Ρ Π½ΡΠ»Π΅Π²ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, Π»ΠΈΠ±ΠΎ ΠΆΠ΅ ΡΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΡΡΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ.
ΠΡΠΎΠ²Π΅ΡΠΈΠΌ, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ Π»ΠΈ ΡΡΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊ ΡΠΏΠΎΠΌΡΠ½ΡΡΠΎΠΉ Π² Π·Π°Π΄Π°Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊ 0:
f ‘(x) = 0, ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ 2sin2x-3 = 0.
sin2x= 3 2 Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΡΠ²Π΅Ρ: Π·Π°Π΄Π°Π½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΠΊ ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΏΡΠΈ Π»ΡΠ±ΡΡ Ρ .
ΠΠΎΠ΄ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡΡΡ ΡΠ΅ ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° 0 ΠΈΠ»ΠΈ Π²ΠΎΠ²ΡΠ΅ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
Π’ΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ \(f\left( x \right)\) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ Π»ΠΈΠ±ΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ΄ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΡΠ»ΠΈ ΡΠΎΡΠΊΠ° \(
ΠΡΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π΅ΡΠ΅ Π½Π΅ Π³Π°ΡΠ°Π½ΡΠΈΡΡΠ΅Ρ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. ΠΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΠ΅ΠΉ Π·Π΄Π΅ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ \(f\left( x \right) =
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΠΌ, ΡΡΠΎ ΡΠΎΡΠΊΠ° \(
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ Π΄Π»Ρ ΡΡΡΠΎΠ³ΠΎΠ³ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠΈ Π½Π΅ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ, ΡΡΠΎΠ±Ρ ΡΡΠ½ΠΊΡΠΈΡ Π±ΡΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ \(
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΡΠ»ΡΡΠ°ΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠΉ ΠΏΡΠΈΠ·Π½Π°ΠΊ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ, ΠΊΠΎΠ³Π΄Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π·Π°ΡΡΡΠ΄Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ. Π‘ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, Π²ΡΠΎΡΠΎΠΉ ΠΏΡΠΈΠ·Π½Π°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΠΈΡΡ Π΄Π»Ρ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΡ ΡΠΎΡΠ΅ΠΊ (Π³Π΄Π΅ ΠΏΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ) β Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΊ Π»ΡΠ±ΡΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΎΡΠΊΠ°ΠΌ.
Π―ΡΠ½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ \(n = 2\) Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΡΡΠ°Ρ ΠΌΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΠΎΠ΅ Π²ΡΡΠ΅ Π²ΡΠΎΡΠΎΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. Π§ΡΠΎΠ±Ρ ΠΈΡΠΊΠ»ΡΡΠΈΡΡ ΡΠ°ΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄, Π² ΡΡΠ΅ΡΡΠ΅ΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ΅ ΠΏΠΎΠ»Π°Π³Π°ΡΡ, ΡΡΠΎ \(n > 2.\)
ΠΠ°Π½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎ-ΡΡΠ΅ΠΏΠ΅Π½Π½ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΉ. Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡΡ Π²ΠΈΠ΄ \(y = g<\left( x \right)^
\(2x = \large\frac<\pi ><6>\normalsize + 2\pi n,\;\; \Rightarrow
\(2x = \large\frac<5\pi ><6>\normalsize + 2\pi k,\;\; \Rightarrow
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π€Π΅ΡΠΌΠ°, ΠΌΠ΅ΠΆΠ΄Ρ Π»ΡΠ±ΡΠΌΠΈ Π΄Π²ΡΠΌΡ ΡΠΎΡΠΊΠ°ΠΌΠΈ ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΡΡΡ ΡΠ°ΠΊΠ°Ρ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ ΡΠ²Π΅ΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π²Π΅ ΡΡΠ΅Π΄Ρ Ρ ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π³ΡΠ°Π½ΠΈΡΠ΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ (ΡΠΌ. Π²ΡΡΠ΅ ΡΠΈΡΡΠ½ΠΎΠΊ \(8\)). ΠΡΡΡΡ ΡΠ²Π΅Ρ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΠ΅ΡΡΡ ΠΈΠ· ΡΠΎΡΠΊΠΈ \(A\) Π² ΡΠΎΡΠΊΡ \(B\), ΠΏΡΠΈΡΠ΅ΠΌ Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΡΠ΅Π΄Π΅ ΡΠ³ΠΎΠ» ΠΏΠ°Π΄Π΅Π½ΠΈΡ (ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ°Π΄Π°ΡΡΠΈΠΌ Π»ΡΡΠΎΠΌ ΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΡ ΠΊ Π³ΡΠ°Π½ΠΈΡΠ΅ ΡΠ°Π·Π΄Π΅Π»Π° ΡΡΠ΅Π΄) ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ \(<\alpha _1>,\) Π° Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅Π΄Π΅ ΡΠ³ΠΎΠ» Π²ΡΡ
ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ΄ ΡΠ³Π»ΠΎΠΌ \(<\alpha _2>.\) Π‘ΠΊΠΎΡΠΎΡΡΠΈ ΡΠ²Π΅ΡΠ° Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΈ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅Π΄Π΅ ΡΠ°Π²Π½Ρ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, \(
ΠΡΡΡΡ Π»ΡΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ Π³ΡΠ°Π½ΠΈΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠ΅Π΄Π°ΠΌΠΈ Π² ΡΠΎΡΠΊΠ΅ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΎΠΉ \(x\). ΠΠ°Π΄Π°ΡΠ° ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ \(x,\) ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π²ΡΠ΅ΠΌΡ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΡΠ²Π΅ΡΠ° Π±ΡΠ΄Π΅Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ.
ΠΡΡΠ»Π΅Π΄ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π·Π½Π°ΠΊΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π΅ ΡΠ΅ΡΠ΅Π· ΡΡΠΈ ΡΠΎΡΠΊΠΈ (ΡΠΈΡΡΠ½ΠΎΠΊ \(11\)).
Π‘Ρ Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π²ΠΈΠ΄ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ \(12\).
\(\ln x = 0,\;\; \Rightarrow
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈΠ»ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΠΌ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠΌ. ΠΠ»ΠΎΠ±Π°Π»ΡΠ½ΡΠΉ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡΡΡ Π»ΠΈΠ±ΠΎ Π² ΡΠΎΡΠΊΠ°Ρ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°, Π»ΠΈΠ±ΠΎ Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΎΡΡΠ΅Π·ΠΊΠ°.
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. Π’Π΅ΠΎΡΠ΅ΠΌΠ°.
. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΡΠ΅, ΡΡΠΎ Π½Π΅ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠ²ΠΎΠ΅ΠΉ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ.
ΠΠ΅ΡΠ²ΠΎΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. Π’Π΅ΠΎΡΠ΅ΠΌΠ°.
ΠΡΡΡΡ Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ \(f(x)\) Π²ΡΠΏΠΎΠ»Π½Π΅Π½Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ:
Π’ΠΎΠ³Π΄Π° Π² ΡΠΎΡΠΊΠ΅ \(x =
ΠΡΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ \(f'(x)\) ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π΅ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ \(
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΄Π»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ \(f(x)\) Π½Π° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΈΠΌΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°, ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΡ Π½Π° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ: \(y(x) =
\(y'(x) = 4
ΠΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠΊΠ°Ρ . Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΈΠΌΠ΅Π΅ΠΌ ΠΎΠ΄Π½Ρ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠΎΡΠΊΡ. ΠΠ°Π½ΠΎΡΠΈΠΌ ΡΡΡ ΡΠΎΡΠΊΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΏΡΡΠΌΡΡ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ»Π΅Π²Π° ΠΈ ΡΠΏΡΠ°Π²Π° ΠΎΡ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΠ· ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π±Π΅ΡΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ:
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π΅ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ \(x = 0\) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠΌΠ΅Π½ΠΈΠ»Π° ΡΠ²ΠΎΠΉ Π·Π½Π°ΠΊ Ρ «-» Π½Π° «+», ΡΠΎ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΡ Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° (ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ).
ΠΠ°ΠΆΠ½ΠΎ, ΡΡΠΎ \(x = 0\) ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°. Π‘Π°ΠΌ ΠΆΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ, ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠ»ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π΅ΡΠ΅ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ, ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² \(x = 0\) Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ΅ Π·Π°Π±ΡΠ²Π°ΠΉΡΠ΅ Π΄Π°Π½Π½ΠΎΠ΅ Π·Π°ΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ ΠΈ Π²ΡΠ΅Π³Π΄Π° Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΈΡΠ°ΠΉΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅, ΡΡΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² ΠΎΡΠ²Π΅ΡΠ΅ ΠΊ Π·Π°Π΄Π°ΡΠ΅.
ΠΠ°ΠΊΡΠΈΠΌΡΠΌΡ, ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠΈΠ½ΠΈΠΌΡΠΌΠΎΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΎΡΠΊΡ Π½Π° ΡΡΠ½ΠΊΡΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ Π² ΡΠΎΡΠ΅Π΄Π½ΠΈΡ ΡΠΎΡΠΊΠ°Ρ .
ΠΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΎΡΠΊΡ Π½Π° ΡΡΠ½ΠΊΡΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ Π² ΡΠΎΡΠ΅Π΄Π½ΠΈΡ ΡΠΎΡΠΊΠ°Ρ .
Π’Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ: Π΅ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π΅Ρ ΠΏΠ°Π΄Π°ΡΡ ΠΈ Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΡΠ°ΡΡΠΈ β ΡΡΠΎ ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π½Π°ΠΎΠ±ΠΎΡΠΎΡ β ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ Π²ΠΌΠ΅ΡΡΠ΅ ΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°ΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π²ΡΠ΅ ΠΏΡΡΡ ΡΠΎΡΠ΅ΠΊ, Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ Π²ΡΡΠ΅, ΡΠ²Π»ΡΡΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°ΠΌΠΈ.
Π ΡΠΎΡΠΊΠ°Ρ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² (Ρ.Π΅. ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ²) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΡΠΎΠΌΡ Π½Π°ΠΉΡΠΈ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π½Π΅ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌ, Π΄Π°ΠΆΠ΅ Π΅ΡΠ»ΠΈ Ρ Π²Π°Ρ Π½Π΅Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅! ΠΠΎΠ³Π΄Π° ΠΏΠΈΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ ΠΈΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ/ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΈΠΌΠ΅ΡΡ Π² Π²ΠΈΠ΄Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ.Π΅. \(y\). ΠΠΎΠ³Π΄Π° ΠΏΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² ΠΈΠ»ΠΈ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ²/ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² ΠΈΠΌΠ΅ΡΡ Π² Π²ΠΈΠ΄Ρ ΠΈΠΊΡΡ Π² ΠΊΠΎΡΠΎΡΡΡ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ/ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π²ΡΡΠ΅, \(-5\) ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° (ΠΈΠ»ΠΈ ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°), Π° \(1\) β ΠΌΠΈΠ½ΠΈΠΌΡΠΌ (ΠΈΠ»ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ).
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (7 Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΠΠ)?
ΠΠ°Π²Π°ΠΉΡΠ΅ Π²ΠΌΠ΅ΡΡΠ΅ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅:
ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅! ΠΡΠ»ΠΈ Π΄Π°Π½ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΌΡ Π½Π΅ ΡΡΠΈΡΠ°Π΅ΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ! ΠΡ ΡΡΠΈΡΠ°Π΅ΠΌ ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΠΎΠ»Ρ (Ρ.Π΅. ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ \(x\)).
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (7 Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΠΠ)?
Π§ΡΠΎΠ±Ρ ΠΎΡΠ²Π΅ΡΠΈΡΡ Π½Π° ΡΡΠΎΡ Π²ΠΎΠΏΡΠΎΡ, Π½ΡΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡΡ Π΅ΡΠ΅ Π΄Π²Π° Π²Π°ΠΆΠ½ΡΡ ΠΏΡΠ°Π²ΠΈΠ»:
— ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π° ΡΠ°ΠΌ, Π³Π΄Π΅ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ.
— ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π° ΡΠ°ΠΌ, Π³Π΄Π΅ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ±ΡΠ²Π°Π΅Ρ.
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΈΡ ΠΏΡΠ°Π²ΠΈΠ» Π΄Π°Π²Π°ΠΉΡΠ΅ Π½Π°ΠΉΠ΄Π΅ΠΌ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΠ½ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ Π½Π°Π΄ΠΎ ΠΈΡΠΊΠ°ΡΡ ΡΡΠ΅Π΄ΠΈ ΡΠΎΡΠ΅ΠΊ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ², Ρ.Π΅. ΡΡΠ΅Π΄ΠΈ \(-13\), \(-11\), \(-9\),\(-7\) ΠΈ \(3\).
Π§ΡΠΎΠ±Ρ ΠΏΡΠΎΡΠ΅ Π±ΡΠ»ΠΎ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΡ ΡΠ°ΡΡΡΠ°Π²ΠΈΠΌ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ ΡΠ½Π°ΡΠ°Π»Π° Π·Π½Π°ΠΊΠΈ ΠΏΠ»ΡΡ ΠΈ ΠΌΠΈΠ½ΡΡ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΠΈΠ΅ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΠΎΡΠΎΠΌ ΡΡΡΠ΅Π»ΠΊΠΈ β ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΠΈΠ΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅, ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
\(-11\): ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ½Π°ΡΠ°Π»Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°, Π° ΠΏΠΎΡΠΎΠΌ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, Π·Π½Π°ΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π° ΠΏΠΎΡΠΎΠΌ ΡΠ±ΡΠ²Π°Π΅Ρ. ΠΠΏΡΡΡ ΠΏΠΎΠΏΡΠΎΠ±ΡΠΉΡΠ΅ ΡΡΠΎ ΠΌΡΡΠ»Π΅Π½Π½ΠΎ Π½Π°ΡΠΈΡΠΎΠ²Π°ΡΡ ΠΈ Π²Π°ΠΌ ΡΡΠ°Π½Π΅Ρ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ \(-11\) β ΡΡΠΎ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ.
\(- 9\): ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π° ΠΏΠΎΡΠΎΠΌ ΡΠ±ΡΠ²Π°Π΅Ρ β ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ.
ΠΡΠ΅ Π²ΡΡΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΠΎΠ±ΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ Π²ΡΠ²ΠΎΠ΄Π°ΠΌΠΈ:
— Π€ΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΡΠ°ΠΌ, Π³Π΄Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ ΠΈ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ ΠΏΠ»ΡΡΠ° Π½Π° ΠΌΠΈΠ½ΡΡ.
— Π€ΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΡΠ°ΠΌ, Π³Π΄Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ ΠΈ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ ΠΌΠΈΠ½ΡΡΠ° Π½Π° ΠΏΠ»ΡΡ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΡΠΎΡΠΌΡΠ»Π° ΡΡΠ½ΠΊΡΠΈΠΈ (12 Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΠΠ)?
Π§ΡΠΎΠ±Ρ ΠΎΡΠ²Π΅ΡΠΈΡΡ Π½Π° ΡΡΠΎΡ Π²ΠΎΠΏΡΠΎΡ, Π½ΡΠΆΠ½ΠΎ Π΄Π΅Π»Π°ΡΡ Π²ΡΠ΅ ΡΠΎ ΠΆΠ΅, ΡΡΠΎ ΠΈ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌ ΠΏΡΠ½ΠΊΡΠ΅: Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ Π³Π΄Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°, Π³Π΄Π΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π° ΠΈ Π³Π΄Π΅ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. Π§ΡΠΎΠ±Ρ Π±ΡΠ»ΠΎ ΠΏΠΎΠ½ΡΡΠ½Π΅Π΅ Π½Π°ΠΏΠΈΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ Ρ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ:
ΠΡΡ! Π’ΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² Π½Π°ΠΉΠ΄Π΅Π½Ρ.
ΠΠ·ΠΎΠ±ΡΠ°ΠΆΠ°Ρ Π½Π° ΠΎΡΠΈ ΡΠΎΡΠΊΠΈ Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ β ΠΌΠ°ΡΡΡΠ°Π± ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ ΡΡΠΈΡΡΠ²Π°ΡΡ. ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ°ΠΊ, ΠΊΠ°ΠΊ ΡΡΠΎ ΡΠ΄Π΅Π»Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π½ΠΈΠΆΠ΅. Π’Π°ΠΊ Π±ΡΠ΄Π΅Ρ ΠΎΡΠ΅Π²ΠΈΠ΄Π½Π΅Π΅ Π³Π΄Π΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ, Π° Π³Π΄Π΅ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ.
ΠΡΠΈΠΌΠ΅Ρ(ΠΠΠ). ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ \(y=3x^5-20x^3-54\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
1. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ: \(y’=15x^4-60x^2\).
2. ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΅Ρ ΠΊ Π½ΡΠ»Ρ ΠΈ ΡΠ΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
3. β 6. ΠΠ°Π½Π΅ΡΠ΅ΠΌ ΡΠΎΡΠΊΠΈ Π½Π° ΡΠΈΡΠ»ΠΎΠ²ΡΡ ΠΎΡΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ:
Π’Π΅ΠΏΠ΅ΡΡ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ \(-2\).
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ?
ΠΠ»ΠΎΠ±Π°Π»ΡΠ½ΡΠΉ ΠΈ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ
ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π΅ΡΠ»ΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΎΠ² ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΠ΅Ρ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎ ΡΠ°ΠΌΠΎΠ΅ Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ f(x), ΡΠΎ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅, Π½Π΅ Π½Π° Π²ΡΠ΅ΠΉ ΠΎΡΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ². ΠΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ ΠΎΠ±ΡΡΠ½ΠΎ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Ρ ΡΡΠ°Π·ΠΎΠΉ «Π½Π°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅». ΠΠ΄Π΅ΡΡ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Π΅ΡΡΡ, ΡΡΠΎ Π½Π°Π΄ΠΎ Π²ΡΡΠ²ΠΈΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ½Π° Π½Π΅ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ Π½Π° Π²ΡΡΠΌ ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅. ΠΠΎΠΈΡΠΊ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ°Π³ΠΎΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΠΊΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ.
ΠΠ°Π½ΠΎ y = f(x). Π’ΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅. f(x) ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡ Π΅Π³ΠΎ Π² ΡΠΎΡΠΊΠ΅:
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅
ΠΠΈΠΊ f(x) Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ ΠΈΠ»ΠΈ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΡΡΡΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ»Π°Π½ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ (ΠΈΠ»ΠΈ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅):
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π³ ΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ.
ΠΠ±Π»Π°ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ²
ΠΡΠΈΠΌΠΏΡΠΎΡΡ
ΠΡΠ»ΠΈ Π½Π° ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅ ΠΈΠΌΠ΅Π΅ΡΡΡ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°, ΠΎΠΊΠΎΠ»ΠΎ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ Ρ ΠΏΠ»ΡΡΠΎΠΌ, ΡΠΎ ΠΏΠΈΠΊ f(x) Π½Π° Π·Π΄Π΅ΡΡ Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ. Π Π΅ΡΠ»ΠΈ Π±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΡΡ, ΡΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ, ΡΠΎΠ²ΠΏΠ°Π» Π±Ρ Ρ ΡΠΎΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ ΠΈ ΠΎΡΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ².
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΏΠΎΠ΄ ΠΊΠ°ΠΊΠΈΠΌ ΡΠ³Π»ΠΎΠΌ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅. ΠΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π·Π΄Π΅ΡΡ ΡΠ±ΡΠ²Π°Π΅Ρ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠΈ f(x). ΠΡΡΡΠ΄Π° ΠΏΠΎΡΠ²Π»ΡΡΡΡΡ Π΄Π²Π° ΡΡΠ»ΠΎΠ²ΠΈΡ.
1) ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π² ΡΠΎΡΠΊΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π»ΠΈΠ±ΠΎ Π½ΡΠ»Π΅Π²Π°Ρ, Π»ΠΈΠ±ΠΎ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½Π°Ρ. ΠΡΠΎ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅, Π½ΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ. ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ y = x^3, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: y = 3*x^2. ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ «0», ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΠ±ΡΠ°ΡΠΈΡΡΡ Π² Π½ΡΠ»Ρ. ΠΠ΄Π½Π°ΠΊΠΎ, ΡΡΠΎ Π½Π΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ Π΄Π»Ρ y = x^3. Π£ Π½Π΅Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ², ΠΎΠ½Π° ΡΠ±ΡΠ²Π°Π΅Ρ Π½Π° Π²ΡΠ΅ΠΉ ΠΎΡΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ².
ΠΠΎΡΠ»Π΅ ΡΠΎΠ³ΠΎ ΠΊΠ°ΠΊ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ Π΄Π»Ρ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° Π±ΡΠ»ΠΈ Π½Π°ΠΉΠ΄Π΅Π½Ρ ΠΈΡ Π½Π°Π΄ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ f(x).
ΠΠΎΠ½ΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ²
ΠΡΠΈ ΠΏΠΎΠΈΡΠΊΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΎΡΡΠ΅Π·ΠΊΠ°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ y = 1/x Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [1; 7] ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ Π±ΡΠ΄Π΅Ρ Π² ΡΠΎΡΠΊΠ΅ x = 1. ΠΠ°ΠΆΠ΅ Π΅ΡΠ»ΠΈ Π²Π½ΡΡΡΠΈ ΠΎΡΡΠ΅Π·ΠΊΠ° Π΅ΡΡΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ, Π½Π΅Ρ Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ Π³Π°ΡΠ°Π½ΡΠΈΠΈ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΠΊΠΎΠ½ΡΠΎΠ² ΠΎΡΡΠ΅Π·ΠΊΠ° Π½Π΅ Π±ΡΠ΄Π΅Ρ Π±ΠΎΠ»ΡΡΠ΅ ΡΡΠΎΠ³ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
Π’Π΅ΠΏΠ΅ΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠ°Π²Π½ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΠΎΡΠΊΠ°Ρ ΡΠ°Π·ΡΡΠ²Π° (Π΅ΡΠ»ΠΈ f(x) Π·Π΄Π΅ΡΡ Π½Π΅ ΡΡΡΠ΅ΠΌΠΈΡΡΡ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ), Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈΠ· ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΈ Π±ΡΠ΄Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ ΠΏΡΡΠΌΠΎΠΉ.
ΠΠ»Ρ Π·Π°Π΄Π°ΡΠΈ Ρ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠΎΠΉ «ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ» Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΠ±ΡΠ°ΡΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΈΠ· Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° ΠΈ Π² ΡΠΎΡΠΊΠ°Ρ ΡΠ°Π·ΡΡΠ²Π°.