что такое кванты в физике
Квант (физика)
Квант (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения — и последнее называют квантом. Например, энергия монохроматического электромагнитного излучения угловой частоты может принимать значения
, где
— редуцированная постоянная Планка, а
— целое число. В этом случае
имеет смысл энергии кванта излучения (иными словами, фотона), а
— смысл числа́ этих квантов (фотонов). Именно в этом смысле термин квант был впервые введен Максом Планком в его классической работе 1900 года — первой работе по квантовой теории, заложившей ее основу.
Вокруг идеи квантования с начала 1900-х годов развилась полностью новая физическая концепция, обычно называемая квантовой физикой. Ныне прилагательное «квантовый» используется в названии ряда областей физики (квантовая механика, квантовая теория поля, квантовая оптика и т. д.). Широко применяется термин квантование, означающий построение квантовой теории некоторой системы или переход от её классического описания к квантовому. Тот же термин употребляется для обозначения ситуации, в которой физическая величина может принимать только дискретные значения — например, говорят, что энергия электрона в атоме «квантуется». Сам же термин «квант» в настоящее время имеет в физике довольно ограниченное применение. Иногда его употребляют для обозначения частиц или квазичастиц, соотвествующих бозонным полям взаимодействия (фотон — квант электромагнитного поля, фонон — квант поля звуковых волн в кристалле, гравитон — гипотетический квант гравитационного поля и т. д.), также о таких частицах говорят как о «квантах возбуждения» или просто «возбуждениях» соответствующих полей.
Кроме того, по традиции «квантом действия» иногда называют постоянную Планка. В современном понимании это название может иметь тот смысл, что постоянная Планка является естественной квантовой единицей измерения действия и других физических величин такой же размерности (например, момента импульса).
Некоторые кванты
Кванты некоторыех полей имеют специальные названия:
Разбираемся в физике частиц: 7) частицы – это кванты
Вот мы, наконец, и добрались до нашей цели: понять, что на самом деле представляют собой те штуки, что мы зовём «частицами», а именно – электроны, фотоны, кварки, глюоны и нейтрино. Всё, это, конечно же относится к современной науке. Стоит помнить, что в науке нет никаких гарантий того, что текущее понимание не будет в дальнейшем углублено.
Предыдущая статья описывала, что такое поля – объекты, обладающие значением в любой точке пространства и в любой момент времени (функции от пространства и времени), удовлетворяющие уравнению движения, и физически осмысленные в плане того, что они способны переносить энергию из одного места в другое и влиять на физические процессы Вселенной.
Мы узнали, что большинство знакомых нам полей описывают свойство среды, такой, как высота верёвки или давление в газе. Но также мы узнали, что в эйнштейновской теории относительности существует особый класс полей, релятивистские поля, не требующие среды. Или, по крайней мере, если у них и есть среда, она весьма необычная. Ничто в уравнениях поля не требует наличия какой-то среды и не говорит о том, какое свойство этой среды описывают релятивистские поля.
Так что пока мы будем рассматривать релятивистские поля как элементарные физические объекты вселенной, а не как определённые свойства неизвестной среды. Будет ли среди физиков поддерживаться такая точка зрения и дальше – покажет время.
Мы рассматривали два класса релятивистских полей, и теперь мы изучим их чуть подробнее. Они удовлетворяют либо уравнению движения Класса 0, где cw = c (где c – универсальный предел скорости, часто называемый «скоростью света»).
Или уравнениям движения Класса 1, где cw=c
В предыдущей статье показано, что μ – минимальная частота волны в таких полях. В этой статье мы будем обозначать её νmin.
Почему универсальный предел скорости часто называют скоростью света? Волны с уравнением класса 0 перемещаются со скоростью cw. Свет (общий термин, обозначающий электромагнитные волны любой частоты), перемещаясь через пустое пространство, удовлетворяет релятивистскому уравнению класса 0, поэтому волны света (и волны любых релятивистских полей, удовлетворяющих релятивистскому уравнению класса 0) перемещаются со скоростью c.
Более того, в той же статье мы видели, что если у поля класса 1 есть волна с амплитудой А, частотой ν, длиной волны λ и равновесным состоянием Z0, то уравнение движения требует, чтобы частота и длина волны были связаны с величиной μ = νmin, появляющейся в уравнениях, формулой
Это пифагорова формула – её можно при желании представить в виде треугольника, как на рис. 1. Минимальная частота любой волны равна νmin, а присвоение ν = νmin (и, следовательно, при λ → ∞), соответствует сжатию треугольника до вертикальной линии (рис. 1, внизу). Также можно получить схожее соотношение класса 0, сделав μ = νmin нулевым. Потом можно извлечь квадратный корень, и получить
Это уже треугольник, сжатый до горизонтальной линии (рис. 1, справа). В этом случае минимальная частота равна нулю. Поле может колебаться как угодно медленно.
Рис. 1
На А никаких ограничений нет. Но это оттого, что мы игнорируем квантовую механику. Пришло время изучить релятивистские квантовые поля.
Релятивистские квантовые поля
Реальный мир – квантово-механический, поэтому амплитуда А не может быть любой. Она принимает дискретные значения, пропорциональные квадратному корню из n, неотрицательного целого числа, обозначающего количество квантов колебаний в волне. Хранящаяся в волне энергия равна
Где h – постоянная Планка, обязательно появляющаяся там, где квантовая механика имеет значение. Иначе говоря, энергия, связанная с каждым квантом колебаний, зависит только от частоты колебаний волны, и равна
Это соотношение впервые было предложено, конкретно для волн света, Эйнштейном в 1905 году, в его объяснении фотоэлектрического эффекта.
Выглядит знакомо. Мы уже знаем, что любой объект в эйнштейновской теории относительности должен удовлетворять уравнению, описывающему его энергию, импульс и массу:
Первое уравнение впервые появилось в работе Луи Де Бройля в 1924 году – почти через 20 лет после Эйнштейна. Почему это заняло так много времени? Я не знаю.
Рис. 2
Имеет ли это смысл? Как мы отмечали, в релятивистские поля класса 0 входят и электрические поля, а их волны – это электромагнитные волны, то есть, свет. Версия формулы (*), которую мы получаем для квантов класса 0, такая же, как для полей класса 1, у которых μ = νmin приравнивается к нулю – то есть, m = 0. Извлечём квадратный корень, и получим
Или Эйнштейновское уравнение для безмассовых частиц. А кванты электромагнитных волн (включая все виды света: видимый, ультрафиолет, инфракрасный, радиоволны, гамма-излучение, и т.п., отличающиеся только частотой, и, следовательно, энергией квантов) и правда будут безмассовыми частицами – как только мы применим указанную выше пару уравнений (**) и (***). Это фотоны.
Если мы хотим понять, откуда берётся масса частицы, нам нужно понять, что определяет νmin, и почему вообще существует минимальная частота. Для таких частиц, как электроны и кварки, это полностью неясно, но известно, что в этом важную роль играет поле Хиггса.
Заключим: частицы природы – это кванты релятивистских квантовых полей. Безмассовые частицы – это кванты волн полей, удовлетворяющих уравнению класса 0. Обладающие массой соответствуют полям уравнения класса 1. Всяких деталей существует множество, но этот факт – одно из основных фундаментальных свойств нашего мира.
Действительно ли эти кванты ведут себя как частицы?
Мы представляем себе частицы, как частички пыли или песчинки. Кванты в этом смысле частицами не являются – это волны, у которых для определённой частоты есть минимальные энергия и амплитуда. Но они ведут себя так похоже на частицы, что нас можно простить за использование слова «частица» в их описании. Посмотрим, почему так.
Если поднять волну в воде, и позволить ей пройти через камни, лежащие неглубоко под поверхностью, часть волны перейдёт линию камней, а часть отразится, как показано на рис. 3. То, какая именно часть волны перейдёт линию, зависит от формы камней, их близости к поверхности, и т.п. Но суть в том, что часть волны передаётся через камни, а часть отразится. Часть энергии волны пойдёт в том же направлении, часть пойдёт в обратном.
Рис. 3
Но если вы отправите один фотон в сторону отражающего стекла, этот фотон либо пройдёт сквозь него, либо отразится (рис. 4). Точнее сказать, если вы измерите поведение фотона, то узнаете, отразился он или передался. Если не измерите – невозможно будет сказать, что произошло. Добро пожаловать в болото квантовой механики. Фотон – это квант. Его энергию нельзя поделить на часть, которая прошла через стекло, и часть, которая отразилась – потому что тогда с каждой стороны будет меньше одного кванта, что запрещено. (Мелкий шрифт: стекло не меняет частоту фотона, поэтому энергию нельзя разделить между двумя или более квантами меньших частот). Так что фотон, хотя это и волна, ведёт себя как частица в этом случае. Он либо отражается от стекла, либо нет. Отражается он, или нет – этого квантовая механика не предсказывает. Она даёт только вероятность отражения. Но она предсказывает, что, что бы там ни произошло, фотон будет путешествовать как единое целое и сохранять свою идентичность.
Рис. 4
А что будет с двумя фотонами? Это зависит. К примеру, если фотоны испущены в разное время из разных мест, то наблюдатель увидит два кванта, разделённых в пространстве, и, вероятно, двигающихся в разных направлениях (рис. 5). У них могут быть и разные частоты.
Рис. 5: независимые кванты
В особом случае, когда два фотона испускаются совместно и идеально синхронно (как в лазерах), они ведут себя, как показано на рис. 6. Если мы отправим комбинацию из двух фотонов на стекло, то сможет случиться не две, а три вещи. Либо оба фотона пройдут через стекло, либо оба отразятся, либо один пройдёт, а другой отразится. От стекла отразятся 0, 1 или 2 фотона – других вариантов нет. В этом смысле кванты света опять ведут себя, как частицы, как маленькие мячики – если бросить два мяча в решётку, в которой есть отверстия, то от решётки смогут отразиться 0, 1 или 2 мяча, и через отверстия пройдут 0, 1 или 2 мяча. Не существует возможности, в которой от решётки отразится 1,538 мяча.
Рис. 6
Но это фотоны, которые, не имея массы, обязаны двигаться со скоростью света и E = p c. Что насчёт частиц с массой, вроде электронов? Электроны – это кванты электрического поля, и, как и фотоны, их можно испускать, поглощать, отражать или передавать как единое целое. У них есть определённые энергия и импульс, , где me — это масса электрона. Отличие электронов от фотонов в том, что они движутся медленнее света, поэтому могут и покоиться. Зарисовка такого события (в квантовой механике из-за принципа неопределённости ничто не может быть по-настоящему статичным) стационарного электрона дана на рис. 7. Это волна минимальной частоты, полученной присвоением длине волны очень большого, практически бесконечного, значения. Поэтому пространственная форма волны на рис. не демонстрирует никаких извилин – она просто колеблется во времени.
Рис. 7
Так что, да, на самом деле кванты ведут себя очень похоже на частицы, и потому называть электроны, кварки, нейтрино, фотоны, глюоны, W-частицы и частицы Хиггса «частицами» не будет катастрофическим обманом. Но слово «квант» подходит для этого лучше – потому что это именно кванты.
Чем фермионы и бозоны отличаются друг от друга
• Все элементарные частицы делятся на фермионы и бозоны.
• Фермионы (включая электроны, кварки и нейтрино) удовлетворяют принципу запрета Паули – два фермиона одного типа не могут делать одно и то же.
• Бозоны (включая фотоны, W и Z частицы, глюоны, гравитоны и частицы Хиггса) другие: два или более бозонов одного типа могут делать одно и то же.
Именно поэтому из фотонов можно делать лазеры – поскольку они бозоны, они могут находиться в одинаковом состоянии и порождать мощный луч одного света. Но лазер нельзя сделать из электронов, являющихся фермионами.
Как проявляет себя это различие на языке математики? Оказывается, что приводимые мною формулы подходят для бозонов, а для фермионов их нужно изменить – слегка, но с большими последствиями. Для бозонов у нас будет:
Что означает, что энергия каждого кванта равна h ν. Это подразумевает, что кванты-бозоны могут делать одно и то же; когда n больше 1, у бозонного поля волна будет состоять из нескольких квантов, колеблющихся и движущихся совместно. Но для фермионов:
Энергия одного кванта всё ещё равна h ν, так что всё обсуждение частиц и их энергий, импульса и масс остаётся в силе. Но количество квантов у электронной волны может равняться только 0 или 1. Десять электронов, в отличие от десяти фотонов, нельзя организовать в одну волну большей амплитуды. Поэтому не существует фермионных волн, состоящих из большого количества фермионов, колеблющихся и движущихся совместно.
Квант, из чего он состоит
1. Зачем нам нужны знания о кванте?
Отвечу на вопрос вопросом? А зачем нам нужны знания о кирпиче? Представьте, что мы ничего не знаем о кирпиче. Ни из чего он состоит, ни как его сделать, ни какие его свойства и другое. Представьте, что кирпич вдруг исчез на всей земле. Окажется, что разрушатся почти все здания на земле, вся инфраструктура, вся промышленность, разрушатся доменные печи, не будет промышленного металла, исчезнут даже жилища эскимосов, сделанные из ледяных кирпичей и так далее. Вы скажете, что это фантастика? Да это фантастика, но только в том, что кирпич вдруг исчезнет, а остальное реальность. Так и будет. Это легко проверить на любом объекте, содержащим кирпичи. Вот обычный строительный кирпич и можно назвать квантом. Но квантом чего? Квантом кирпичей. Естественно, что он рукотворный и поэтому его минимальная величина не строго определена. Но представлять, или тем более производить, строительные кирпичи меньше спичечного коробка, кажется не совсем правильным.
К нашему удивлению так устроена и вся Вселенная. Она состоит из маленьких кирпичиков, о которых знают почти все. Это атомы и молекулы. Воды может быть сколько угодно, но только не меньше одной молекулы. Молекула H2O является квантом воды (кирпичик воды). Из этих кирпичиков строятся всевозможные водоемы, ледники, тучи и тому подобное). Раздробите молекулу воды и это уже не вода. Атом Fe является квантом железа. Меньше атома железа, такого металла, как железо, не бывает. То же и для других элементов.
А по отношению к атомам и молекулам квантами являются электрон, протон и нейтрон. Не может атом натрия содержать в себе половинку электрона или три четверти нейтрона. Все должно содержать свою порцию, хотя и не строгую по количеству, но обязательно строгую по устройству.
А еще глубже что? То, что протоны и нейтроны состоят из кварков и глюонов ученые говорят давно, но полагают, что кварк один не может существовать и поэтому его никак нельзя обнаружить. Невозможно разорвать этот клей – глюон. Об электроне только говорят, что у него есть масса, заряд и спин. Дальше идет разрыв в понимании природы. Но появляются понятия и объекты: квант и фотон. Как мы увидим дальше это и есть кирпичики энергии, из которых и строится наша Вселенная. Зная об этих кирпичиках все и научившись их строить, мы сможем решать любые задачи, ибо это есть основа “всего”, что пытаются решить при помощи математики.
2. Что знает современная наука о кванте?
О квантах рассказано много, но далеко не все.
Термин квант был впервые введен Максом Планком в1900 году. Он был определен как некая минимальная частичка энергии. Меньшей порции энергии в данном виде в природе наблюдаться не может. Большие порции энергии в природе могут быть любой величины, но они будут обязательно содержать целое число минимальных порций энергии. Величина порции энергии, согласно предположению Планка, описывается частотой кванта. Если частота кванта 190, то и величина энергии этой порции пропорциональна этой частоте и т.д. Эта зависимость математически описывается соотношением: E = hv. Здесь h постоянная Планка. Квант двойной частоты (380) должен обладать удвоенной энергией и т.д.
Вот примерно такие сведения о кванте можно почерпнуть из любой энциклопедии. Это сведения более чем столетней давности. А какие же новые сведения о кванте появились за сто с лишним лет? Стал ли более понятен нам квант? Почему квант может быть только целым? Что и как его генерирует? Каковы его составляющие? Зачем он природе и как он работает в природе? На эти и другие вопросы пока ни классическая, ни альтернативная наука ответа не дает и вообще эти вопросы широко не обсуждаются. Даже гипотез по этим явлениям не слишком много.
Если Вы попробуете в сети Интернет найти информацию по ссылке “квант”, то Вы получите множество статей, в которых будет рассказано и ядерном гамма-резонансе, где действующими объектами являются гамма-фотоны или гамма-лучи (Эффект Мёссбауера). Узнаете о том, что внутренняя температура мегоскопических тел большой массы определяется квантовыми свойствами гравитирующего тела (Температура гравитационного тела), и о квантовании скоростей в виде кванта циркуляции скорости (КЦС), или квантового вихря, являющимся основным законом природы, который работает на всех уровнях материи нашей Вселенной (что верно). И еще много, чего другого.
Если заглянете в Википедию, то узнаете, что кванты некоторых полей имеют специальные названия:
• фотон — квант электромагнитного поля;
• глюон — квант векторного (глюонного) поля в квантовой хромодинамике (обеспечивает сильное взаимодействие);
• гравитон — гипотетический квант гравитационного поля;
• бозон Хиггса — квант поля Хиггса;
• фонон — квант колебательного движения кристалла.
• хронон — гипотетический квант времени
В других источниках информация о кванте будет примерно такой же. Но, к сожалению, вам нигде не удастся найти ясного объяснения, чем отличаются или в чем совпадают, например, фотон и глюон, или гравитон и фотон и т.п. А ведь все эти понятия объединяет понятие квант, хотя и с несправедливой добавкой “гипотетический” у гравитона. Чтобы все эти понятия упорядочить следует понять, что же собой представляет квант энергии.
3. Какие претензии к классическому пониманию кванта?
Хотя понятие кванта, введенное Планком, относилось к электромагнитному излучению и поэтому этот квант представлял энергию, мудрецы ученые размыли это понятие до чего-то маленького, какой-то части чего-то. Даже для того, что вообще не относится к понятию энергии. Например, хронон. Квантуют все поля для того, чтобы можно их описывать математикой. Появилась целая наука – квантовая теория поля. И это обесценивает понятие кванта.
Выше упоминалось, что энергия кванта зависит от его частоты. Обратимся к минимальному кванту. Как следует трактовать данную частоту? Что это одно колебание? Или несколько колебаний? Если несколько, то сколько? Какая амплитуда этих колебаний? Амплитуда пока для нас безразлична, а количество колебаний мы можем выбрать только первое или второе. Минимальный квант – это одно колебание или если несколько, но обязательно фиксированное количество колебаний, в противном случае энергия кванта неопределенна. Монохроматическая волна обладает бесконечной энергией. Именно это заставило Планка проквантовать излучение, чтобы избежать ультрафиолетовой катастрофы. Мы будем предполагать, что минимальный квант это одно колебание.
Примерно так, как изображено на Рис. 1.
Квант а – одиночный квант, точнее с одной порцией энергии, квант б – квант двойной энергии и квант в – квант четверной энергии. Ясно, что соотношением E = hv данную графику описать невозможно. Площади: а = 2б = 4в равны, а не равны между собой а, б и в. Чтобы б стало равным а надо либо увеличить в два раза амплитуду А, либо добавить еще один блок б, либо поменять энергоемкость субстрата энергии а в два раза при генерации кванта б. Нам известно, что энергия кванта представлена электрическим и магнитным полями. Несомненно, чем больше напряженность электрического и магнитного полей, тем больше они несут энергии. Если квант б будет иметь амплитуду в два раза большую, чем квант а, то и его энергия может быть в два раза больше. А как быть с квантом частоты в миллион Герц? Слишком большой диапазон напряженностей, их очень сложно генерировать, тем более что нужна очень высокая точность. Еще больше экзотично выглядит смена качества субстрата кванта. Если допустить, что квант а содержит субстрат в виде дров, то квант б должен содержать субстрат, примерно, в виде антрацита, в кванте в должен быть гептил или аналог водорода и кислорода, а еще дальше должно содержатся нечто подобное урану и т.д. Всеми этими способами сложно получить пропорциональное увеличение энергии. Самое приемлемое это просто повторить процесс излучения, точно такого же одиночного кванта, тогда мы получим квант двойной энергии.
Из этих рассуждений следует, что частотой определять энергию кванта проблематично. И второе предположение, говорящее не в пользу общепринятой формулы энергии кванта, это трудность построения модели генерации квантов, различной частоты. Пока наука не может предложить хотя бы какой-нибудь модели генерации такого широкого спектра электромагнитного излучения именно кванта.
Эти рассуждения подтверждает и опыт. Самое очевидное это умформеры – преобразователи частоты. Если такие умформеры посадить на один вал и за вращать какой-то силой, то на их выходах можно получить одинаковое по величине напряжение, но с различной частотой. И если частоты на умформерах будут отличаться в 5 раз, то мы все равно не получим из них мощностей, различающихся в 5 раз. С каждого умформера можно будет получить максимальную мощность, примерно равную мощности вращающего вал двигателя. Или проще. Обороты двигателя трактора мощностью в 100 сил равны 1500 оборотов в минуту, а обороты двигателя легкового автомобиля равны 6000 оборотов в минуту, но это не значит что мощность легковушки равна 400 сил.
4. Из чего состоит квант энергии?
Если исходить из того, что понятие кванта энергии ввел Планк из опытов по излучению абсолютно черного тела, то следует признать, что квант является электромагнитной волной, представляющей собой взаимосвязанную совокупность электрического поля двух полярностей и магнитного поля двух полярностей. Все это верно, но дальше возникли вопросы: как эти элементы составляют определенную конструкцию и как они движутся. Предположили, что эти субстраты, переливаясь из одного вида в другой, движутся в пространстве. Если в какой-то миг впереди оказывается, например, электрическое поле, то оно начинает наводить в виде вихря магнитное поле. Можно сказать, впереди электрического поля по синусоиде растет магнитное облако, примерно, в виде шара. Этот вихрь занимает определенную часть пространства. Затем этот вихрь, с некоторого места своего формирования, начинает индуцировать электрический вихрь противоположного знака и т.д.
Данный вид движения был предложен еще Максвеллом. Зная опыты, Фарадея и Ампера он предположил, что электромагнитная субстанция распространяется волной. И он все это хорошо описал своими знаменитыми уравнениями. Только как представляется это автору в этих уравнениях, вернее выводах, получаемых из них, был один небольшой изъян.
В то время все опыты проводились с зарядами и током в проводниках. Потенциал располагался вокруг заряда, магнитное поле концентрическими окружностями действовало вокруг проводника с током. Вероятно, это и дало возможность Максвеллу предположить, что электромагнитная волна распространяется от возбудителя в виде сферы или окружности, подобно волнам на воде от брошенного камня. После того как поняли, что электромагнитный квант излучается и поглощается порциями возникла некоторая коллизия.
Допустим, квант излучился в виде сферы, и он может быть поглощен каким-то другим объектом. Имеем квант в виде сферы, внутри сферы, предположим электрон, который излучил этот квант, а где-то на сфере появился электрон, пытающийся поглотить данный фотон. Значит, поглощающий электрон должен стянуть к себе всю электромагнитную составляющую кванта. Подобно тому, как стягивается проткнутый воздушный шарик, только он стягивается не в месте прокола, а, в идеале, с противоположной стороны. Это “схлопывание” волновой функции ученые назвали редукцией, и дело с квантом, как будь то, прояснилась. О теории Вальтера Ритца никто не стал и вспоминать. Достаточно было того, что вокруг свечи, костра или любого другого источника света или тепла, фотоны распространяются равномерно и по сфере, и по радиусу. Представить такое распространение в виде дискретных частиц казалось мало возможным, а волна – это совсем другое дело. Мало кого смущало то, что свет, проникающий в щелочку ставни, распространяется лучом, свет от фонарика также распространяется в виде луча. Можно ли это представить в виде фрагментов сферы или в виде сжатой рефлектором или щелью сферы? Часть сферы не может быть, ибо это будет не квант, а что-то другое или другой квант. Если предметы деформируют квант, то описать его проявления представляется сложной задачей.
5. Устройство электромагнитного кванта
Многие вероятно замечали, что когда смотришь на треснутое стекло, на которое падает солнечный свет, то видишь лучики света, отраженные этой трещинкой. Лучики распространяются прямо и являются хаотически разорванными линиями. Похожими на разлетающиеся мелкие иголочки различной длины.
Такое распространение света больше похоже на движение дискретных частиц, чем на распространение волны. Несомненно, что движение дискретных частиц можно организовать в виде волнового движения, о чем будет идти разговор ниже. Сейчас мы будем исходить из того что частица квант представляет собой частицу электромагнитного излучения.
Схематически квант, назовем его электромагнитным отрицательным, можно изобразить примерно в таком виде (Рис. 2.).
Вот эти четыре бусинки-вихри (отрицательный-электрический, отрицательный-магнитный, положительный-электрический и положительный-магнитный,) и есть одиночный минимальный электромагнитный квант энергии.
Эту порцию нельзя уменьшить, выбросив хоть одну из его составляющих – квант умрет. Похоже, что нельзя изменять эти составляющие и пропорционально. В данной среде, а именно в вакууме, он либо станет неустойчив, либо потеряет свои качества. Вполне возможно, что в этом явлении работает закон диалектического материализма – переход количества в качество. Только такое количество энергии, и только такое, приобретает свойство материи передвигаться самостоятельно.
Можно также предположить, что электрическая-отрицательная составляющая кванта, из-за различной ориентации спина электрона, может иметь ту или иную поляризацию. Такие кванты будут различно взаимодействовать с электронами. Электрон с одним спином будет поглощать, и излучать кванты данной ориентации, а кванты другой ориентации будут ему безразличны. Это явным образом проявляется в таких явлениях как хиральность, прохождении света через поляризаторы.
Квант может быть не только электромагнитным отрицательным, но и электромагнитным положительным квантом, то есть он организован так, что его электрическая-положительная составляющая (условно) будет впереди или сверху, то есть именно этим потенциалом квант начинает взаимодействовать с внешним миром.
Примерно так, как на Рис. 2а.
Такой квант может генерироваться не электроном, а позитроном. Совокупность таких квантов организуют позитрон, который имеет положительный потенциал, так как именно положительная составляющая кванта оказывается сверху частицы.
6. Взаимодействие квантов.
Когда электрон и позитрон сближаются, они притягиваются друг к другу и “разматывают” друг друга. Их поля, каждый из вихрей, взаимодействуют друг с другом, и могут получиться следующие состояния.
Если вихрь электрического отрицательного кванта (электрона) будет иметь правую ориентацию, вихрь электрического положительного кванта (позитрон) будет иметь левую ориентацию, то отрицательный и положительный вихри будут направлены навстречу друг другу. В этом случае поля будут уничтожать, точнее, компенсировать, друг друга, превращаясь в массу, которая в переделах наших знаний не имеет никакого заряда. Можно сказать, что вихри уничтожают друг друга, попросту говоря, кванты “горят”, поэтому высвобождается их внутренняя энергия. Золой этого “горения” может быть не релятивистская нейтральная, точнее без зарядная масса (в нейтральной массе заряды компенсированы друг другом или превращены в эту массу). Это знакомая нам аннигиляция. Не это ли бозон Хиггса, который ищут при помощи коллайдера? Конечно, заряды никуда не делись: они либо превратились в массу, которую когда-то мы научимся превращать в заряды обратно, либо заряды слились с такой силой, что мы их не можем разорвать. Тем более, что о полях у нас пока нулевые знания. Хотите, экстраполируйте это явление в черную дыру, именно из такой без зарядной массы она и состоит.
Если вихрь электрического отрицательного кванта (электрона) будет иметь правую ориентацию и вихрь электрического положительного кванта (позитрон) будет иметь правую ориентацию, то отрицательный и положительный вихри будут следовать друг за другом или двигаться параллельно. То же и для левой ориентации квантов. В этом случае кванты не могут распасться на отдельные два кванта, так как их составные части, скажем, “+” одного кванта находится против “–” другого кванта (по каждому вихрю), и они притягиваются друг другу. Но и слиться в единое образование они не могут, так как скорости их движения предельны и равны. Они движутся синфазно в отличие от процесса аннигиляции, где вихри движутся противофазно. Такие параллельно движущиеся кванты между собой практически не взаимодействуют, но зато они могут в полной мере взаимодействовать с внешним миром. Но это взаимодействие ни к чему не приводит, так как любое воздействие одного вихря на внешний объект, сразу компенсируется действием противоположного вихря. То есть такие скрытые пары никак себя не проявляют.
Возможно, что такие скрытые пары и составляют море Дирака или по сути скрытую или темную энергию, которой большинство во вселенной. Несомненно, что эти пары при соответствующих условиях образуются и снова при каких-то условиях обратно распадаются на пару частиц. Эти частицы можно было бы назвать виртуальными, но ведь это объективно существующие частицы.
В 1928 году Дирак составил уравнение описывающее движение электрона и получил два решения. Одно с положительной энергией, которое соответствовало электрону, а второе решение соответствовало частице с отрицательной энергией. Это была античастица, которую открыл американский физик Андерсон в 1932 году и назвал ее позитроном. Дирак даже предположил, что физический вакуум заполнен этой отрицательной энергией, которую мы не замечаем, как до поры до времени, не замечаем воздух. С этим сложно согласится, так как элементы с отрицательной энергией (позитроны) будут отлавливать электроны, и превращаться в массу (черную дыру). А вот скрытые пары могут представлять собой темную материю.
Электрические и магнитные поля в кванте могут составляться и по-другому. Впереди могут оказаться не электрические, а магнитные поля.
Кванты могут иметь конфигурацию с внешней магнитной составляющей (Рис. 2б и Рис. 2в).
Могут ли такие кванты конденсироваться в устойчивые частицы с одним магнитным полем на верху, мы не знаем, по крайней мере, пока такие частицы не обнаружены, но в некоторые квазистационарные образования такие кванты объединяться могут.
С. В. Адаменко и В. И. Высоцкий в работе Здесь(Поверхность, 2006, №3, с. 84-92.) пишут о некой частице, которая относительно легко походит через алюминий и движется в одном направлении в магнитном поле. Это очень похоже на монополь.
Кванты с внешней магнитной составляющей генерируются довольно просто. Потоки таких квантов называются торсионными полями. Есть генераторы, которые умеют это делать и есть люди, которые умеют делать такие генераторы. Только люди не понимают, что они делают, их за это их пинают остальные, ничего не понимающие в этом явлении, и не признают их изобретения. К так таким людям относится инженер-исследователь А. А. Шпильман, разрабатывающий конструкции торсионных генераторов.
Такие же конструкции существуют у А. Е. Акимова и Г. И. Шипова.
Масса исследователей облучают излучением таких генераторов все и вся и наблюдают, что же из этого получится. Но ничего сверхъестественного не наблюдается.
Косвенным подтверждением наличия таких квантов могут служить исследования Ю. В. Рябова[1] о стабильности бета-распада атомных ядер, такие же исследования по бета-распаду проводил А. Г. Пархомов[2] и другие. У каждого из них получалось, что неизвестное излучение из космоса влияло на скорость распада ядер. Причем эти влияния коррелировались с астрономическими явлениями, то есть явно что-то приходило из космоса и, хотя это излучение экранировали облака, оно проходило через алюминий и стекло.
Исследователи Томского политехнического института С. Г. Еханин, Б. В. Окулов, Г. С. Царапкин, В. И. Лунёв[3] обнаружили влияние быстровращающегося тела (гиромотор) на счетчик Гейгера, у него искажается форма гистограммы распределения скорости счета. И еще много других экспериментальных опытов указывают на существование не понятного торсионного поля.
Возможно это и так, но все эти эффекты можно объяснить без привлечения сверхнеобходимого (Оккама). У нас есть электрическое и магнитное поля, вот из них и стройте конструкции, подтверждающие эти явления. Построить что-то с уже существующего материала легче, чем возьми то, не знаю, что и построй это. Этим можно объяснить и ход низкоэнергетических ядерных реакций. Если в горячей точке аннигилировать несколько пар электрон-позитрон, то требуемая энергия получится сразу.
Такие кванты надо бы назвать магнитоэлектрическими, а не торсионными. Поле, образованное магнитоэлектрическими квантами, легко проникает через вещество с электромагнитным полем. И поле можно назвать магнитоэлектрическим.
Возможно, что и магнитоэлектрических квантов существует 4 вида с учетом поляризации.
В общем, из этих восьми видов форм объединения электрического и магнитного полей можно построить все, в том числе и живую материю.
Можно также предположить, что вне зависимости, как организован квант, он все равно содержит одно и то же количество энергии.
В заключение можно сказать, что:
Квант – это порция электромагнитной энергии, величина которой фиксирована и возможно равна постоянной Планка.
Исходя из формулы E =hv, можно предположить, что Макс Планк по какой-то причине сделал исключение для электромагнитной энергии, связав ее с частотой. В других видах энергии ничего подобного не наблюдается. Если в водохранилище добавить воды, то потенциальная энергия всей воды увеличится, но другие ее параметры не изменятся. Просто увеличится количество молекул воды. Если к ведру воды падающей на лопасти турбины добавить еще ведро воды, падающей с такой же высоты, то качество кинетической энергии будет таким же, ни что не увеличит свою частоту колебаний. Скорости и массы молекул будут все время одинаковыми. Если соединить два объема одного и того же пара (давление, температура), то частота колебаний молекул не изменится. То же с атомной энергией, а не только с двумя телегами дров. А почему должна измениться частота электромагнитной энергии, если сложить два одинаковых ее куска? Если кванты или фотоны имеют различную частоту, то они ничего не смогут делать совместно. Сто человек не сможет раскачать качели, если они будут воздействовать на них с различной частотой. У качелей одна резонансная частота. А чтобы построить морфологию живого при различных частотах у квантов и говорить не стоит. Никакой когерентности в этом случае добиться невозможно.
Поэтому в формуле Планка лучше было бы v заменить на n или k и просто суммировать эти маленькие порции последовательно в виде элементарных фотонов. Эти все виды элементарных фотонов генерируются одним электроном при различных режимах ускорения. А элементарные фотоны от различных электронов суммируются в остальные фотоны. И не следует бояться того, что противофазные элементарные фотоны, попадая в противофазы, будут уничтожать друг друга. Во-первых, в основном каждый элементарный фотон и рождается под действием другого фотона или суммы нескольких фотонов. Во-вторых, эта синфазность фиксируется в спине электрона. Не будь этого, не было бы фотонов видимого спектра и не было бы нас.
О том как поля взаимодействуют в кванте и как квант движется рассказано в статье «Квант энергии,как устроен и как движется».