что такое квадрат площадь
Квадрат, свойства и формулы, площадь и периметр
Квадрат, свойства и формулы, площадь и периметр.
Квадрат – это правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.
Квадрат (понятие, определение), диагональ квадрата:
Квадрат – это правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.
Квадрат – это четырехугольник, имеющий равные стороны и углы.
Все углы квадрата прямые. Каждый из них прямой и равен 90°.
Таким образом, все квадраты отличаются друг от друга только длиной стороны.
Рис. 2. Квадрат и диагонали квадрата
Диагональ квадрата – это отрезок, соединяющий две вершины противоположных углов квадрата. AC и BD – это диагонали квадрата.
Квадрат – это равносторонний прямоугольник.
Квадрат – это ромб с прямыми углами.
Свойства квадрата:
1. Длины всех сторон равны.
2. Противоположные стороны квадрата параллельны.
3. Все углы квадрата прямые. Каждый из них равен 90°.
4. Сумма углов квадрата равна 360 градусам.
∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°.
5. Диагонали квадрата равны между собой.
6. Диагонали квадрата взаимно перпендикулярны.
7. Диагонали квадрата точкой пересечения делятся пополам.
8. Угол между диагональю и стороной квадрата равен 45 градусам.
9. Диагонали квадрата являются биссектрисами углов и делят углы пополам.
10. Каждая из диагоналей делит квадрат на два равных равнобедренных прямоугольных треугольника.
11. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности.
Формулы квадрата. Площадь квадрата. Периметр квадрата:
Пусть a – длина стороны квадрата, d – диагональ квадрата, R – радиус описанной окружности квадрата, r – радиус вписанной окружности квадрата, P – периметр квадрата, S – площадь квадрата.
Формула диагонали квадрата:
,
,
,
,
.
Формула радиуса вписанной окружности квадрата:
Радиус вписанной окружности квадрата равен половине его стороны.
.
Формула радиуса описанной окружности квадрата:
.
Формула периметра квадрата:
,
,
.
Формула площади квадрата:
,
,
,
,
.
Как определить площадь квадрата
Формула нахождения площади квадрата
Квадрат — это фигура, которая является частным случаем прямоугольника, из-за чего можно заметить схожесть некоторых алгоритмов. Способ вычисления всегда зависит от исходных данных. Чтобы узнать площадь квадрата, необходимо знать специальные формулы, рассмотрим пять из них.
Если известна длина стороны
Умножаем ее на то же число или возводим в квадрат.
Эту формулу проходят в 3 классе. Остальные формулы третьеклассникам знать пока не нужно, но они пригодятся ученикам 8 класса.
Если нам дана диагональ
Возводим ее в квадрат и делим на два.
S = d 2 : 2, где d — диагональ.
Если известен радиус вписанной окружности
Умножаем его квадрат на четыре.
Если у нас есть радиус описанной окружности
Возведем его в квадрат и умножим на два.
У нас есть дополнительные занятия по математике для учеников с 1 по 11 классы — записывайтесь!
Если есть периметр
Мы должны возвести его в квадрат и разделить на 16.
S = Р 2 : 16, где Р — это периметр.
Периметр любого четырехугольника равен сумме длин всех его сторон.
Популярные единицы измерения площади:
S квадрата. Решение задач
Мы разобрали пять формул для вычисления площади квадрата. А теперь давайте потренируемся!
Задание 1. Как найти площадь квадрата, диагональ которого равна 90 мм.
Воспользуемся формулой: S = d 2 : 2.
Задание 2. Окружность вписана в квадрат. Найдите площадь квадрата, если радиус окружности равен 24 см.
Если окружность вписана в квадрат, то сторона квадрата равна диаметру:
a = d
Диаметр окружности равен двум радиусам:
d = 2r
Получается, что сторона равна двум радиусам:
a = 2r
Используем формулу нахождения площади квадрата через сторону:
S = a 2
Так как из пункта 3 мы получили, что сторона равна двум радиусам, то формула площади квадрата примет вид:
S = (2r) 2
S = 4r 2
Теперь подставим значение радиуса в формулу площади:
S = 4 × 24 2 = 2304 см 2
Квадрат — определение и свойства
Квадрат — это прямоугольник, у которого все стороны равны.
Можно дать и другое определение квадрата:
квадрат — это ромб, у которого все углы прямые.
Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.
Перечислим свойства квадрата:
Разберем несколько простых задач на тему «Квадрат». Все они взяты из Банка заданий ФИПИ.
Очевидно, радиус окружности равен половине диагонали квадрата.
Диаметр окружности равен стороне квадрата.
Чуть более сложная задача. Нарисуйте окружность, вписанную в данный квадрат, то есть касающуюся всех его сторон. Вы увидите, что диаметр этой окружности равен стороне квадрата.
Считаем стороны клеток равными единице. Четырехугольник — квадрат. Все его стороны равны, все углы — прямые. Как и в предыдущей задаче, радиус окружности, вписанной в квадрат, равен половине его стороны.
площадь квадрата
Площадь квадрата, как посчитать площадь квадрата. Формула площади квадрата.
О квадрате и его площади
Формула площади квадрата.
Сторона квадрата обозначается любой буквой, которая вам нравится, кроме занятой S.
Формула площади квадрата : площадь квадрата равна стороне квадрата во второй степени.
Либо может встречаться вот такая формулировка площади квадрата:
Площадь квадрата равна произведению стороны квадрата на себя.
Пример подсчета площади квадрата
Как вычислить площадь квадрата?
Предположим, что у нас есть квадрат, площадь которого нам требуется узнать!
Пусть это будет 10см.
Сколько будет площадь квадрата со стороной 10см.
Умножаем сторону квадрата 10, на себя, на 10 :
10 * 10 = 100см 2 Ответ :
Площадь квадрата со стороной 10см, будет равна 100см 2 100см 2
Как найти площадь квадрата если известен периметр!?
Условие задачи : найдите площадь квадрата, если известен периметр = 32см.
Для того, чтобы узнать площадь квадрата по его периметру нам понадобится формула подсчета периметра квадрата:
Далее нам нужно 32 разделить на 4, мы найдем длину одной стороны квадрата.
И далее по формуле площади квадрата узнаем его площадь :
Квадрат, у которого периметр 32 см, площадь равна 16см²
Как найти площадь квадрата если известна диагональ!?
Условие задачи : найдите площадь квадрата, если известна диагональ квадрата = 8см.
Для того, чтобы найти диагональ квадрата, нам нужно вспомнить формулу пифагора :
Немного нужно преобразовать :
А если S = a², то S = d²/2
И далее нам нужно подставить нашу диагональ :
Какая единица измерения площади квадрата!?
После того, как я написал страницу и началась выдача страницы, интересный поисковый вопрос : «площадь квадрата почему см2«.
Человек, видимо, хотел спросить, откуда двойка в единице измерения площади квадрата!?
Мы можем рассказать. о том, в какой единице измерения измеряются площадь квадрата и откуда там берется двойка!?
Единица измерения площади квадрата
Почему единица измерения площади квадрата пишется с двойкой
Обычно в младших классах, на единицу измерения не обращают внимания. Но уже в старших классах на это обращают некоторое внимание!
Почему единица площади(и в том числе квадрата) обозначают двойкой чуть выше буквеного выражения!?
Если мы вспомним, что площадь квадрата равна умноженной длины стороны на себя и напишем единицу измерения. то мы увидим откуда берется двойка.
Давайте покажем на примере.
Пусть надо найти площадь квадрата со стороной 12 см.
Так и записываем в формулу :
Далее никуда единицу измерения не убираем, а умножаем их между собой, вот отсюда и получается квадратные сантиметры(или другая мера длины в квадрате) :
12*12(см*см) = 12²см² = 144см²
Как найти площадь квадрата зная радиус вписанной окружности!?
Как найти площадь квадрата зная радиус вписанной окружности!?
Это очень простая задача!
Диаметр вписанной окружности равна стороне квадрата.
Диаметр окружности равен 2R.
Значит сторона квадрата равна 2R.
Значит площадь квадрата равна S = (2R)²
Как найти площадь квадрата зная радиус описанной окружности!?
Как найти площадь квадрата зная радиус описанной окружности!?
Данная задача такая же простая, как и выше описанная!
У нас известен радиус окружности описанной вокруг квадрата.
Диаметр окружности AB равен диагонали квадрата AB и мы знаем, что диаметр окружности равен двум радиусам d = 2R.
Далее подставляем S = (2R)²/2
Найти площадь квадрата онлайн
Для того чтобы посчитать площадь квадрата онлайн, вам требуется в поле :
Площадь
Что такое площадь
Понятие площади фигур рассматривается одним из разделов математики — конкретно, геометрией. Результат решения задач с нахождением площади геометрических фигур может использоваться для решения математических задач, в быту, в производстве.
Площадь фигуры — численная характеристика, которая передает информацию о размере геометрической фигуры.
Фигура, в математическом мире определяемая как множество точек на плоскости, должна быть ограничена со всех сторон, чтобы иметь понятие площади. Если фигура располагается на одной плоскости, она не имеет объема, а только площадь.
В самом простом случае, площадь фигуры можно посчитать по количеству клеток, которые она занимает. Подобным способом можно легко посчитать площадь квадрата, прямоугольника или прямоугольного равнобедренного треугольника.
Площадь в геометрии обозначается знаком S, от английского square — площадь.
Как математическая характеристика, площадь имеет четыре характеристики:
Единицы измерения площади
Площадь фигуры может измеряться в разных единицах в зависимости от поверхности, на которой располагается. Основной системой измерения считается Международная система единиц СИ.
Площадь измеряется в единицах измерения в квадрате:
В Древней Руси употребляли такие величины, как квадратная верста, десятина, квадратный сажень.
В античных источниках единицей измерения площади были актус, арура, центурия, югер.
Формула нахождения площади в математике
Существует множество формул нахождения площади простых геометрических фигур, которые зависят, в основном, от количества углов, сторон и их соотношений.
Площадь прямоугольника
Прямоугольником является геометрическая фигура, все углы которой равны 90°. При этом таких углов должно быть, как минимум три, а четвертый будет равен 90° в силу закона о сумме углов четырехугольника в евклидовой геометрии.
Вычисление площади прямоугольника будет происходить через умножение сторон:
где a и b являются сторонами прямоугольника.
Площадь квадрата
Квадратом является прямоугольник с равными сторонами. Все его углы равны 90°. Площадь квадрата можно найти сразу двумя способами:
По длине стороны:
Через диагонали:
где a — длина сторон квадрата;
d — длина диагоналей квадрата.
Площадь круга
Кругом является часть плоскости, которая лежит внутри окружности. Круг не имеет ни одного угла, а точки его окружности находятся на равном удалении от центра.
Площадь круга можно найти двумя способами:
Через радиус:
где π — постоянная Пи, равна 3,14.
Радиус, упоминаемый в формуле, является линией или отрезком, соединяющим центр и любую из точек окружности.
Через диаметр:
где π — постоянная Пи, равна 3,14.
Диаметр является отрезком, соединяющим две точки окружности и проходящим через центр. Он включает в себя два противоположно направленных радиуса.
Площадь эллипса
Эллипс является частным случаем окружности. Он, так же, как и круг, не имеет ни одного угла, но при этом точки окружности находятся на разном удалении от центра.
Найти площадь эллипса можно только одним способом: через произведение длин большой и малой полуосей эллипса и числа пи.
Площадь эллипса находится через произведение длин большой и малой полуосей эллипса и числа пи:
Площадь параллелограмма
Параллелограмм является геометрической фигурой с 4 углами и 4 сторонами, однако он отличается от прямоугольника по строению. Его противолежащие стороны попарно параллельны, а углы равны зеркально противолежащим.
Частными случаями параллелограмма являются квадрат, прямоугольник и ромб.
Найти площадь параллелограмма можно тремя способами:
Через сторону и высоту:
где a — сторона, к которой проведена высота,
h — высота непосредственно.
Через две стороны и величину угла между ними:
Через диагонали и угол между ними:
S = 1 2 × d 1 × d 2 × sin y
где d 1 и d 2 — это диагонали параллелограмма,
y — угол между ними.
Площадь ромба
Ромб, как частный случай параллелограмма, имеет те же свойства, кроме того, что все его стороны равны.
Площадь ромба также можно найти тремя способами:
По длине стороны и высоте:
Формула площади ромба по стороне и высоте выглядит так же, как и площадь параллелограмма по таким же характеристикам, с условием, что все высоты ромба будут равны:
По длине стороны и углу:
Формула площади ромба через длину сторон и углу между ними похожа на соответствующую формулу площади параллелограмма с условием того, что стороны равны, а значит, их перемножение можно заменить квадратом величины стороны:
По длине его диагоналей:
Площадь трапеции
Трапеция отличается от всех предыдущих фигур тем, что только две ее стороны, боковые, могут быть равны между собой. При этом они не параллельны. Две другие стороны параллельны, но не равны. Сумма углов трапеции равна 360°.
Площадь трапеции можно найти двумя способами:
По формуле Герона:
По длине основ и высоте:
Площадь треугольника
Треугольник является геометрической фигурой с тремя сторонами и суммой углов, равной 180°. По величине углов треугольники делятся на острые, тупые и прямоугольные. По числу равных сторон треугольники делятся на разносторонние, равносторонние и равнобедренные.
Площадь треугольника можно найти множеством способов:
По гипотенузе и острому углу:
a — любой из прилежащих острых углов.
Через сторону и высоту:
Через три стороны:
где р — полупериметр.
Через две стороны и угол между ними:
S = 1 2 × a × b × sin y
Через три стороны и радиус описанной окружности:
Через три стороны и радиус вписанной окружности:
где р — полупериметр.
Пояснения на примерах
Стены класса равны 7 и 5 метрам. Чему будет равна площадь пола в данной комнате?
Решение: S = 7 × 5 = 35
Ткань летучего змея порвалась. Вася решил сделать новую форму. Он посчитал, что длина жердей летучего змея равна 15 и 23 см. Форму какой площади нужно взять Васе с учетом того, что для припусков для пришивания нужно взять еще 2 см?
Равнобедренный треугольник имеет основание 4 дм и высоту 7 дм. Сколько будет его площадь?