что такое квадрат числа куб числа
Что такое квадрат числа куб числа
Квадраты натуральных чисел от одного до ста
11 2 = 121
12 2 = 144
13 2 = 169
14 2 = 196
15 2 = 225
16 2 = 256
17 2 = 289
18 2 = 324
19 2 = 361
20 2 = 400
21 2 = 441
22 2 = 484
23 2 = 529
24 2 = 576
25 2 = 625
26 2 = 676
27 2 = 729
28 2 = 784
29 2 = 841
30 2 = 900
31 2 = 961
32 2 = 1024
33 2 = 1089
34 2 = 1156
35 2 = 1225
36 2 = 1296
37 2 = 1369
38 2 = 1444
39 2 = 1521
40 2 = 1600
41 2 = 1681
42 2 = 1764
43 2 = 1849
44 2 = 1936
45 2 = 2025
46 2 = 2116
47 2 = 2209
48 2 = 2304
49 2 = 2401
50 2 = 2500
51 2 = 2601
52 2 = 2704
53 2 = 2809
54 2 = 2916
55 2 = 3025
56 2 = 3136
57 2 = 3249
58 2 = 3364
59 2 = 3481
60 2 = 3600
61 2 = 3721
62 2 = 3844
63 2 = 3969
64 2 = 4096
65 2 = 4225
66 2 = 4356
67 2 = 4489
68 2 = 4624
69 2 = 4761
70 2 = 4900
71 2 = 5041
72 2 = 5184
73 2 = 5329
74 2 = 5476
75 2 = 5625
76 2 = 5776
77 2 = 5929
78 2 = 6084
79 2 = 6241
80 2 = 6400
81 2 = 6561
82 2 = 6724
83 2 = 6889
84 2 = 7056
85 2 = 7225
86 2 = 7396
87 2 = 7569
88 2 = 7744
89 2 = 7921
90 2 = 8100
91 2 = 8281
92 2 = 8464
93 2 = 8649
94 2 = 8836
95 2 = 9025
96 2 = 9216
97 2 = 9409
98 2 = 9604
99 2 = 9801
100 2 = 10000
Кубы натуральных чисел от одного до ста
11 3 = 1331
12 3 = 1728
13 3 = 2197
14 3 = 2744
15 3 = 3375
16 3 = 4096
17 3 = 4913
18 3 = 5832
19 3 = 6859
20 3 = 8000
21 3 = 9261
22 3 = 10648
23 3 = 12167
24 3 = 13824
25 3 = 15625
26 3 = 17576
27 3 = 19683
28 3 = 21952
29 3 = 24389
30 3 = 27000
31 3 = 29791
32 3 = 32768
33 3 = 35937
34 3 = 39304
35 3 = 42875
36 3 = 46656
37 3 = 50653
38 3 = 54872
39 3 = 59319
40 3 = 64000
41 3 = 68921
42 3 = 74088
43 3 = 79507
44 3 = 85184
45 3 = 91125
46 3 = 97336
47 3 = 103823
48 3 = 110592
49 3 = 117649
50 3 = 125000
51 3 = 132651
52 3 = 140608
53 3 = 148877
54 3 = 157464
55 3 = 166375
56 3 = 175616
57 3 = 185193
58 3 = 195112
59 3 = 205379
60 3 = 216000
61 3 = 226981
62 3 = 238328
63 3 = 250047
64 3 = 262144
65 3 = 274625
66 3 = 287496
67 3 = 300763
68 3 = 314432
69 3 = 328509
70 3 = 343000
71 3 = 357911
72 3 = 373248
73 3 = 389017
74 3 = 405224
75 3 = 421875
76 3 = 438976
77 3 = 456533
78 3 = 474552
79 3 = 493039
80 3 = 512000
81 3 = 531441
82 3 = 551368
83 3 = 571787
84 3 = 592704
85 3 = 614125
86 3 = 636056
87 3 = 658503
88 3 = 681472
89 3 = 704969
90 3 = 729000
91 3 = 753571
92 3 = 778688
93 3 = 804357
94 3 = 830584
95 3 = 857375
96 3 = 884736
97 3 = 912673
98 3 = 941192
99 3 = 970299
100 3 = 1000000
Степень числа. Квадрат и куб числа
Определение.
Степенью числа «» с натуральным показателем «
«, большим 1, называется произведение «
» одинаковых множителей, каждый из которых равен числу «
«.
Например, найдем значение следующих степеней:
2 4 = 22
2
2 = 4
2
2 = 8
2 = 16;
3 6 = 33
3
3
3
3 = 9
3
3
3
3 = 27
3
3
3 = 81
3
3 =243
3 = 729.
Например, найдем квадрат чисел 4 и 8:
4 2 = 44 = 16;
8 2 = 88 = 64.
Например, найдем куб чисел 5 и 7:
5 3 = 55
5 = 25
5 = 125;
7 3 = 77
7 = 49
5 = 343;
Степенью числа «» с показателем
= 1 является само это число, то есть
.
Сначала выполним возведение во 2 степень числа 4, затем находим значение выражения, находящегося в скобках, после чего выполняем умножение, и последним действием выполняем вычитание:
Поделись с друзьями в социальных сетях:
Степень числа. Квадрат и куб числа
Содержание
Мы уже узнали, что записать сумму, в которой все слагаемые равны друг другу, можно в виде произведения. Например, если у нас есть выражение:
Но можем ли мы сделать короче выражение, в котором произведение имеет равные друг другу множители? Ответ прост – можем! Если в случае со сложением чисел, где все слагаемые одинаковые, мы получим произведение, то при умножении равных друг другу чисел, мы получим степень числа. Давайте разберем поподробнее, чем же является степень и как решать выражения со степенями.
Понятие степени
У каждого степенного выражения есть свое основание и свой показатель. Давайте рассмотрим на примере:
Квадрат и куб числа
Для удобства запоминания квадратов чисел существуют специальные таблицы квадратов первых 10 натуральных чисел:
Для запоминания кубов чисел также есть специальные таблицы кубов первых 10 натуральных чисел:
$n$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
$n^<3>$ | $1$ | $8$ | $27$ | $64$ | $125$ | $216$ | $343$ | $512$ | $729$ | $1000$ |
Первую степень числа считают равной самому числу.
Решение задач
Если в числовое выражение входят степени чисел, то их значения вычисляют до выполнения остальных действий.
Что такое квадрат числа куб числа
Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту
В этом уроке Вы узнаете, что такое квадрат числа и куб числа, а также познакомитесь с таблицами квадратов и кубов первых десяти натуральных чисел.
Давайте рассмотрим произведение
Оказывается, это произведение можно записать иначе: 5 в степени 2, или как говорят – 5 в квадрате.
Запись эта выглядит следующим образом: пишется число 5, а число 2 записывается чуть в меньшем размере и в правом верхнем углу, вот так:
В буквенном выражении произведение называют квадратом числа а и обозначают а в квадрате.
Итак, а умножить на а равно а в квадрате.
Перед вами таблица квадратов первых 10 натуральных чисел.
Из нее мы видим, что один в квадрате будет один. Два в квадрате – 4. Три в квадрате – 9. Четыре в квадрате – 16. Пять в квадрате – 25, шесть в квадрате – 36, семь в квадрате – 49, восемь в квадрате – 64, девять в квадрате – 81, десять в квадрате – 100.
Этой таблицей очень удобно пользоваться при решении следующих заданий:
Для нахождения значения данного выражения необходимо воспользоваться следующим правилом:
Если в числовое выражение входят квадраты чисел, то их значение вычисляют до выполнения остальных действий.
Третье действие: 81 – 9 = 72.
Ответ: Значение выражения равно 72.
Найдите значение выражения: (4 + 3)2 – 8.
Здесь первое действие в скобках 4 + 3 = 7.
Третье действие: 49 – 8 = 41.
Ответ: Значение выражения равно 41.
Переходим к следующему понятию – куб числа.
Произведение 5 * 5 * 5 называют кубом числа 5 и обозначают следующим образом:
Как и в случае с квадратами, существует таблица кубов первых десяти натуральных чисел. Она имеет следующий вид:
один в кубе равно 1, два в кубе равно 8, три в кубе равно 27, четыре в кубе равно 64, пять в кубе равно 125, шесть в кубе равно 216, семь в кубе равно 343, восемь в кубе равно 512, девять в кубе равно 729, десять в кубе равно 1000.
Давайте выполним несколько заданий с использованием данной таблицы.
Значит корень уравнения х = 6.
Задание второе: найдите значение выражения: 83 + 11.
Здесь, как и в случае с квадратами чисел, воспользуемся правилом:
Если в числовое выражение входят кубы чисел, то их значение вычисляют до выполнения остальных действий.
Второе действие 512 + 11 = 523.
Таким образом, в этом уроке Вы узнали, что такое квадрат числа и куб числа, а также познакомились с таблицами квадратов и кубов первых десяти натуральных чисел.
Кроме того, получили правило для нахождения значения числового выражения: если в числовое выражение входят квадраты и кубы чисел, то их значение вычисляют до выполнения остальных действий.
Урок 25 Бесплатно Степень числа. Квадрат и куб числа
На данном уроке мы познакомимся с понятием степени числа.
Выясним, что называют «показателем степени» и «основанием степени».
Научимся вычислять квадрат и куб числа.
Составим таблицу степеней первых десяти натуральных чисел и рассмотрим ряд задач с использованием таких таблиц.
Определим, в каком порядке выполняют действия в выражениях, содержащих степень.
Степень числа
Известно, что сумму равных слагаемых можно заменить произведением.
Например, сумму пяти слагаемых, каждое из которых равняется четырем, можно записать короче:
4 + 4 + 4 + 4 + 4 = 5 ∙ 4
В произведении число 5 указывает на количество одинаковых слагаемых.
В свою очередь произведение одинаковых множителей тоже можно записать компактнее.
Произведение n одинаковых множителей можно представить в виде степени.
В буквенном виде произведение равных множителей можно представить следующим образом:
а— любое натуральное число.
Читают «а в n-ной степени» или «а в степени n».
Число а называют основанием (число, возводимое в степень).
n— это показатель степени (число, которое указывает сколько раз повторяется основание степени).
Степень числа представляют всегда так: записывают основание степени, а показатель ее записывают меньше размером в верхнем правом углу основания степени.
Операция умножения одинаковых множителей называется возведением в степень.
Например, произведение пяти множителей, каждое из которых равняется четырем, можно записать так:
4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 = 4 5
Читают данную запись следующим образом:
4 5 — четыре в пятой степени.
Данная степень равна произведению трех двоек.
2— основание степени.
3— показатель степени.
Данная степень равна произведению четырех пятерок.
5— основание степени.
4— показатель степени.
Пройти тест и получить оценку можно после входа или регистрации
Квадрат и куб числа
Вторую степень числа называют квадратом числа.
Так, квадрат любого натурального числа а будет представлять собой произведение двух одинаковых множителей: а ∙ а = а 2 (говорят и читают «а в квадрате»).
2 2 (два во второй степени) иначе говорят и читают «два в квадрате».
10 2 (десять во второй степени) иначе говорят и читают «десять в квадрате».
27 2 (двадцать семь во второй степени) иначе говорят и читают «двадцать семь в квадрате».
Давайте сосчитаем квадраты первого десятка натуральных чисел (возведем во вторую степень первые десять натуральных чисел), используя таблицу умножения.
Один в квадрате равняется одному: 1 2 = 1 ∙ 1 = 1.
Два в квадрате равняется четырем: 2 2 = 2 ∙ 2 = 4.
Три в квадрате равняется девяти: 3 2 = 3 ∙ 3 = 9.
Четыре в квадрате равняется шестнадцати: 4 2 = 4 ∙ 4 = 16.
Пять в квадрате равняется двадцати пяти: 5 2 = 5 ∙ 5 = 25.
Шесть в квадрате равняется тридцати шести: 6 2 = 6 ∙ 6 = 36.
Семь в квадрате равняется сорока девяти: 7 2 = 7 ∙ 7 = 49.
Восемь в квадрате равняется шестидесяти четырем: 8 2 = 8 ∙ 8 = 64.
Девять в квадрате равняется восьмидесяти одному: 9 2 = 9 ∙ 9 = 81.
Десять в квадрате равняется сотне: 10 2 = 10 ∙ 10 = 100.
Оформим полученные данные квадратов натуральных чисел от 1 до 10 в виде таблицы.
Таблица квадратов первых десяти натуральных чисел
Учитывая данные таблицы квадратов, решим уравнение.
Решим уравнение х 2 = 49.
Решить уравнение- это значит найти корень уравнения (в нашем случае установить значение х).
Следовательно, корень уравнения (х) равен семи.
х 2 = 49
х = 7
Проверка: подставим найденное значение неизвестной (х = 7) в исходное уравнение х 2 = 49, получим:
7 2 = 49
7 ∙ 7 = 49
49 = 49
Ответ: х = 7.
У меня есть дополнительная информация к этой части урока!
Чтобы возвести в любую степень число 10, необходимо дописать после единицы нули, количество которых показывает показатель степени.
Разберем пример первый.
Найдите четвертую степень десяти (десять в четвертой степени 10 4 ).
10— это основание.
4— это показатель степени.
Так как по вышеизложенному правилу количество нулей после единицы должно быть равно показателю степени, то результат запишем следующим образом:
10 4 = 1 0000
На самом деле, если перемножить (по определению степени) четыре десятки, то получим:
10 4 = 1 0 ∙ 1 0 ∙ 1 0 ∙ 1 0 = 1 0000
Пример второй: найдите третью степень десяти (десять в третьей степени 10 3 ).
10— это основание.
3— это показатель степени.
Так как по правилу количество нулей после единицы должно быть равно показателю степени, то результат запишем следующим образом:
10 3 = 1 000
Соответственно, если перемножить (по определению степени) три десятки, то получим:
10 3 = 1 0 ∙ 1 0 ∙ 1 0 = 1 000
Рассмотрим обратную ситуацию:
Представим число 100 в виде степени с основанием 10.
Запишем основание 10, а показателем будет число, равное количеству нулей исходного числа (1 00 ).
Число 100 содержит два нуля, следовательно, это число в виде степени с основанием 10 представим следующим образом:
1 00 = 10 2
10— это основание.
2— это показатель степени.
Рассмотрим еще один подобный пример.
Представим число 10000 в виде степени с основанием 10.
Запишем основание 10, а показателем будет число, равное количеству нулей исходного числа (1 0000 ).
Данное число содержит четыре нуля, следовательно, 10000 в виде степени с основанием 10 представим следующим образом:
1 0000 = 10 4
10— это основание.
4— это показатель степени
Третья степень числа тоже имеет свое название.
Число в третьей степени называют кубом числа.
Так, куб любого натурального числа а будет представлять собой произведение трех одинаковых множителей: а ∙ а ∙ а = а 3 (говорят и читают «а в кубе»).
2 3 (два в третьей степени) иначе говорят и читают «два в кубе».
10 3 (десять в третьей степени) иначе говорят и читают «десять в кубе».
27 3 (двадцать семь в третьей степени) иначе говорят и читают «двадцать семь в кубе».
Давайте определим кубы первого десятка натуральных чисел (возведем в третью степень первые десять натуральных чисел), используя таблицу умножения.
Один в кубе: 1 3 = 1 ∙ 1 ∙ 1 = 1.
Два в кубе: 2 3 = 2 ∙ 2 ∙ 2 = 8.
Три в кубе: 3 3 = 3 ∙ 3 ∙ 3 = 27.
Четыре в кубе: 4 3 = 4 ∙ 4 ∙ 4 = 64.
Пять в кубе: 5 3 = 5 ∙ 5 ∙ 5 = 125.
Шесть в кубе: 6 3 = 6 ∙ 6 ∙ 6 = 216.
Семь в кубе: 7 3 = 7 ∙ 7 ∙ 7 = 343.
Восемь в кубе: 8 3 = 8 ∙ 8 ∙ 8 = 512.
Девять в кубе: 9 3 = 9 ∙ 9 ∙ 9 = 729.
Десять в кубе: 10 3 = 10 ∙ 10 ∙ 10 = 1000.
Оформим полученные данные кубов натуральных чисел от 1 до 10 в виде таблицы.
Таблица кубов первых десяти натуральных чисел
1000
С помощью таблицы кубов можно легко и просто решать примеры и задачи, в которых необходимо высчитывать третью степень числа.
Представим в виде куба число 343.
По таблице кубов видим, что 343 = 7 3
Проверим: найдем произведение трех семерок:
7 3 = 7 ∙ 7 ∙ 7 = 49 ∙ 7 = 343
На прошлом уроке мы подробно разобрали порядок выполнения арифметических действий в выражениях.
Выяснили, что в первую очередь выполняются арифметические действия в скобках, затем-действия второй ступени (умножение и деление) по порядку их следования слева направо, и только потом выполняются действия первой ступени (сложение и вычитание) по порядку слева направо.
Однако, в математических выражениях, в которых отсутствуют скобки, но есть действия первой, второй ступени и степень, возведение в степень выполняется раньше других действий, только потом умножают, делят, складывают и вычитают в установленном правилами порядке.
Если в скобках содержится степенное выражение, то действия в скобках выполняются по порядку слева направо, начиная с действий высшей ступени- возведение в степень, и далее по известным нам правилам.
За скобками действия выполняют, соблюдая порядок выполнения действий без скобок, рассмотренный выше.
Рассмотрим поясняющие примеры.
При решении различных задач и примеров будем пользоваться составленными таблицами степеней.
Пример 1.
Определим порядок действий в выражении и найдем его значение.
Так как исходное выражение не содержит скобки, а возведение в степень- это действие более высокой ступени, чем умножение, деление, сложение и вычитание, следовательно, в первую очередь необходимо выполнить вычисление степени, затем слева направо в порядке следования сначала действия второй ступени (деление), затем- действия первой ступени (вычитание).
1) 8 2 = 8 ∙ 8 = 64 (по определению степени или по таблице квадратов).
2) 64 ÷ 4 = 16
Пример 2.
Найдем значение данного выражения, определив порядок действий в нем.
Согласно порядка выполнения действий сначала выполняются действия в скобках.
Найдем разность 21 и 11.
Далее выполняется действие высшей ступени (возведение в степень), т.е. разность, полученную в скобках, возведем в квадрат.
Найдем, чему равно 10 2 по определению степени или по таблице квадратов.
2) 10 2 = 10 ∙ 10 = 100
Затем выполним действия, которые находятся в исходном выражении за скобками.
Определим третью степень двойки по таблице кубов или по определению степеней.
3) 2 3 = 2 ∙ 2 ∙ 2 = 8
4) 100 ∙ 8 = 800
У меня есть дополнительная информация к этой части урока!
С давних пор основными арифметическими операциями являются операции сложения, вычитания, умножения и деления.
Представление о степени, как об отдельной операции возникло не сразу.
Однако степени применялись при вычислении площадей и объемов уже у древних народов: степень числа высчитывали при решении различных задач в Древнем Египте, Древней Греции, в Вавилоне.
Диофант Александрийский древнегреческий математик, философ (III век н.э.) в своем знаменитом труде «Арифметика» описал первые натуральные степени чисел.
Диофант первым из античных ученых предложил специальные обозначения для шести степеней неизвестного (квадрат, куб, квадрато-квадраты, квадрато-кубы и т.д.)
Древнегреческий ученый Пифагор и его последователи (пифагорейцы) проявляли большой интерес к числам, искали в них скрытый смысл, закономерности и приписывали им различные свойства.
Пифагорейцы предполагали, что каждое число можно представить в виде фигуры.
Так, например, числа 4, 9, 16, 25 они представляли в виде квадратов.
В Древнем Вавилоне для вычисления и расчетов был создан целый ряд вычислительных таблиц: таблицы умножения, таблицы квадратов и кубов и многие другие.
В Древней Индии успешно развивалась наука.
Высоких результатов индийцы добились в астрономии, медицине, математике.
Индийские ученые часто оперировали большими числами.
В Древней Индии существовало понятие степени числа, математики того времени умели вычислять площади и объемы фигур, разработали алгоритмы вычисления всех арифметических операций, в том числе определение степени числа.
Важнейшим открытием индийских ученых в математике стало изобретение позиционной системы счисления, а также запись (чтение) чисел, для каждой цифры был придуман свой знак.
Математические труды их были изложены в основном в словесной форме на древнеиндийском языке в священных писаниях, книгах, сказаниях.
Потребность в решении более сложных математических задач со степенями заставляла ученых разных стран расширять понятие о степени, систематизировать и обобщать известные уже данные о ней.
В начале XV века самаркандский математик Гияс ад-Дин Джемшид Аль-Каши рассматривал нулевой показатель степени, в это же время французский ученый Никола Шюке применял в своих трудах нулевой и отрицательный показатель степени.
В 1544 г. немецкий математик Михаэль Штифель в своей книге «Полная арифметика» впервые ввел понятие «Показатель степени».
Постепенно понятие степени становится все шире, оно применяется не только к числу, но и к переменной.
Математики средневековья пытались установить единое обозначение степени и сделать ее компактней.
Французский ученый математик Франсуа Виет ввел буквенное обозначение (N, Q, C) для первой, второй и третьей степени.
Нидерландский математик Симон Стевин предложил называть степень по их показателям, отвергая тем самым словесные обозначения степеней, составленные Диофантом.
Современное обозначение степеней (а n ), где а-основание степени, n-показатель степени, ввел французский математик Рене Декарт.
Пройти тест и получить оценку можно после входа или регистрации