что такое кривошипная камера
Двухтактный двигатель внутреннего сгорания
Двухтактным называется двигатель внутреннего сгорания, завершающий полный рабочий цикл за один оборот коленвала.
История создания двухтактного двигателя
Во многих источниках создание первого двигателя внутреннего сгорания приписывают Готтлибу Даймлеру, другие считают изобретателем Николаса Отто. Однако существует версия, что и те, и другие ошибаются. Еще в 1858 году бельгиец Жан Жозеф Этьен Ленуар создал двухтактный двигатель внутреннего сгорания на газовом топливе.
В отличии от паровой машины он был проще и экономичнее. Однако двигатель бельгийского инженера был далек от совершенства. Это доказал Николас Отто, представив свой четырехтактный мотор. Его КПД был гораздо выше, чем у мотора Ленуара, а сам двигатель имел меньшие габариты. Двухтактный двигатель резко потерял популярность, и до начала ХХ века почти полностью исчез.
В России хорошо известны мотоциклы ИЖ «Планета» и «Юпитер» с двухтактными двигателями. В Германии в период Второй мировой двухтактные двигатели активно применялись в самолетостроении. В наше время, к примеру, моторы марки Rotax, широко используются в малой авиации.
С ужесточением норм токсичности двухтактные двигатели перестали рассматриваться в качестве силовых установок для гражданского транспорта, но на скутерах, снегоходах, катерах и в авиамодельном спорте, то есть там, где требуются моторы малого объема и веса, конкурентов им по-прежнему нет.
Устройство двухтактного двигателя
Конструктивно двухтактный и четырехтактный двигатели схожи. Основное различие между ними заключено в принципе газораспределения и в том, что рабочий цикл в двухтактном двигателе совершается за один оборот коленчатого вала.
Отдельного газораспределительного механизма в двухтактном двигателе нет. Роль впускных и выпускных клапанов выполняют отверстия в стенках цилиндра, а выталкивает выхлопные газы наружу и втягивает внутрь очередную порцию рабочей смеси сам поршень. В процессе газообмена участвует и кривошипная камера.
Для наполнения цилиндра топливовоздушной смесью используется впускное окно, которое также называют продувочным. Второе, выпускное окно, служит для удаления отработавших газов из цилиндра. Оно расположено выше впускного.
В течение первого такта поршень движется вверх, перекрывая продувочное окно, а затем и выпускное. Происходит сжатие топливовоздушной смеси. В это время в кривошипной камере создается разрежение, которое используется для всасывания топливо-воздушной смеси из карбюратора в полость картера.
Далее начинается второй такт. Свеча зажигания воспламеняет сжатую топливовоздушную смесь. Расширяясь, газы толкают поршень вниз. По мере движения поршня вниз открывается выпускное окно, и часть газов удаляется из цилиндра. При движении поршня вниз в кривошипной камере создается избыточное давление. Поршень продолжает двигаться вниз, к нижней мертвой точке, и открывает продувочное отверстие. Начинается наполнение цилиндра топливовоздушной смесью из кривошипной камеры. Свежая смесь выталкивает из цилиндра остатки отработавших газов.
Описанная схема работы характерна для карбюраторных моторов. Схема работы дизельных и инжекторных бензиновых двухтактных моторов отличается тем, что топливо впрыскивается в камеру сгорания через форсунку, а в полость кривошипной камеры засасывается чистый воздух.
Преимущества и недостатки двухтактных двигателей
Самое главное преимущество двухтактных двигателей – более высокая, по сравнению с четырехтактными, литровая мощность. Дело здесь в том, что при равном количестве цилиндров и количестве оборотов коленчатого вала в минуту, каждый цилиндр совершает рабочий ход вдвое чаще. При этом, за счет того, что фактический рабочий ход двухтактного двигателя короче (он укорочен за счет процессов газообмена), реально объем двигателя увеличивается на 50-60%.
Не менее важное преимущество — компактность. Благодаря этому качеству двухтактные двигатели нашли широкое применение не только в небольших транспортных средствах наподобие снегоходов, но и в садовой технике, а также инструментах (к примеру, в бензопилах). Кроме того, отсутствие газораспределительного механизма заметно делает конструкцию проще и дешевле в производстве.
Есть у двухтактных ДВС и существенные недостатки. Они расходуют больше топлива впустую, так как при открытии выпускного окна в систему выхлопа попадает часть несгоревшей смеси. Система смазки классического двухтактного мотора крайне примитивна – бензин смешивается с маслом заранее, и оба эти вещества попадают в камеру сгорания одновременно. Обусловлено это тем, что организовать масляную ванну в картере невозможно – картер участвует в процессе газообмена. В результате масло, не пошедшее на смазывания стенок цилиндра, сгорает вместе с топливом. Ресурс двухтактного двигателя также значительно меньше, главным образом, за счет высоких оборотов коленвала. По этой причине в двигателях этого типа применяется только специальное высококачественное масло, разработанное для применения в двухтактных двигателях. Экологические параметры также оставляют желать лучшего: в выхлопе, из-за особенностей газораспределения, содержится большое количество СО и СН.
Эксплуатация двухтактного двигателя
Для смазывания поршневой группы двухтактного двигателя необходимо добавлять масло непосредственно в топливо. Причем, бензин и масло, перед тем как залить в бак, нужно предварительно смешать. Правда, некоторые производители избавляют владельцев от этой проблемы установкой отдельного бачка для масла. В этом случае оно добавляется в топливо автоматически в нужной пропорции.
Не следует забывать, что картер мотора также участвует в газораспределении и должен быть герметичен. Поэтому необходимо тщательно следить за состоянием прокладок.
Система управления впуском в двухтактном двигателе
На большинстве подвесных лодочных моторов в качестве продувочного насоса используется кривошипная камера двигателя. Основные технические показатели такого двигателя — литровая мощность и экономичность — находятся в прямой зависимости от степени наполнения камеры сгорания горючей смесью.
Рассмотрим зависимость наполнения рабочей камеры от качества работы системы впуска, основное назначение которой — обеспечивать наиболее полное заполнение кривошипной камеры (картера), т. е. объема ниже поршня, свежей горючей смесью.
Не касаясь процессов, происходящих в рабочей камере, т. е. выше поршня (сжатие горючей смеси, воспламенение ее и расширение), посмотрим, что происходит в картере, в чем заключается принцип действия системы впуска, и каковы ее наивыгоднейшие, оптимальные характеристики.
При движении поршня в цилиндре двигателя вверх от НМТ (нижней мертвой точки) после закрытия продувочных окон в пространстве под поршнем возникает все увеличивающееся разрежение. Если в этот момент открыть канал, соединяющий кривошипную камеру с карбюратором, в нее будет засасываться горючая смесь. Когда, миновав верхнюю мертвую точку (НМТ), поршень начнет двигаться вниз, поступившая смесь будет сжиматься (чтобы при этом не произошло ее обратного выброса, впускной канал после прохождения поршнем НМТ должен быть перекрыт).
Иными словами, кривошипная камера и поршень служат насосом, всасывающим смесь из карбюратора и подающим ее под давлением в камеру сгорания.
На рис. 1 показана иллюстрирующая сказанное теоретическая круговая диаграмма газораспределения. На ней схематически показано протекание во времени процессов всасывания (собственно впуск), выхлопа (выпуск) и продувки за один полный оборот коленвала. Понятно, что продолжительность и моменты начала и конца этих процессов обусловлены расположением и размером (по высоте цилиндра) продувочных и выхлопных окон и выбором момента открытия впускных окон. В этой связи необходимо подчеркнуть, что картина газораспределения, показанная на рис. 1, условна, так как не учитывает инерции движущейся с большой скоростью (до 100 м/сек) горючей смеси. Если построить двигатель по такой теоретической диаграмме, работать он, конечно, будет, но его литровая мощность, т. е. мощность в л. с. на 1000 см 3 рабочего объема, будет значительно ниже обычно достигаемого уровня.
(рис. 1) Диаграмма газораспределения без учета кинетической энергии потока движущейся смеси
Для обеспечения эффективности работы кривошипной камеры как насоса на практике, с учетом инерции потока, впускные окна открывают несколько раньше (обычно на величину, не превышающую 20° угла поворота коленвала, называемую углом предварения впуска), чем поршень перекроет продувочные окна, и закрывают не в тот момент, когда поршень дошел до НМТ, а позже — на величину до 60-70° угла поворота коленвала за НМТ, называемую углом запаздывания закрытия. Первая из этих мер обеспечивает подса-сывание свежей смеси из карбюратора за счет кинетической энергии потока смеси, поступающей в цилиндр при еще продолжающейся продувке. Благодаря второй происходит дополнительная «дозарядка» кривошипной камеры за счет кинетической энергии установившегося потока смеси в канале от карбюратора к кривошипной камере. Диаграмма такого вида (рис. 2) оптимальна с точки зрения получения наивысшей литровой мощности и экономичности.
(рис. 2) Оптимальная диаграмма газораспределения
Продолжительность продувки обычно равна 110- 130° поворота коленвала. Если принять, что в среднем продолжительность продувки равна 120°, а всасывающее окно открывается на 15° раньше окончания продувки, угол предварения впуска равен примерно 135°.
Угол запаздывания закрытия обычно на нефорсированных моторах принимается равным 40-50° (при большей его величине наблюдается обратный выброс смеси в карбюратор) и доходит до 65-70° на гоночных высокооборотных двигателях. Если принять его равным 45°, общий угол (т. е. оптимальная продолжительность всасывания) получается равным 180°.
Итак, мы установили оптимальные характеристики газораспределения. Посмотрим теперь, как они реализуются практически, как работает управляющий механизм системы впуска.
В двигателях подвесных моторов применяются механизмы управления всасыванием трех типов: поршневые, клапанные и золотниковые.
Поршневое управление впуском. Само название механизма показывает, что управление впуском, точно так же, как и продувкой и выхлопом, выполняется непосредственно самим поршнем. Поршень при движении нижней кромкой периодически перекрывает впускное окно, прорезанное в зеркале цилиндра. При поршневом управлении диаграмма (см. рис. 3) всегда симметрична относительно НМТ в силу того, что поршень открывает и закрывает впускное окно на одинаковых расстояниях до и после НМТ. Угол запаздывания закрытия, как мы уже отмечали, невыгодно делать больше 60-70°, поэтому и угол предварения открытия также будет равным 60-70°. Продолжительность всасывания получается 130°, т. е. меньше оптимальной на 50°.
(рис. 3) Диаграмма двигателя с поршневым управлением впуском
Из круговой диаграммы виден и основной недостаток поршневого управления впуском: значительная часть хода поршня — от момента закрытия продувочных окон и до открытия впускных — при впуске не используется. По этой причине такая система распространения не получила, хотя и применялась на наших одноцилиндровых подвесных моторах «ЛМ-1», «ЛМР-6», «ЗИФ-5», «Стреле» и некоторых других. В то же время шведская фирма «Монарх-Кресчент» уже много лет применяет поршневой впуск на моторах различного объема; высокие литровая мощность (до 90 л. с.) и экономичность моторов «Кресчент», несмотря на ограниченные возможности симметричной диаграммы, — результат длительной отработки конструкции и специальной настройки системы газораспределения.
Благодаря исключительной простоте и надежности поршневое управление впуском широко используется на транспортных двигателях — в первую очередь для мотоциклов и мотороллеров.
Клапанный механизм управления впуском. Известны две конструкции клапанного механизма — с автоматическим и принудительным открытием и закрытием. Будем рассматривать только первый вариант, так как второй применяется крайне редко — буквально в единичных конструкциях.
Для автоматизации системы достаточно установить на пути потока смеси от карбюратора к кривошипной камере клапан, который под напором потока открывается при ходе поршня к ВМТ и закрывается при обратном движении.
Обратимся к круговой диаграмме (рис. 4).
(рис. 4) Диаграмма двигателя с клапанным управлением впуском
Поршень, двигаясь вверх от НМТ, закрывает верхней кромкой продувочное окно; начинает расти разрежение; под действием разницы давлений клапан впуска открывается и горючая смесь поступает в кривошипную камеру. После прохода поршнем ВМТ объем кривошипной камеры начинает уменьшаться и происходит сжатие горючей смеси, но автоматический клапан еще некоторое время остается открытым под напором установившегося движения потока смеси и впуск продолжается. Таким образом, при использовании автоматического клапана, в отличие от поршневой схемы, получается несимметричная диаграмма впуска.
Чаще всего в подвесных моторах применяют пластинчатые лепестковые клапаны с ограничителями отгиба, расположенными на перегородке из алюминиевого сплава или пластмассы, крепящейся к передней части картера. Перегородка эта делается плоской (моторы «Ветерок», «Москва-12,5», «Прибой») или конической («Москва-25)»). Сами пластинки клапана изготовляются из стали или бериллиевой бронзы одинарными («Ветерок», см. рис. 5), двухлепестковыми («Прибой»), трехлепестковыми («Москва-12,5») или даже многолепестковыми (американские моторы фирмы «Эвинруд»). Получение больших литровых мощностей в двигателях с впускными пластинчатыми клапанами, особенно при малых рабочих объемах, затруднительно, поскольку сами клапаны создают большое аэродинамическое сопротивление, а увеличение размеров впускных окон ведет к увеличению объема кривошипной камеры. Применение же обладающих меньшим сопротивлением менее жестких клапанов ограничивается необходимостью обеспечить прочность и надежность клапана и перегородки.
(рис. 5) Золотниковый механизм управления впуском
При таком механизме управление впуском смеси производится золотником, жестко связанным с коленвалом и вращающимся вместе с ним. Регулировкой положения на оси и угла сектора золотника можно обеспечить открытие и закрытие впускного окна в любой момент, независимо от положения поршня и степени разрежения в картере. Наиболее часто применяется дисковый золотник из пластмассы или стали, размещаемый непосредственно в картере (и скрепляемый со щечкой коленвала, как показано на рис. 6) либо в специальном приливе картера. В боковой стенке картера прорезано впускное окно. Золотник, вращаясь вместе с коленвалом, то открывает это окно, то снова закрывает его: пока вырез в диске золотника проходит перед окном, происходит впуск; как только сплошная часть золотника закрывает окно, начинается сжатие. Золотник смазывается маслом, растворенным в горючей смеси; благодаря этому трение о стенки картера незначительно. Управление впуском с дисковыми золотниками, расположенными в картере, применяется на моторах «Вихрь» (золотники из текстолита) и «Нептун» (из капрона). На моторе «Салют» дисковый золотник также выполнен из текстолита, но размещен в специальном приливе картера. Золотниковое управление всасыванием, по сравнению с поршневым и клапанным, обеспечивает наилучшее наполнение кривошипной камеры; это делает перспективным применение золотниковых механизмов в двухтактных двигателях лодочных моторов с высокой литровой мощностью и, особенно, в двигателях гоночных моделей.
(рис. 6) Управление впуском смеси в моторе «Нептун»
Двухтактный двигатель — принцип работы
Поршневые двигатели внутреннего сгорания (ДВС) широко используются в разных сферах человеческой жизни. Однако не все они работают одинаково. Между ними есть одно принципиальное отличие. В зависимости от конструкции рабочий цикл двигателя может состоять из двух или четырёх тактов. Поэтому и называется он соответственно двухтактным двигателем или четырехтактным. Это справедливо как для бензинового мотора, так и для дизеля.
Преимущества двухтактных двигателей:
• Отсутствие громоздких систем смазки и газораспределения
• Большая мощность в пересчёте на 1 литр рабочего объёма
• Проще и дешевле в изготовлении
• Меньший вес
Основные термины и определения
Принцип работы всех поршневых двигателей заключается в превращении энергии сгорания топлива в механическую энергию. Передаточным звеном является кривошипно-шатунный механизм. Для описания их работы используются следующие понятия:
Источники продувочного воздуха
В то время как в четырёхтактном двигателе всасывание свежего заряда происходит за счёт движения поршня из верхней мёртвой точки вниз при открытом впускном клапане, а опорожнение — вверх при открытом выпускном, в двухтактном свежий заряд должен поступать в цилиндр под давлением, вытесняя отработавшие газы. Для создания давления требуется нагнетатель. В упрощённых двигателях для этой цели используется нижняя часть поршня и полость картера — такая схема называется кривошипно-камерной продувкой.
В двигателях более сложных в качестве источника продувочного воздуха используются воздуходувки системы Рутс, дополнительные цилиндры (двигатель Корейво), специальные поршневые компрессоры (ЮМО-203) или турбинные нагнетатели, которые могут вращаться валом двигателя или турбиной, приводимой выхлопными газами. В некоторых случаях для обеспечения более стабильного поступления наддувочного воздуха используется сочетание механических нагнетателей с турбонаддувом.
Кривошипно-камерная продувка
При использовании кривошипно-камерной продувки воздух или горючая смесь поступает в цилиндр из полости картера двигателя, куда всасывается при движении поршня вверх, при движении поршня вниз избыточное давление обеспечивает продувку. При такой схеме возможно создание двигателя, состоящего из минимального количества деталей, так как ему не требуется продувочный насос. Чтобы не допустить потерь заряда через впускной трубопровод в атмосферу, перед входом в картер может устанавливаться лепестковый клапан либо насаженный на коленчатый вал дисковый золотник.
При использовании кривошипно-камерной продувки существуют определённые особенности, ограничивающие применение таких двигателей:
Дизельные и калоризаторные двигатели подобной конструкции также не имели масляной ванны в картере, так как пары масла, попадающие в цилиндр, могли бы привести к разносу. В них использовались схемы смазки с «сухим» картером. В двигателях простой конструкции, не рассчитанных на длительную непрерывную работу, применялась незамкнутая система смазки, где вместо масляного насоса часто применялась пневматические маслёнки — в этом случае требовалось регулярно сливать накапливающееся в картере отработавшее масло.
Звук работы двухтактного двигателя мопеда
С использованием продувочных насосов
Двухроторный нагнетатель типа Рутс.
На крупных многоцилиндровых двухтактных двигателях продувочный воздух сжимается в отдельном компрессоре (типа Рутс, либо пластинчатый), что практически полностью устраняет указанные выше недостатки. При этом, однако, воздух может подаваться в цилиндры через полость картера, которая в этом случае выполняет функции ресивера. Для создания давления продувки может использоваться и турбокомпрессор, но в этом случае в момент пуска в двигатель необходимо подавать сжатый воздух от внешнего источника либо использовать двухступенчатый наддув с механической ступенью (10Д100).
В ранних двухтактных двигателях также применяли поршневые компрессоры, работающие от одного коленчатого вала с двигателем. Например, на ПДП-дизеле ЮМО-203 Юнкерса в качестве продувочных использовались особые квадратные поршни, установленные на траверсах поршней верхнего ряда. В двигателе английского микролитражного автомобиля Lloyd 650 (конец 1940-х годов) использовался запатентованный Роландом Ллойдом поршневой насос двойного действия («третий цилиндр»), имевший цепной привод от коленвала и продувавший два рабочих цилиндра бензовоздушной смесью.
Принцип работы
Один оборот коленчатого вала является одним циклом рабочего процесса двигателя внутреннего сгорания.
В картер двигателя топливная смесь попадает через окно, открывающееся за счет вакуума при движении поршня вверх от нижней мертвой точки (НМТ) к верхней (ВМТ). При этом движении также открывается окно для выброса газов сгоревшей смеси. Через милисекунды открывается продувочное окно. Через продувочное окно подается новая порция топлива.
Эксплуатационные показатели в сравнении
Сопоставляя двухтактный двигатель и четырехтактный двигатель, разницу между ними можно заметить не только в устройстве, но и в эксплуатационных характеристиках. Сравнивать их можно по следующим показателям:
Литровой называется мощность, снимаемая с литра объёма цилиндра. Теоретически она должна быть в два раза больше у двухтактного. Однако на деле этот показатель составляет 1,5−1,8. Сказывается неполное использование рабочего хода газов, затраты энергии на продувку, неполное сгорание и потери топлива.
Удельная мощность представляет собой величину отношения мощности мотора к его весу. Она также выше у двухтактных. Для них нужен менее тяжёлый маховик и не нужны дополнительные системы (газораспределения и смазки), утяжеляющие конструкцию. КПД у них также выше.
Экономичность (расход топлива на единицу мощности) выше у четырехтактных. Двигатели с двумя тактами часть топлива теряют впустую при продувке цилиндра.
Экологичность двухтактных ниже, опять-таки из-за потери несгоревшего топлива и масла. Убедиться в этом можно на примере двухтактного лодочного мотора. Он всегда оставляет на воде тонкую плёнку из несгоревшего топлива.
Шумность выше у двухтактных. Это связано с тем, что выхлопные газы из цилиндра вырываются с большой скоростью.
Ресурс работы выше у четырехтактных. Отдельная система смазки и меньшая оборотистость двигателя положительно сказываются на сроке его службы.
Проще обслуживать, безусловно, двухтактные моторы из-за меньшего количества вспомогательных систем. Масса больше у четырехтактных. Двухтактные дешевле.
В некоторых механизмах применение двухтактных двигателей является однозначным. Это, например, бензопилы. Высокая удельная мощность, маленький вес и простота делают его здесь безусловным фаворитом.
Двухтактные двигатели используются также в мототехнике, лодочных моторах, газонокосилках, скутерах, авиамоделировании. В большинстве самодельных машин и механизмов умельцы также используют двухтактный мотор.
Рабочий цикл из двух тактов
Одноцилиндровый двухтактный двигатель работает по-другому. Здесь все четыре действия происходят за один полный оборот коленвала. При этом поршень делает только два такта (расширения и сжатия), двигаясь от ВМТ к НМТ и обратно. А впуск и выпуск являются частью этих двух тактов. Подробней принцип работы двухтактного двигателя внутреннего сгорания можно описать следующим образом.
Газы от сгорания топливной смеси толкают поршень вниз от ВМТ. Примерно на середине хода поршня в гильзе цилиндра открывается выпускное отверстие, через которое часть газов выбрасывается в патрубок глушителя. Продолжая двигаться вниз, поршень создаёт давление, благодаря которому в цилиндр поступает новая порция топлива, одновременно продувая его от остатков сгоревших газов. Подходя к ВМТ, поршень сжимает смесь и система зажигания воспламеняет её. Снова начинается такт расширения.
В авиамоделестроении широко используется двухтактный дизельный двигатель, его принцип работы тот же, что и у бензинового. Разница в том, что смесь топлива с воздухом самостоятельно воспламеняется в конце цикла сжатия. Горючим для таких моторов служит смесь эфира с авиационным керосином. Воспламенение этого горючего происходит при гораздо меньшей степени сжатия, чем у двигателей на традиционном дизельном топливе.
История появления
Дугалд Клерк считается изобретателем двухтактного двигателя. Он разработал в 1878 году двигатель с отдельным промывным насосом, который требовал только одного оборота коленчатого вала за ход. Этот принцип двигателя был впервые использован в 1887 году в бензиновом цикле Эдварда Батлера для автомобиля.
В 1891 году Юлий Сонлейн получил патент на промывку картера, в котором нижняя часть рабочего поршня выступала в качестве поршня промывающего насоса. Как и современных двухтактных агрегатов, у него были входные и выходные пазы и канал перелива. В то же время Джозеф Дейв разработал аналогичный принцип с перегородкой на поршне.
В 1904 году Альфред Ангас Скотт успешно разработал двухцилиндровый 2х тактный агрегат и установил усовершенствованную версию на мотоцикл. В 1909 году он основал компанию Scott Motor Cycle, которая производила до 1966 года двухтактные мотоциклы.
Хьюго Руппе разработал свой двигатель до Первой мировой войны; его патенты отправились в DKW. Важнейшим шагом в развитии стала запатентованная обратная очистка Адольфа Шнюрля, которая заменила двухточечную очистку с поперечным потоком с 1932 года. В 1952 году Даниэль Циммерманн разработал пластинчатый поворотный клапан, а Yamaha в 1978 — выходное управление.
До 1950 годов двухтактный агрегат обещал большой потенциал развития. Однако оказалось, что присущие ему недостатки не могут быть устранены. В автомобильной промышленности двухтактный процесс не смог успешно утвердиться, в течение 1950-х / 60-х годов производители автомобилей, такие как Saab, Borgward и DKW, отказались от двухтактного процесса. Потери при промывке вызвали довольно высокий расход топлива, а также проблему высокого потребления масла и вытекающего загрязнения выхлопными газами.
В течение очень долгого времени двухтактный мотор использовался в автомобильной промышленности ГДР. Более продолжительное существование двухтактного мотора сохранилось при производстве мотоциклов. Недостатки, такие как высокий уровень шума и выбросы выхлопных газов считались не столь значительными для спортивных мотоциклов.
В мотоциклетных гонках 2х тактный агрегат имел свои принципиальные преимущества перед четырёхтактными двигателями и был смещён только с помощью запретов, которые постепенно осуществлялись с 1994 года. В области мопедов двухтактные моторы были недавно выведены из рынка с помощью правовых мер, основанных на выбросах выхлопных газов.
Сегодня двигатель этого типа работает только там, где преимущества процесса, такие как независимость места, простота или малый вес, очень важны. К ним относятся небольшие мобильные устройства, лодки и моделирование. Двухтактный дизельный мотор по-прежнему используется для морских судов, поскольку выбросы выхлопных газов в судоходстве не регулируются законом до сегодняшнего дня.
KTM Freeride 250 R в настоящее время является единственным двухтактным мотоциклом, разрешённым в Германии.
Текущие события
В настоящее время двухтактный мотор испытывает определённый ренессанс в области морских перевозок, водных мотоциклов или сверхлёгких полётах. Примерами являются агрегаты BRP Rotax, которые стали более экологически чистыми, используя систему прямого впрыска (Ficht FFI), такую как серия Rotax, используемая в снегоходах. Yamaha имеет так называемую систему HPDI (прямое впрыскивание под высоким давлением).
Кроме того, с 2007 года был разработан проект Envirofit International для преобразования обычных двухтактных двигателей в агрегаты с прямым впрыском с использованием орбитального впрыска топлива с более экологически чистыми выбросами. Это достигается заменой головки цилиндров. Цель этого проекта — произвести миллионы лёгких мотоциклов в Азии.
Свободнопоршневые двигатели
В свободнопоршневом двигателе отсутствует коленчатый вал, а возвратно-поступательное движение поршня обеспечивается за счёт упругости пружины, сжатого воздуха либо силы тяжести. Такие двигатели применяются там, где нет необходимости во вращательном движении, например в дизель-молотах, компрессорах и генераторах горячего газа.
Конструктивные особенности и различия
Двухтактный двигатель отличается от четырехтактного не только тем, за сколько тактов работы происходит газообмен.
Четырехтактный требует наличия системы газораспределения (впускные и выпускные клапаны, распределительный вал с кулачковым механизмом и т. д. ). В двухтактном такой системы нет, благодаря этому он гораздо проще.
Двигатель с четырьмя тактами работы требует полноценной системы смазки из-за большого количества движущихся и трущихся частей. Для смазки двигателя с двумя тактами работы можно использовать масло просто разводя его вместе с топливом.
Эксплуатация и причины поломки двигателей
Чаще всего двухтактные моторы встречаются в мототехнике, лодочных двигателях, газонокосилках, цепных пилах и прочих устройствах, где требуется применение легкого и надежного двигателя. Тем не менее, даже такой простой по конструкции движок может выйти из строя из-за нарушения правил эксплуатации.
Чтобы продлить срок службы и отсрочить капремонт, следует провести правильную обкатку двухтактного лодочного или мотоциклетного мотора. Для этого пропорция масла смешиваемого с бензином должна быть немного выше установленной для нормальной эксплуатации. На такой смеси дать двигателю поработать в режиме неполной мощности несколько часов, что эквивалентно 500-1000 км пробега для скутера и мотоцикла.
Все же из-за токсичности выхлопа двухтактные двигатели постепенно вытесняются современными четырехтактными. Они продолжают использоваться только там, где требуется высокая удельная мощность при минимальной массе и простоте конструкции – мототехника, бензопилы и триммеры, модели самолетов и многое другое.
Видео
На скутеры устанавливаются двухтактные двигатели 2Т или 4 Т. Какой лучше?