что такое кпг в медицине расшифровка
Что такое КПГ?
О количестве сахара в организме, большом количестве или маленьком говорят достаточно часто с экранов телевизора и на страницах газет. Про белки в организме тоже слышал каждый. Некоторые даже знают значение слова «фермент». Но вот про КПГ совершенно точно знает даже не каждый врач.
Конечный продукт гликирования – это результат соединения белков и сахаров. Основой этого процесса является реакция Майяра. В начале двадцатого века француз по национальности, Луи Камилл Майяр исследовал реакцию сахара и аминокислоты. Для протекания реакции необходимо большое количество тепла. Наглядным примером этого процесса является жарка мяса или варка сгущёнки. Специфический запах, изменение цвета (побурение) и образование корочки (на мясе) являются образованием продуктов реакции. Долго и сложно и нечитабельно описывать всё происходящее непосредственно при протекании реакции, да и не нужно. Нас интересует конечный продукт, КПГ.
В организме человека реакция также протекает, в нём есть все необходимые для реакции компоненты, но температура тела не даёт реакции развить большую скорость и продукты, получаемые в результате, своевременно выводятся естественным путём. Но при неполадках в организме, например при сахарном диабете, скорость реакции увеличивается в разы и КПГ накапливается, оказывая влияние на работу почти всех органов человека.
Основными осложнениями сахарного диабета считаются неправильная работа почек, повреждения нервов, глаз, сосудов. В основе процесса лежит избыток глюкозы в крови, это провоцирует реакцию, то есть не диабет является причиной образования такого большого количества КПГ, а именно сахар.
Это позволяет учёным делать вывод, что при употреблении в пищу большого количества сладкого человек рискует «замусорить» свой организм КПГ и получить все осложнения, характерные для диабета. Кроме того, множество КПГ попадают в человеческий организм вместе с пищей, уже «готовыми к употреблению», ему даже производить ничего самому не нужно. В этом случае КПГ называют гликотоксинами. Они в большом количестве содержатся в корочках хлеба, курицы и мяса, ликёрах, конфетах и множестве других продуктов.
Исследователи предполагают, что старение организма во многом может быть связано с накоплением конечных продуктов гликирования. Именно они вызывают множество болезней и выводят из строя сосуды.
Роль конечных продуктов гликирования и их рецепторов в развитии осложнений сахарного диабета
Конечные продукты гликирования (КПГ) – гетерогенная группа молекул, которые образуются в результате неферментативного гликирования и окисления белков, липидов и нуклеиновых кислот. К ним также относятся карбонильные соединения – продукты их деградации [1, 2]. Хорошо изученными КПГ являются пентосидин – производное перекрестного связывания белков и N-карбоксиметил-лизин (N-carboxymethyllysine – CML). Необходимо отметить, что именно флуоресценция пентосидина лежит в основе неинвазивных методов исследования уровня КПГ [3]. Однако чаще для определения уровня CML и КПГ используют иммуноферментный анализ.
В процессе образования КПГ выделяют несколько этапов. Сначала глюкоза связывается со свободными аминогруппами с формированием оснований Шиффа. Затем основания переходят в более стабильные продукты Амадори и в конечном итоге в разные по структуре КПГ – конечные продукты реакции Майяра. Образование КПГ в белках происходит в течение нескольких месяцев, поэтому их накопление больше характерно для медленно обменивающихся белков.
КПГ труднорастворимы, устойчивы к протеолитическому расщеплению, активны химически.
Данные молекулы способны менять функции и свойства тканей. Это достигается патологической сшивкой белков внутриклеточного и межклеточного матрикса [3, 4] путем связывания с рецептором КПГ (рКПГ).
С возрастом накопление КПГ в организме повышается. На это влияют как эндогенные, так и экзогенные факторы. Так, табачный дым и длительная термическая обработка стимулируют генерацию продуктов гликоокисления и липоокисления [5, 6]. Кроме того, при наличии определенных патологических состояний, например сахарного диабета (СД) или почечной недостаточности, скорость гликирования значительно увеличивается и количество КПГ достигает критических значений [7, 8].
Известно, что КПГ приводят к декомпенсации СД 2 типа. Кроме того, они признаны предикторами риска развития сердечно-сосудистых заболеваний. Избыток КПГ отвечает за такой феномен, как метаболическая память.
Образование КПГ – один из процессов, ассоциированных со старением клетки. Их воздействие преимущественно направлено на долгоживущие белки. Именно поэтому в настоящее время КПГ также рассматриваются как один из возможных биомаркеров старения.
Таким образом, изучение свойств и роли КПГ в патофизиологических процессах имеет важное значение, в том числе для разработки методов снижения риска развития сердечно-сосудистых заболеваний как основной причины смерти у пациентов с СД 2 типа [9].
Механизм действия конечных продуктов гликирования на ткани
Интерес к реакции Майяра, или взаимодействию глюкозы с белками, появился в середине 1990-х гг., после того как в условиях in vivo было установлено, что глюкоза способна модифицировать белки без участия ферментов [8]. Эффекты КПГ на ткани реализуются посредством трех основных механизмов:
В большей степени неферментативному гликированию подвергаются белки внеклеточного матрикса (ВМ) (особенно коллаген 4-го типа) [8–10]. Коллаген относится к долгоживущим белкам и является основным компонентом внеклеточного матрикса [11]. Коллагеновые нити образуют каркас для кожи, сухожилий, кровеносных сосудов, костной ткани, роговицы и стекловидного тела, а также являются основой большинства паренхиматозных органов. Гликирование белков внеклеточного матрикса – коллагена и эластина делает их более жесткими и менее восприимчивыми к протеолитическому расщеплению [5]. Это может способствовать увеличению жесткости сосудов, наблюдающейся у пациентов старшей возрастной группы и с хронической гипергликемией [8, 9].
Коллаген 1-го типа – основной органический компонент костной матрицы подвергается серии посттрансляционных модификаций, больше характерных для процессов старения. Это приводит к миграции миофибробластов и формированию фиброза [7]. Согласно результатам последних исследований, артериосклероз является следствием гликирования коллагеновых цепей в артериолах мышечного типа, вызванного образованием поперечных связей между коллагеновыми волокнами [11]. Ключевая роль КПГ в старении кожи подтверждена H. Pageon и соавт., проводивших эксперимент на модели восстановленной кожи, модифицированной гликированием коллагена [6]. S. Zeiman и соавт., а также R. Candido и соавт. показали, что под воздействием КПГ изменяются свойства миокардиального коллагена, что приводит к развитию диастолической дисфункции [5, 12]. Подобные изменения обусловливают утолщение базальной мембраны, например в мезангиальном матриксе почек, что вызывает развитие почечной недостаточности при СД [13].
Гликирование влияет и на структуру липопротеинов низкой плотности (ЛПНП). Наиболее интенсивное разрушение ЛПНП и продуктов реакции Майяра происходит в макрофагах. При этом наблюдается активация эндоцитоза и синтеза многих регуляторных молекул, в том числе инсулиноподобного фактора роста 1 и фактора роста тромбоцитов, являющихся стимуляторами деления фибробластов, гладкомышечных и мезангиальных клеток [13]. Таким образом, создаются условия для образования большого количества пенистых клеток и последующего запуска атеросклеротических изменений в сосудистой стенке (рисунок) [14, 15].
Накопление КПГ приводит к бесконтрольному синтезу провоспалительных цитокинов и молекул адгезии, которые влияют на рост атеросклеротических бляшек [16, 17]. Речь, в частности, идет об интерлейкине (IL) 1α, IL-6, факторе некроза опухоли (Tumor Necrosis Factor – TNF) α, молекулах межклеточной адгезии 1, молекулах адгезии сосудистых клеток 1, факторах роста эндотелия сосудов, эндотелине 1, тканевом факторе, E-селектине, тромбомодулине [18, 19].
Запуск патогенетического каскада осуществляется при взаимодействии КПГ с их рецепторами и последующем фосфорилировании p21ras, митоген-активированных протеинкиназ, внеклеточной сигнально-регулируемой киназы 1/2, p38 и активации GTPases Cdc42 и Rac. Это в конечном итоге стимулирует миграцию транскрипционного фактора NF-κB к ядру, где он начинает транскрибировать собственный целевой набор генов [20].
Рецепторы конечных продуктов гликирования и их роль
В качестве специфических рКПГ рассматриваются различные мембранные белки. Это белки, принадлежащие к суперсемейству иммуноглобулинов, которые выполняют функцию рецепторов для гликозилированных молекул КПГ [21]. Однако были обнаружены и другие лиганды к рКПГ, включая семейство белков S100 [22], амилоид b [23, 24] и агрегаты фибриллярных белков [25, 26].
Рецепторы КПГ играют важную роль в развитии состояний, ассоциированных с участием перечисленных лигандов, например в повреждении сосудистой стенки, канцерогенезе, нейродегенерации и амилоидозах [25, 27–29]. Сообщалось, что ген рКПГ расположен на шестой хромосоме между генами, кодирующими основные комплексы гистосовместимости второго и третьего классов [30].
Связывание КПГ с их рецепторами приводит к эндотелиальной дисфункции вследствие активации ряда сигнальных путей, например никотинамидадениндинуклеотидфосфатоксидазы, которая усиливает образование активных форм кислорода (АФК) [31]. Последние образуются в результате митохондриального дыхания и клеточного метаболизма. В малых количествах, считающихся физиологичными, АФК задействованы в таких процессах, как индукция стрессорных белков и ферментов, синтез и распад цитокинов, рост, деление и дифференцировка клеток, антимикробный, противовирусный, противоопухолевый эффекты, старение и гибель клеток, разрушение поврежденных молекул, межклеточного вещества, регуляция репаративных процессов, продукция коллагена [32]. Необходимо отметить, что АФК, столь опасные согласно свободнорадикальной теории старения, вырабатываются организмом целенаправленно [33]. Было показано, что АФК играют ключевую роль в развитии сердечно-сосудистых осложнений за счет изменения структуры клеточных белков, липидов и нуклеиновых кислот и, следовательно, их физиологических функций [34].
В настоящее время известно несколько типов рКПГ. В частности, рКПГ-1 при связывании с КПГ инактивируется, что приводит к деградации лиганда. Снижение экспрессии рКПГ-1 ассоциируется с ускорением гломерулярной дисфункции при СД 2 типа [34] и активацией циркулирующих мононуклеарных клеток при высоких значениях КПГ у лиц с тяжелыми осложнениями СД 2 типа [35]. Функция рКПГ-3 (семейство углевод-связывающих белков) напрямую зависит от длительности и степени гипергликемии. При инактивированном рКПГ-3 достоверно чаще развивается диабетическая нефропатия [36].
Образование КПГ в тканях ускоряет иммуновоспалительные реакции и перекисное окисление липидов, что в условиях хронической гипергликемии приводит к декомпенсации СД.
Кроме того, накопление КПГ связано не только с ранним развитием сердечно-сосудистых осложнений, но и с более негативным прогнозом в отношении выживаемости.
Роль конечных продуктов гликирования в патогенезе осложнений сахарного диабета
*Пятилетний импакт фактор РИНЦ за 2020 г.
Читайте в новом номере
Введение Гликирование – это основная причина спонтанного нарушения структуры внутриклеточных и внеклеточных белков различных физиологических систем. В 0,1–0,2% случаев гликирование проходит по остаткам лизина и аргинина [1,2]. В некоторых зонах, где метаболизм белков лимитирован (например, в хрусталике глаза), степень их гликирования может повышаться в 10 раз [3]. На фоне сахарного диабета гликирование белков усиливается, что связано с повышением уровня глюкозы и производных сахаридов как в плазме крови, так и в поврежденных сосудах. Существует множество продуктов присоединения глюкозы к белкам тканей и жидкостей организма in vivo. Наиболее ранним продуктом присоединения глюкозы к белку является Nе–фруктозил–лизин (ФЛ), при медленной деградации которого образуются различные конечные продукты гликирования (КПГ). Выраженной способностью гликировать белки обладают соединения дикарбонила эндогенного происхождения, а также глиоксаль, метилглиоксаль и 3–дезоксиглюкозон. Они формируются при деградации гликированных белков, промежуточных метаболитов гликолиза и перекисного окисления липидов. Соединения дикарбонила напрямую реагируют с белками с образованием КПГ (рис. 1а). Экспериментальные и клинические данные свидетельствуют о том, что интенсивность гликирования под действием метилглиоксаля нарастает при диабете непропорционально увеличению концентрации глюкозы [4–7]. По–видимому, это обусловлено синтезом метилглиоксаля из триозофосфата, который накапливается в стенках сосудов вследствие гипергликемии (рис. 2) [8]. В наибольшем количестве в качестве конечных продуктов гликирования образуются гидроимидазолоны, которые являются производными остатков аргинина, подвергшихся модификации глиоксалем, метилглиоксалем и 3–дезоксиглюкозоном (3–DG), – N?–(5–гидро–4–имидазолон–2–ил)орнитин (G–H1), N?–(5–гидро–5–метил–4–имидазолон–2–ил)орнитин (MG–H1) и N?–(5–гидро–5–(2,3,4–тригидроксибутил)–4–имидазолон–2–ил)орнитин и родственные структурные изомеры (3DG–H) (рис. 1б). Другими широко изученными КПГ являются N?–карбоксиметил–лизин (КМЛ) и N?–карбоксиэтил–лизин (КЭЛ), а также производные перекрестного связывания белков – пентозидин и глюкозепан (рис. 1 в–е) [2,9–12].
Литература
1. Thornalley PJ. Clinical significance of glycation. Clin Lab 1999; 45: 263–273.
2. Thornalley PJ, Battah S, Ahmed N et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 2003; 375: 581–592.
3. Ahmed N, Thornalley PJ, Dawczynski J et al. Methylglyoxal–derived hydroimidazolone advanced glycation endproducts of human lens proteins. Invest Ophthalmol Vis Sci 2003; 44: 5287–5292.
4. McLellan AC, Thornalley PJ, Benn J, Sonksen PH. The glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond) 1994; 87: 21–29.
5. Ahmed N, Babaei–Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 2005; 48: 1590–1603.
6. Babaei–Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ. Prevention of incipient diabetic nephropathy by high dose thiamine and benfotiamine. Diabetes 2003; 52: 2110–2120.
7. Ahmed N, Mirshekar–Syahkal B,Kennish L, KarachaliasN, Babaei–Jadidi R, Thornalley PJ. Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection. Mol Nutr Food Res 2005; 49: 691–699.
8. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–820.
9. Ahmed N, Argirov OK, Minhas HS, Cordeiro CA, Thornalley PJ. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatisation by aminoquinolyl–Nhydroxysuccimidyl–carbamate and application to Ne–carboxymethyl–lysine– and Ne–(1–carboxyethyl) lysine–modified albumin. Biochem J 2002; 364: 1–14.
10. Thorpe SR, Baynes JW. CML: a brief history. Maillard Reaction in Food Chemistry and Medical Science. Update for Postgenomic Era 2002; 1245: 91–99.
11. Sell DR, Monnier VM. Structure elucidation of a senescence crosslink from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 1989; 264: 21597–21602.
12. Biemel KM, Friedl DA, Lederer MO. Identification and quantification of major Maillard cross–links in human serum albumin and lens protein – Evidence for glucosepane as the dominant compound. J Biol Chem 2002; 277: 24907–24915.
13. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003; 426: 895–899.
14. Portero–Otin M, Pamplona R, Ruiz M, Cabiscol E, Prat J, Bellmunt MJ. Diabetes induces an impairment in the proteolytic activity against oxidized proteins and a heterogeneous effect in nonenzymatic protein modifications in the cytosol of rat liver and kidney. Diabetes 1999; 48: 2215–2220.
15. Verzijl N, DeGroot J, Thorpe SR et al. Effect of collagen turnover on the accumulation of advanced glycation endproducts. J Biol Chem 2000; 275: 39027–39031.
16. LieuwAF, vanHinsberghVWM,Teerlink T et al. Increased levels of Ne–(carboxymethyl) lysine and Ne–(carboxyethyl) lysine in type 1 diabetic patients with impaired renal function: correlation with markers of endothelial dysfunction. Nephrol Dial Transplant 2004; 19: 631–636.
17. Kilhovd BK, Giardino I, Torjesen PA et al. Increased serum levels of the specific AGE–compound methylglyoxal–derived hydroimidazolone in patients with type 2 diabetes. Metabolism 2003; 52: 163–167.
18. Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S. Localization in human diabetic peripheral nerve of Necarboxymethyllysine–protein adducts, an advanced glycation endproduct. Diabetologia 2001; 40: 1380–1387.
19. Makita Z, Vlassara H, Cerami A, Bucala R. Immunochemical detection of advanced glycosylation end products in vivo. J Biol Chem 1992; 267: 5133–5138.
20. Reddy S, Bichler J, Wells–Knecht KJ, Thorpe SR, Baynes JW. Ne–(Carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 1995; 34: 10872–10878.
21. Koito W, Araki T, Horiuchi S, Nagai R. Conventional antibody against Ne–(carboxymethyl) lysine (CML) shows cross–reaction to Ne–(carboxyethyl) lysine (CEL): Immunochemical quantification of CML with a specific antibody. J Biochem (Tokyo) 2004; 136: 831–837.
22. Drusch S, Faist V, Erbersdobler H. Determination of Necarboxymethyllysine in milk products by a modified reversed–phase HPLC method. Food Chem 1999; 65: 547–553.
23. Thornalley PJ, ArgirovaM, Ahmed N, Mann VM, Argirov OK, Dawnay A. Mass spectrometric monitoring of albumin in uraemia. Kidney Int 2000; 58: 2228–2234.
24. Ahmed N, Thornalley PJ, Luthen R et al. Processing of protein glycation, oxidation and nitrosation adducts in the liver and the effect of cirrhosis. JHepatol 2004; 41: 913–919.
25. Agalou S, Ahmed N, Babaei–Jadidi R, Dawnay A, Thornalley PJ. Profound mishandling of protein glycation degradation products in uremia and dialysis. J Am Soc Nephrol 2005; 16: 1471–1485.
26. Makita Z, Radoff S, Rayfield EJ et al. Reactive glycosylation endproducts in diabetic uraemia and
treatment of renal failure. Lancet 1994; 343: 1519–1522.
27. Hayashi CM, Nagai R, Miyazaki K et al. Conversion of Amadori products of the Maillard reaction to N–epsilon–(carboxymethyl) lysine by short–term heating: Possible detection of artifacts by immunohistochemistry. Lab Invest 2002; 82: 795–807.
28. Smith PR, Thornalley PJ. Influence of pH and phosphate ions on the kinetics of enolisation and degradation of fructosamines. Studies with the model Fructosamine, Ne–1–deoxy–D–yl–hippuryl–lysine. Biochem Int 1992; 28: 429–439.
29. Sebekova K, Podracka L, Blazicek P, Syrova D, Heidland A, Schinzel R. Plasma levels of advanced glycation end products in children with renal disease. Pediatr Nephrol 2001; 16: 1105–1112.
30. Wrobel K, Wrobel K, Garay–SevillaM, Nava LE,Malacara JM. Novel analytical approach to monitoring advanced glycosylation end products in human serumwith on–line spectrophotometric and spectrofluorometric detection in a flow system. Clin Chem 1997; 43: 1563–1569.
31. Thomas MC, Tsalamandris C, MacIsaac R et al. Lowmolecularweight AGEs are associated with GFR and anemia in patients with type 2 diabetes. Kidney Int 2004; 66: 1167–1172.
32. Buxton T, Guilbault GG Fluorometric analysis for N0–formylkynurenine in plasma and urine. Clin Chem 1974; 20: 765–768.
33. Odetti P, Fogarty J, Sell DR, Monnier VM. Chromatographic quantitation of plasma and erythrocyte pentosidine in diabetic and uremic subjects. Diabetes 1992; 41: 153–159.
34. Wilker SC, Chellan P, Arnold BM, Nagaraj RH. Chromatographic quantification of argpyrimidine, a methylglyoxal–derived product in tissue proteins. Anal Biochem 2001; 290: 353–358.
35. Sugiyama S, Miyata T, Ueda Y et al. Plasma levels of pentosidine in diabetic patients: an advanced glycation end product. J Am Soc Nephrol 1998; 9: 1681–1688.
36. Degenhardt TP, Thorpe SR, Baynes JW. Chemical modification of proteins by methylglyoxal. Cell Mol Biol 1998; 44: 1139–1145.
37. Requena JR, Baynes JW., Sima AAF ed. Chronic Complications in Diabetes: Animal Models and
Chronic Complications. Studies in animal models on the role of glycation and advanced glycation endproducts (AGEs) in the pathogenesis of diabetic complications: pitfalls and limitations. Amsterdam: Harwood Academic Publishers 2000: 43–70.
38. Westwood ME, Thornalley PJ. Molecular characteristics of methylglyoxal–modified bovine and human serum albumins. Comparison with glucose–derived advanced glycation endproduct–modified serum albumins. J Protien Chem 1995; 14: 359–372.
39. Johnson RN, Easdale RW, Tatnell M, Baker JR. Significance of variation in turnover of glycated albumin on indexes of diabetic control. Clin Chim Acta 1991; 198: 229–238.
40. Smedsrod B, Melkko J, Araki N, Sano H, Horiuchi S. Advanced glycation end products are eliminated by scavenger–receptor–mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J 1997; 322: 567–573.
41. Honda K, Nitta K, Horita S et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra–filtration. Nephrol Dial Transplant 1999; 14: 1541–1549.
42. Ahmed N, Thornalley PJ. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatisation with aminoquinolyl–N–hydroxysuccimidyl–carbamate and intrinsic fluorescence. Biochem J 2002; 364: 15–24.
43. Oste RE, Miller R, Sjostrom H, Noren O. Effect of Maillard reaction–products on protein digestion – studies on pure compounds. J Agric Food Chem 1987; 35: 938–942.
44. Collison KS, Parhar RS, Saleh SS et al. RAGE–mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs). J Leukoc Biol 2002; 71: 433–444.
45. Kislinger T, Fu C, Huber B et al. NE–(Carboxymethyl) lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 1999; 274: 31740–31749.
46. Thornalley PJ. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol 1998; 44: 1013–1023.
47. Takata K, Horiuchi S, Araki N, Shiga M, Saitoh M, Morino Y. Endocytic uptake of non–enzymatically glycosylated proteins is mediated by a scavenger receptor for aldehyde modified proteins. J Biol Chem 1988; 268: 14189–14825.
48. Svistounov DN, Berg TJ, Mccourt PAG et al. Lack of recognition of N–epsilon–(carboxymethyl) lysine by the mouse liver reticulo–endothelial system: implications for pathophysiology. Biochem Biophys Res Commun 2003; 309: 786–791.
49. Yonekura H, Yamamoto Y, Sakurai S et al. Novel splice variants of the receptor for advanced glycation endproducts expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes–induced vascular injury. Biochem J 2003; 370: 1097–1109.
50. Feng L, Matsumoto C, Schwartz A, Schmidt AM, Stern DM. Pile–Spellman J Chronic vascular inflammation in patients with Type 2 diabetes: endothelial biopsy and RT–PCR analysis. Diabetes Care 2005; 28: 379–384.
51. Stehouwer CDA, Gall MA, Twisk JWR, Knudsen E, Emeis JJ, Parving H–H. Increased urinary albumin excretion, endothelial dysfunction, and chronic lowgrade inflammation in type 2 diabetes. Diabetes 2002; 51: 1157–1165.
52. Forbes JM, Thorpe SR, Thallas–Bonke V et al. Modulation of soluble receptor for advanced glycation end products by angiotensin–converting enzyme–1 inhibition in diabetic nephropathy. J Am Soc Nephrol 2005; 16: 2363–2372.
53. Yamamoto Y, Kato I, Doi T et al. Development and prevention of advanced diabetic nephropathy in RAGE–overexpressing mice. J Clin Invest 2001; 108: 261–268.
54. Wendt TM, Tanji N, Guo J et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol 2003; 162: 1123–1137.
55. Valencia JV, Weldon SC, Quinn D et al. Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics. Anal Biochem 2004; 324: 68–78.
56. Valencia JV, Mone M, Zhang J, Weetall M, Buxton FP, Hughes TE. Divergent pathways of gene expression are activated by the RAGE ligands S100b and AGE–BSA. Diabetes 2004; 53: 743–751.
57. Hofmann MA, Drury S, Fu CF et al. RAGE mediates a novel pro–inflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999; 97: 889–901.
58. Park JS, Svetkauskaite D, He QB et al. Involvement of toll–like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279: 7370–7377.
59. Treutiger CJ, Mullins GE, Johansson ASM et al. High mobility group 1 B–box mediates activation of human endothelium. J Intern Med 2003; 254: 375–385. 60. Medina L, Haltiwanger R. Calf thymus high mobility group proteins are nonenzymatically glycated but not significantly glycosylated. Glycobiology 1998; 8:191–198.
61. Vlassara H, Li YM, Imani F et al. Identification of galectin–3 as a high–affinity binding protein for
advanced glycation end products (AGE): a new member of the AGE–receptor family. Mol Med 1995; 1: 634–646.
62. Ng R, Argirov OK, Ahmed N, Weigle B, Thornalley PJ. Human serum albumin minimally modified by methylglyoxal binds to human mononuclear leukocytes via the RAGE receptor and is displaced by N–carboxymethyl–lysine and hydroimidazolone AGE epitopes. Int Congr Ser 2002; 1245: 77–81.
63. Pugliese G, Pricci F, Iacobini C et al. Accelerated diabetic glomerulopathy in galectin–3/AGE receptor 3 knockout mice. FASEB J 2001; 15: 2471–2479.
64. Sasaki S, Bao Q, Hughes RC. Galectin–3 modulates rat mesangial cell proliferation and matrix synthesis during experimental glomerulonephritis induced by anti–Thy1.1 antibodies. J Pathol 1999; 187: 481–489.
65. Fukushi J, Makagiansar IT, Stallcup WB. NG2 Proteoglycan promotes endothelial cell motility and
angiogenesis via engagement of galectin–3 and a3b1 Integrin. Mol Biol Cell 2004; 15: 3580–3590.
66. Ochieng J, Furtak V, Lukyanov P. Extracellular functions of galectin–3. Glycoconj J 2002; 19: 527–535.
67. Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta 2002; 1572: 263–273.
68. Kikuchi Y, Kobayashi S, Hemmi N et al. Galectin–3–positive cell infiltration in human diabetic nephropathy. Nephrol Dial Transplant 2004; 19: 602–607.
69. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long–term complications in insulin–dependent diabetes mellitus. N Engl J Med 1993; 327: 977–986.
70. Manley S. Haemoglobin A(1c) – A marker for complications of type 2 diabetes: the experience from the UK Prospective Diabetes Study (UKPDS). Clin Chem Lab Med 2003; 41: 1182–1190.
71. Makita Z, Vlassara H, Rayfield E et al. Hemoglobin AGE: a circulating marker of advanced glycosylation. Science 1992; 258: 651–653.
72. Turk Z, Mesic R, Benko B. Comparison of advanced glycation endproducts on haemoglobin (Hb–AGE) and haemoglobin A(1c) for the assessment of diabetic control. Clin Chim Acta 1998; 277: 159–170.
73. Cai J, Hurst HE. Identification and quantitation of N–(carboxymethyl) valine adducts in hemoglobin by gas chromatography/mass spectrometry. J Mass Spectrom 1999; 34: 537–543.
74. Iwamoto H, Motomiya Y, Miura K, Morisawa M, Yoshimura Y, Maruyama I. Immunochemical assay of hemoglobin with N–epsilon–(carboxymethyl) lysine at lysine 66 of the beta chain. Clin Chem 2001; 47: 1249–1255.
75. Zhang X, Medzihradszhy KF, Cunningham J et al. Characterization of glycated hemoglobin in diabetic patients: usefulness of electrospray mass spectrometry in monitoring the extent and distribution of glycation. J Chromatogr B Biomed Sci Appl 2001; 759: 1–15.
76. Monnier VM, Bautista O, Kenny D et al. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long–term intensive versus conventional therapy of type 1 diabetes. Diabetes 1999; 48: 870–880.
77. Sensi M, Morano S, Morelli S et al. Reduction of advanced glycation end–products (AGE) levels in nervous tissue proteins of diabetic Lewis rats following islet transplants is related to different durations of poor metabolic control. Eur J Neurosci 1998; 10: 2768–2775.
78. Pugliese G, Pricci F, Pesce C et al. Early, but not advanced, glomerulopathy is reversed by pancreatic islet transplants in experimental diabetic rats: correlation with glomerular extracellular matrix mRNA levels. Diabetes 1997; 46: 1198–1206.
79. Thornalley PJ. The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diab Res 2005; 1:287–298.
80. Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003; 419: 31–40.
81. Voziyan PA, Hudson BG. Pyridoxamine: the many virtues of a Maillard reaction inhibitor. Ann NY Acad Sci 2005; 1043: 807–816.
82. Berlanga J, Cibrian D, Guillen I et al. Methylglyoxal administration induces diabetes–like microvascular changes and perturbs the healing process of skin wounds. Clin Sci 2005; 109: 83–95.
83. Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci USA 1992; 89: 12043–12047.
84. Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci USA 1994; 91: 11704–11708.
85. Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM–1, ICAM–1) expression and atheroma formation in normal rabbits. Mol Med 1995; 1: 447–456.
86. Stratton IM, Adler AI, Neil HAW et al. Association of glycaemic with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2002; 321: 405–412.
87. Hammes H–PX, Edelstein D et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 2003; 9: 294–299.
88. Vasan S, Zhang X, Kapurniotu A et al. An agent cleaving glucose–derived protein crosslinks in vitro and in vivo. Nature 1996; 382: 275–278.
89. Ferguson GP, Vanpatten S, Bucala R, Al Abed Y. Detoxification of methylglyoxal by the nucleophilic bidentate, phenylacylthiazolium bromide. Chem Res Toxicol 1999; 12: 617–622.
90. Thornalley PJ, Jahan I, Ahmed N, Ng R. The putative antiglycation agent phenacylthiazolium bromide suppresses cellular triosephosphate accumulation in model hyperglycaemia in vitro by stimulating the pentosephosphate pathway to consume glyceraldehyde–3–phosphate and produce ribose–5–phosphate. Diabetes 2000; 49: 612.
91. Thornalley PJ, Minhas HS. Rapid hydrolysis and slow a,b–dicarbonyl cleavage of an agent proposed to cleave glucose–derived protein cross–links. Biochem Pharmacol 1999; 57: 303–307.
92. Cooper ME, Thallas V, Forbes J et al. The cross–link breaker, N–phenacylthiazolium bromide, prevents vascular advanced glycation end–product accumulation. Diabetologia 2000; 43: 660–664.
93. Wolffenbuttel BHR, Boulanger CM, Crijns FRL et al. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci USA 2000; 95: 4630–4634.
94. Yang SZ, Litchfield JE, Baynes JW. AGE–breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats. Arch Biochem Biophys 2003; 412: 42–46.
95. Booth AA, Khalifah RG, Todd P, Hudson BG. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs). J Biol Chem 1997; 272:5430–5437.
96. Nakamura Y, Kawakami M, Yoshihiro A et al. Involvement of the mitochondrial death pathway in
chemopreventive benzyl isothiocyanate–induced apoptosis. J Biol Chem 2002; 277: 8492–8499.
97. Degenhardt TP, Alderson NL, Arrington DD et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin–diabetic rat. Kidney Int 2002; 61: 939–950.
98. Babaei–Jadidi R, Karachalias N, Kupich C, Ahmed N, Thornalley PJ. High dose thiamine therapy counters dyslipidaemia in streptozotocin–induced diabetic rats. Diabetologia 2004; 47: 2235–2246.
99. Stitt A, Gardiner TA, Anderson NL et al. The AGE Inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 2002; 51:2826–2832.
100. Rogers KS, Higgins ES, Kline ES. Experimental diabetes causes mitochondrial loss and cytoplasmic enrichment of pyridoxal–phosphate and aspartate–aminotransferase activity. Biochem Med Metab Biol 1986;36: 91–97.
101. Okada M, Shibuya M, Yamamoto E, Murakami Y. Effect of diabetes on vitamin B6 requirement in experimental animals. Diabetes Obes Metab 1999; 1: 221–225.
102. Sakurai T, Asakura T, Mizuno A, Matsuda M. Absorption and metabolism of pyridoxamine in mice.2. Transformation of pyridoxamine to pyridoxal in intestinal tissues. J Nutr Sci Vitaminol (Tokyo) 1992; 38: 227–233.
103. Merrill AH Jr, Henderson JM. Vitamin B6 metabolism by human liver. Ann NY Acad Sci 1990; 585: 110–117.
104. Brattstrom L, Stavenow L, Galvard H et al. Pyridoxine reduces cholesterol and low–density–lipoprotein and increases antithrombin–III activity in 80–year–old men with low plasma pyridoxal 5–phosphate. Scand J Clin Lab Invest 1990; 50: 873–877.
105. Abbas ZG, Swai ABM. Evaluation of the efficacy of thiamine and pyridoxine in the treatment of
symptomatic diabetic peripheral neuropathy. East Afr Med J 1997; 74: 803–808.
106. Cohen KL, Gorecki GA, Silverstein SB, Ebersole JS, Solomon LR. Effect of pyridoxine: (Vitamin–B6) on diabetic–patients with peripheral neuropathy. J Am Podiatry Assoc 1984; 74: 394–397.
107. McCann VJ, Davis RE. Pyridoxine and diabetic neuropathy – A double–blind controlled– study. Diabetes Care 1983; 6: 102–103.
108. Levin ER, Hanscom TA, Fisher M et al. The influence of pyridoxine in diabetic peripheral neuropathy. Diabetes Care 1981; 4: 606–609.
109. Gallet X, Charloteaux B, Thomas A, Braseur R. A fast method to predict protein interaction sites from sequences. J Mol Biol 2000; 302: 917–926.
110. Ahmed N, Dobler D, Dean M, Thornalley PJ. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem 2005;280: 5724–5732.
111. Dobler D, Ahmed N, Thornalley PJ. Peptide mapping of type IV collagen modified minimally by methylglyoxal in vitro. Ann NY Acad Sci 2004; 1043: 906.
112. Thornalley PJ. The enzymatic defence against glycation in health, disease and therapeutics: a symposium to examine the concept. Biochem Soc Trans 2003; 31:1343–1348.
113. Thornalley PJ. Glyoxalase I – structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 2003; 31: 1343–1348.
114. Suzuki K, Koh YH, Mizuno H, Hamaoko R, Taniguchi N. Overexpression of aldehyde reductase protects PC12 cells from the cytotoxicity of methylglyoxal or 3–deoxyglucosone. J Biochem 1998; 123: 353–357.
115. Delpierre G, Rider MH, Collard F et al. Identification, cloning, and heterologous expression of a mammalian fructosamine–3–kinase. Diabetes 2000; 49:1627–1634.
116. Conner JR, Beisswenger PJ, Szwergold BS. The expression of the genes for fructosamine–3–kinase and fructosamine–3–kinase–related protein appears to be constitutive and unaffected by environmental signals. Biochem Biophys Res Commun 2004; 323: 932–936.