что такое косинус альфа
Тригонометрия простыми словами
Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».
Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).
Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.
Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.
Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.
Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.
Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.
Значения тригонометрических функций
для первой четверти круга (0° – 90°)
Принцип повтора знаков тригонометрических функций
Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.
В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.
Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.
Тригонометрический круг
Углы в радианах
Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.
Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы
Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.
Синус, косинус, тангенс и котангенс. Определения
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Определения тригонометрических функций
Данные определения даны для острого угла прямоугольного треугольника!
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.
Угол поворота
В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.
Синус (sin) угла поворота
При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.
Числа
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синус, косинус, тангенс, котангенс числа
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.
Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.
Тригонометрические функции углового и числового аргумента
Основные функции тригонометрии
Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.
Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.
В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.
sin α = A 1 H O A 1 = y 1 = y
Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.
Геометрия. Урок 1. Тригонометрия
Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Тригонометрия в прямоугольном треугольнике
Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.
Синус угла – отношение противолежащего катета к гипотенузе.
sin α = Противолежащий катет гипотенуза
Косинус угла – отношение прилежащего катета к гипотенузе.
cos α = Прилежащий катет гипотенуза
Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).
tg α = Противолежащий катет Прилежащий катет
Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).
ctg α = Прилежащий катет Противолежащий катет
tg ∠ A = sin ∠ A cos ∠ A = C B A C
ctg ∠ A = cos ∠ A sin ∠ A = A C C B
tg ∠ B = sin ∠ B cos ∠ B = A C C B
ctg ∠ B = cos ∠ B sin ∠ B = C B A C
Тригонометрия: Тригонометрический круг
Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.
Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.
Рассмотрим прямоугольный треугольник A O B :
cos α = O B O A = O B 1 = O B
sin α = A B O A = A B 1 = A B
Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).
Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :
Ещё одно замечание.
Синус тупого угла – положительная величина, а косинус – отрицательная.
Основное тригонометрическое тождество
sin 2 α + cos 2 α = 1
Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :
A B 2 + O B 2 = O A 2
sin 2 α + cos 2 α = R 2
sin 2 α + cos 2 α = 1
Тригонометрия: Таблица значений тригонометрических функций
Тригонометрия: градусы и радианы
Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!
Тригонометрия: Формулы приведения
Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,
можно заметить, что:
sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °
sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °
sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °
sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °
cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °
cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °
cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °
cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °
Рассмотрим тупой угол β :
Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:
sin ( 180 ° − α ) = sin α
cos ( 180 ° − α ) = − cos α
tg ( 180 ° − α ) = − tg α
ctg ( 180 ° − α ) = − ctg α
Тригонометрия: Теорема синусов
В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.
a sin ∠ A = b sin ∠ B = c sin ∠ C
Тригонометрия: Расширенная теорема синусов
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R
Тригонометрия: Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A
b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B
c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с тригонометрией.
Тригонометрия: Тригонометрические уравнения
Это тема 10-11 классов.
Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!
Таблица КОСИНУСОВ для углов от 0° до 360° градусов
КОСИНУС (COS α) острого угла в прямоугольном треугольнике равен отношению прилежащего катета к его гипотенузе…
α (радианы) | 0 | π/6 | π/4 | π/3 | π/2 | π | √3π/2 | 2π |
---|---|---|---|---|---|---|---|---|
α (градусы) | 0° | 30° | 45° | 60° | 90° | 180° | 270° | 360° |
cos α (Косинус) | 1 | √3/2 | √2/2 | 1/2 | 0 | -1 | 0 | 1 |
Угол в градусах | Cos (Косинус) |
---|---|
0° | 1 |
1° | 0.9998 |
2° | 0.9994 |
3° | 0.9986 |
4° | 0.9976 |
5° | 0.9962 |
6° | 0.9945 |
7° | 0.9925 |
8° | 0.9903 |
9° | 0.9877 |
10° | 0.9848 |
11° | 0.9816 |
12° | 0.9781 |
13° | 0.9744 |
14° | 0.9703 |
15° | 0.9659 |
16° | 0.9613 |
17° | 0.9563 |
18° | 0.9511 |
19° | 0.9455 |
20° | 0.9397 |
21° | 0.9336 |
22° | 0.9272 |
23° | 0.9205 |
24° | 0.9135 |
25° | 0.9063 |
26° | 0.8988 |
27° | 0.891 |
28° | 0.8829 |
29° | 0.8746 |
30° | 0.866 |
31° | 0.8572 |
32° | 0.848 |
33° | 0.8387 |
34° | 0.829 |
35° | 0.8192 |
36° | 0.809 |
37° | 0.7986 |
38° | 0.788 |
39° | 0.7771 |
40° | 0.766 |
41° | 0.7547 |
42° | 0.7431 |
43° | 0.7314 |
44° | 0.7193 |
45° | 0.7071 |
46° | 0.6947 |
47° | 0.682 |
48° | 0.6691 |
49° | 0.6561 |
50° | 0.6428 |
51° | 0.6293 |
52° | 0.6157 |
53° | 0.6018 |
54° | 0.5878 |
55° | 0.5736 |
56° | 0.5592 |
57° | 0.5446 |
58° | 0.5299 |
59° | 0.515 |
60° | 0.5 |
61° | 0.4848 |
62° | 0.4695 |
63° | 0.454 |
64° | 0.4384 |
65° | 0.4226 |
66° | 0.4067 |
67° | 0.3907 |
68° | 0.3746 |
69° | 0.3584 |
70° | 0.342 |
71° | 0.3256 |
72° | 0.309 |
73° | 0.2924 |
74° | 0.2756 |
75° | 0.2588 |
76° | 0.2419 |
77° | 0.225 |
78° | 0.2079 |
79° | 0.1908 |
80° | 0.1736 |
81° | 0.1564 |
82° | 0.1392 |
83° | 0.1219 |
84° | 0.1045 |
85° | 0.0872 |
86° | 0.0698 |
87° | 0.0523 |
88° | 0.0349 |
89° | 0.0175 |
90° | 0 |
Угол | cos (Косинус) |
---|---|
91° | -0.0175 |
92° | -0.0349 |
93° | -0.0523 |
94° | -0.0698 |
95° | -0.0872 |
96° | -0.1045 |
97° | -0.1219 |
98° | -0.1392 |
99° | -0.1564 |
100° | -0.1736 |
101° | -0.1908 |
102° | -0.2079 |
103° | -0.225 |
104° | -0.2419 |
105° | -0.2588 |
106° | -0.2756 |
107° | -0.2924 |
108° | -0.309 |
109° | -0.3256 |
110° | -0.342 |
111° | -0.3584 |
112° | -0.3746 |
113° | -0.3907 |
114° | -0.4067 |
115° | -0.4226 |
116° | -0.4384 |
117° | -0.454 |
118° | -0.4695 |
119° | -0.4848 |
120° | -0.5 |
121° | -0.515 |
122° | -0.5299 |
123° | -0.5446 |
124° | -0.5592 |
125° | -0.5736 |
126° | -0.5878 |
127° | -0.6018 |
128° | -0.6157 |
129° | -0.6293 |
130° | -0.6428 |
131° | -0.6561 |
132° | -0.6691 |
133° | -0.682 |
134° | -0.6947 |
135° | -0.7071 |
136° | -0.7193 |
137° | -0.7314 |
138° | -0.7431 |
139° | -0.7547 |
140° | -0.766 |
141° | -0.7771 |
142° | -0.788 |
143° | -0.7986 |
144° | -0.809 |
145° | -0.8192 |
146° | -0.829 |
147° | -0.8387 |
148° | -0.848 |
149° | -0.8572 |
150° | -0.866 |
151° | -0.8746 |
152° | -0.8829 |
153° | -0.891 |
154° | -0.8988 |
155° | -0.9063 |
156° | -0.9135 |
157° | -0.9205 |
158° | -0.9272 |
159° | -0.9336 |
160° | -0.9397 |
161° | -0.9455 |
162° | -0.9511 |
163° | -0.9563 |
164° | -0.9613 |
165° | -0.9659 |
166° | -0.9703 |
167° | -0.9744 |
168° | -0.9781 |
169° | -0.9816 |
170° | -0.9848 |
171° | -0.9877 |
172° | -0.9903 |
173° | -0.9925 |
174° | -0.9945 |
175° | -0.9962 |
176° | -0.9976 |
177° | -0.9986 |
178° | -0.9994 |
179° | -0.9998 |
180° | -1 |
Угол | cos (косинус) |
---|---|
181° | -0.9998 |
182° | -0.9994 |
183° | -0.9986 |
184° | -0.9976 |
185° | -0.9962 |
186° | -0.9945 |
187° | -0.9925 |
188° | -0.9903 |
189° | -0.9877 |
190° | -0.9848 |
191° | -0.9816 |
192° | -0.9781 |
193° | -0.9744 |
194° | -0.9703 |
195° | -0.9659 |
196° | -0.9613 |
197° | -0.9563 |
198° | -0.9511 |
199° | -0.9455 |
200° | -0.9397 |
201° | -0.9336 |
202° | -0.9272 |
203° | -0.9205 |
204° | -0.9135 |
205° | -0.9063 |
206° | -0.8988 |
207° | -0.891 |
208° | -0.8829 |
209° | -0.8746 |
210° | -0.866 |
211° | -0.8572 |
212° | -0.848 |
213° | -0.8387 |
214° | -0.829 |
215° | -0.8192 |
216° | -0.809 |
217° | -0.7986 |
218° | -0.788 |
219° | -0.7771 |
220° | -0.766 |
221° | -0.7547 |
222° | -0.7431 |
223° | -0.7314 |
224° | -0.7193 |
225° | -0.7071 |
226° | -0.6947 |
227° | -0.682 |
228° | -0.6691 |
229° | -0.6561 |
230° | -0.6428 |
231° | -0.6293 |
232° | -0.6157 |
233° | -0.6018 |
234° | -0.5878 |
235° | -0.5736 |
236° | -0.5592 |
237° | -0.5446 |
238° | -0.5299 |
239° | -0.515 |
240° | -0.5 |
241° | -0.4848 |
242° | -0.4695 |
243° | -0.454 |
244° | -0.4384 |
245° | -0.4226 |
246° | -0.4067 |
247° | -0.3907 |
248° | -0.3746 |
249° | -0.3584 |
250° | -0.342 |
251° | -0.3256 |
252° | -0.309 |
253° | -0.2924 |
254° | -0.2756 |
255° | -0.2588 |
256° | -0.2419 |
257° | -0.225 |
258° | -0.2079 |
259° | -0.1908 |
260° | -0.1736 |
261° | -0.1564 |
262° | -0.1392 |
263° | -0.1219 |
264° | -0.1045 |
265° | -0.0872 |
266° | -0.0698 |
267° | -0.0523 |
268° | -0.0349 |
269° | -0.0175 |
270° | 0 |
Угол | Cos (Косинус) |
---|---|
271° | 0.0175 |
272° | 0.0349 |
273° | 0.0523 |
274° | 0.0698 |
275° | 0.0872 |
276° | 0.1045 |
277° | 0.1219 |
278° | 0.1392 |
279° | 0.1564 |
280° | 0.1736 |
281° | 0.1908 |
282° | 0.2079 |
283° | 0.225 |
284° | 0.2419 |
285° | 0.2588 |
286° | 0.2756 |
287° | 0.2924 |
288° | 0.309 |
289° | 0.3256 |
290° | 0.342 |
291° | 0.3584 |
292° | 0.3746 |
293° | 0.3907 |
294° | 0.4067 |
295° | 0.4226 |
296° | 0.4384 |
297° | 0.454 |
298° | 0.4695 |
299° | 0.4848 |
300° | 0.5 |
301° | 0.515 |
302° | 0.5299 |
303° | 0.5446 |
304° | 0.5592 |
305° | 0.5736 |
306° | 0.5878 |
307° | 0.6018 |
308° | 0.6157 |
309° | 0.6293 |
310° | 0.6428 |
311° | 0.6561 |
312° | 0.6691 |
313° | 0.682 |
314° | 0.6947 |
315° | 0.7071 |
316° | 0.7193 |
317° | 0.7314 |
318° | 0.7431 |
319° | 0.7547 |
320° | 0.766 |
321° | 0.7771 |
322° | 0.788 |
323° | 0.7986 |
324° | 0.809 |
325° | 0.8192 |
326° | 0.829 |
327° | 0.8387 |
328° | 0.848 |
329° | 0.8572 |
330° | 0.866 |
331° | 0.8746 |
332° | 0.8829 |
333° | 0.891 |
334° | 0.8988 |
335° | 0.9063 |
336° | 0.9135 |
337° | 0.9205 |
338° | 0.9272 |
339° | 0.9336 |
340° | 0.9397 |
341° | 0.9455 |
342° | 0.9511 |
343° | 0.9563 |
344° | 0.9613 |
345° | 0.9659 |
346° | 0.9703 |
347° | 0.9744 |
348° | 0.9781 |
349° | 0.9816 |
350° | 0.9848 |
351° | 0.9877 |
352° | 0.9903 |
353° | 0.9925 |
354° | 0.9945 |
355° | 0.9962 |
356° | 0.9976 |
357° | 0.9986 |
358° | 0.9994 |
359° | 0.9998 |
360° | 1 |
Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».
Чему равен косинус 30? …
— Ищем в таблице соответствующее значение. Правильный ответ: 0.866