что такое корреляция с клиническими и лабораторными данными

Что такое клиническая корреляция

Клиническая корреляция – это лечебный процесс, который используют врачи, чтобы помочь себе поставить диагноз пациенту для его правильного лечения или определения его состояния.

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными

Клиническая корреляция используется после диагностического теста – например, после рентгена, биопсии или МРТ – показывает что-то на картине или ткани сканирования все ли нормально или нет. Врач также берет во внимание возраст пациента, истории болезней, физическое здоровье, клинические испытания и симптомы, чтобы определить диагноз, основанный на корреляции (сравнение и сопоставление) клинических результатов пациента.

Примеры клинической корреляции

Следующий пример клинической корреляции поможет вам лучше понять его. Как уже упоминалось выше, она производится для сравнения всей информации, чтобы определить диагноз. Итак, клиническая корреляция, что это?

Например, ваши лимфатические узлы причиняют вам боль, вы идете к врачу для проверки, он же отправляет вас к рентгенологу. Радиолог рассматривает полученный результат и замечает проблему под названием лимфаденит. Он возникает, когда лимфатические железы становятся увеличенными из-за вирусов, бактерий, грибков или по другим причинам.

В худшем случае, воспаленные железы иногда находятся рядом с местом опухоли или инфекции, и увеличение лимфатических узлов является предупредительным знаком для аутоиммунных заболеваний, лимфомы и рака.

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными

Невозможно сразу определить что это, лимфаденит или более тяжелые заболевания, рентгенолог заказывает клиническую корреляцию. Для этого, радиолог отправляет информацию обратно к вашему врачу, который затем будет применять все свои медицинские знания, беря вашу медицинскую историю и сравнивая всю вашу общую картину здоровья на данный момент и симптомы, чтобы определить, насколько серьезна проблема.

Когда в отчете врач пишет, что лимфатические узлы не слишком увеличены и это может быть просто возможно незначительная инфекция, то он берет вас на 6-8 недель наблюдения, чтобы убедиться, как улучшить ваши симптомы, точнее избавить от них, используя разные антибиотики для борьбы с инфекцией.

Как менопауза влияет на мозг Менопауза может вызвать изменения в вашем мозгу. Узнайте точно, что именно происходит, и что вы можете с этим поделать
Что можно сделать с очень сухими волосами Советы по уходу за очень сухими волосами. Какие шампуни для очень сухих волос использовать, причины, чем полоскать, масла для сухих волос и многое другое.

Если опухоль увеличивается и ваши лимфатические узлы становятся большими, врач исключает инфекцию и делает биопсию, чтобы определить, есть ли у вас аутоиммунное заболевание. В конечном результате, врач сопоставит все данные, чтобы поставить диагноз и назначить правильное лечение.

Источник

Корреляции в дипломных работах по психологии

Термин «корреляция» активно используется в гуманитарных науках, медицине; часто мелькает в СМИ. Ключевую роль корреляции играют в психологии. В частности, расчет корреляций выступает важным этапом реализации эмпирического исследования при написании ВКР по психологии.

В этой статье мы простым языком объясним суть корреляционной связи, виды корреляций, способы расчета, особенности использования корреляции в психологических исследованиях, а также при написании дипломных работ по психологии.

Что такое корреляция

Корреляция – это связь. Но не любая. В чем же ее особенность? Рассмотрим на примере.

Представьте, что вы едете на автомобиле. Вы нажимаете педаль газа – машина едет быстрее. Вы сбавляете газ – авто замедляет ход. Даже не знакомый с устройством автомобиля человек скажет: «Между педалью газа и скоростью машины есть прямая связь: чем сильнее нажата педаль, тем скорость выше».

Это зависимость функциональная – скорость выступает прямой функцией педали газа. Специалист объяснит, что педаль управляет подачей топлива в цилиндры, где происходит сжигание смеси, что ведет к повышению мощности на вал и т.д. Это связь жесткая, детерминированная, не допускающая исключений (при условии, что машина исправна).

Теперь представьте, что вы директор фирмы, сотрудники которой продают товары. Вы решаете повысить продажи за счет повышения окладов работников. Вы повышаете зарплату на 10%, и продажи в среднем по фирме растут. Через время повышаете еще на 10%, и опять рост. Затем еще на 5%, и опять есть эффект. Напрашивается вывод – между продажами фирмы и окладом сотрудников есть прямая зависимость – чем выше оклады, тем выше продажи организации. Такая же это связь, как между педалью газа и скоростью авто? В чем ключевое отличие?

Правильно, между окладом и продажами заисимость не жесткая. Это значит, что у кого-то из сотрудников продажи могли даже снизиться, невзирая на рост оклада. У кого-то остаться неизменными. Но в среднем по фирме продажи выросли, и мы говорим – связь продаж и оклада сотрудников есть, и она корреляционная.

В основе функциональной связи (педаль газа – скорость) лежит физический закон. В основе корреляционной связи (продажи – оклад) находится простая согласованность изменения двух показателей. Никакого закона (в физическом понимании этого слова) за корреляцией нет. Есть лишь вероятностная (стохастическая) закономерность.

Численное выражение корреляционной зависимости

Итак, корреляционная связь отражает зависимость между явлениями. Если эти явления можно измерить, то она получает численное выражение.

Полученное число называется коэффициентом корреляции. Для его правильной интерпретации важно учитывать следующее:

Прямая и обратная

Сильная и слабая

Чем ниже численное значение коэффициента, тем взаимосвязь между явлениями и показателями меньше.

Рассмотрим пример. Взяли 10 студентов и измерили у них уровень интеллекта (IQ) и успеваемость за семестр. Расположили эти данные в виде двух столбцов.

Испытуемый

Успеваемость (баллы)

Посмотрите внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. Но также растет и уровень успеваемости. Из любых двух студентов успеваемость будет выше у того, у кого выше IQ. И никаких исключений из этого правила не будет.

Перед нами пример полного, 100%-но согласованного изменения двух показателей в группе. И это пример максимально возможной положительной взаимосвязи. То есть, корреляционная зависимость между интеллектом и успеваемостью равна 1.

Рассмотрим другой пример. У этих же 10-ти студентов с помощью опроса оценили, в какой мере они ощущают себя успешными в общении с противоположным полом (по шкале от 1 до 10).

Испытуемый

Успех в общении с противоположным полом (баллы)

Смотрим внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. При этом в последнем столбце последовательно снижается уровень успешности общения с противоположным полом. Из любых двух студентов успех общения с противоположным полом будет выше у того, у кого IQ ниже. И никаких исключений из этого правила не будет.

А как понять смысл корреляции равной нулю (0)? Это значит, связи между показателями нет. Еще раз вернемся к нашим студентам и рассмотрим еще один измеренный у них показатель – длину прыжка с места.

Испытуемый

Длина прыжка с места (м)

Не наблюдается никакой согласованности между изменением IQ от человека к человеку и длинной прыжка. Это и свидетельствует об отсутствии корреляции. Коэффициент корреляции IQ и длины прыжка с места у студентов равен 0.

Мы рассмотрели крайние случаи. В реальных измерениях коэффициенты редко бывают равны точно 1 или 0. При этом принята следующая шкала:

Приведенная градация дает очень приблизительные оценки и в таком виде редко используются в исследованиях.

Чаще используются градации коэффициентов по уровням значимости. В этом случае реально полученный коэффициент может быть значимым или не значимым. Определить это можно, сравнив его значение с критическим значением коэффициента корреляции, взятым из специальной таблицы. Причем эти критические значения зависят от численности выборки (чем больше объем, тем ниже критическое значение).

Корреляционный анализ в психологии

Корреляционный метод выступает одним из основных в психологических исследованиях. И это не случайно, ведь психология стремится быть точной наукой. Получается ли?

В чем особенность законов в точных науках. Например, закон тяготения в физике действует без исключений: чем больше масса тела, тем сильнее оно притягивает другие тела. Этот физический закон отражает связь массы тела и силы притяжения.

Пример исследования на студентах из предыдущего раздела хорошо иллюстрирует использование корреляций в психологии:

Вот как могли выглядеть краткие выводы по результатам придуманного исследования на студентах:

Таким образом, уровень интеллекта студентов выступает позитивным фактором их академической успеваемости, в то же время негативно сказываясь на отношениях с противоположным полом и не оказывая значимого влияния на спортивные успехи, в частности, способность к прыгать с места.

Как видим, интеллект помогает студентам учиться, но мешает строить отношения с противоположным полом. При этом не влияет на их спортивные успехи.

Неоднозначное влияние интеллекта на личность и деятельность студентов отражает сложность этого феномена в структуре личностных особенностей и важность продолжения исследований в этом направлении. В частности, представляется важным провести анализ взаимосвязей интеллекта с психологическими особенностями и деятельностью студентов с учетом их пола.

Коэффициенты Пирсона и Спирмена

Рассмотрим два метода расчета.

Коэффициент Пирсона – это особый метод расчета взаимосвязи показателей между выраженностью численных значений в одной группе. Очень упрощенно он сводится к следующему:

Коэффициент ранговой корреляции Спирмена рассчитывается похожим образом:

В случае Пирсона расчет шел с использованием среднего значения. Следовательно, случайные выбросы данных (существенное отличие от среднего), например, из-за ошибки обработки или недостоверных ответов могут существенно исказить результат.

В случае Спирмена абсолютные значения данных не играют роли, так как учитывается только их взаимное расположение по отношению друг к другу (ранги). То есть, выбросы данных или другие неточности не окажут серьезного влияния на конечный результат.

Если результаты тестирования корректны, то различия коэффициентов Пирсона и Спирмена незначительны, при этом коэффициент Пирсона показывает более точное значение взаимосвязи данных.

Как рассчитать коэффициент корреляции

Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.

Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.

Расчет с помощью электронных таблиц Microsoft Excel

Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.

Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».

Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными

В таблицах Excel реализована формула расчета только коэффициента Пирсона.

Расчет с помощью программы STATISTICA

Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными

Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону – 0,038, полученной выше с помощью Excel. Однако различия незначительны.

Использование корреляционного анализа в дипломных работах по психологии (пример)

Большинство тем выпускных квалификационных работ по психологии (дипломов, курсовых, магистерских) предполагают проведение корреляционного исследования (остальные связаны с выявлением различий психологических показателей в разных группах).

Сам термин «корреляция» в названиях тем звучит редко – он скрывается за следующими формулировками:

Рассмотрим кратко этапы его проведения при написании дипломной работы по психологии на тему: «Взаимосвязь личностной тревожности и агрессивности у подростков».

1. Для расчета необходимы сырые данные, в качестве которых обычно выступают результаты тестирования испытуемых. Они заносятся в сводную таблицу и помещаются в приложение. Эта таблица устроена следующим образом:

Источник

Библиотека постов MEDSTATISTIC об анализе медицинских данных

Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic

Критерии и методы

КРИТЕРИЙ КОРРЕЛЯЦИИ ПИРСОНА

​ – это метод параметрической статистики, позволяющий определить наличие или отсутствие линейной связи между двумя количественными показателями, а также оценить ее тесноту и статистическую значимость. Другими словами, критерий корреляции Пирсона позволяет определить, изменяется ли (возрастает или уменьшается) один показатель в ответ на изменения другого? В статистических расчетах и выводах коэффициент корреляции обычно обозначается как rxy или Rxy.

1. История разработки критерия корреляции

Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон.

2. Для чего используется критерий корреляции Пирсона?

Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

Например, рост ребенка зависит от его возраста, то есть чем старше ребенок, тем он выше. Если мы возьмем двух детей разного возраста, то с высокой долей вероятности рост старшего ребенка будет больше, чем у младшего. Данное явление и называется зависимостью, подразумевающей причинно-следственную связь между показателями. Разумеется, между ними имеется и корреляционная связь, означающая, что изменения одного показателя сопровождаются изменениями другого показателя.

В другой ситуации рассмотрим связь роста ребенка и частоты сердечных сокращений (ЧСС). Как известно, обе эти величины напрямую зависят от возраста, поэтому в большинстве случаев дети большего роста (а значит и более старшего возраста) будут иметь меньшие значения ЧСС. То есть, корреляционная связь будет наблюдаться и может иметь достаточно высокую тесноту. Однако, если мы возьмем детей одного возраста, но разного роста, то, скорее всего, ЧСС у них будет различаться несущественно, в связи с чем можно сделать вывод о независимости ЧСС от роста.

Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.

4. Как рассчитать коэффициента корреляции Пирсона?

Расчет коэффициента корреляции Пирсона производится по следующей формуле:

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными

5. Как интерпретировать значение коэффициента корреляции Пирсона?

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока:

Абсолютное значение rxyТеснота (сила) корреляционной связи
менее 0.3слабая
от 0.3 до 0.5умеренная
от 0.5 до 0.7заметная
от 0.7 до 0.9высокая
более 0.9весьма высокая

Оценка статистической значимости коэффициента корреляции rxy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными

Полученное значение tr сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если tr превышает tкрит, то делается вывод о статистической значимости выявленной корреляционной связи.

6. Пример расчета коэффициента корреляции Пирсона

Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице:

Σ(X) = 951 + 874 + 957 + 1084 + 903 = 4769

Σ(Y) = 83 + 76 + 84 + 89 + 79 = 441

Mx = Σ(X) / n = 4769 / 5 = 953.8

My = Σ(Y) / n = 441 / 5 = 82.2

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными

Источник

Корреляционный анализ

Корреля́ция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом.

Содержание

Коэффициент корреляции

Коэффициент корреляции Пирсона

Для метрических величин применяется коэффициент корреляции Пирсона, точная формула которого была введена Фрэнсисом Гальтоном:

Пусть X,Y — две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными,

где cov обозначает ковариацию, а D — дисперсию, или, что то же самое,

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными,

где символ что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными даннымиобозначает математическое ожидание.

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».

Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или τ (тау) Кендала. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, кода связь между ними линейна (однонаправлена).

Коэффициент корреляции Кенделла

Используется для измерения взаимной неупорядоченности.

Коэффициент корреляции Спирмена

Свойства коэффициента корреляции

Корреляционный анализ

Корреляционный анализ — метод обработки статистических данных, заключающийся в изучении коэффициентов ( корреляции) между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа — обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б: если обе переменные растут то корреляция положительная, если одна переменная растёт, а вторая уменьшается, корреляция отрицательная.

Ограничения корреляционного анализа

что такое корреляция с клиническими и лабораторными данными. Смотреть фото что такое корреляция с клиническими и лабораторными данными. Смотреть картинку что такое корреляция с клиническими и лабораторными данными. Картинка про что такое корреляция с клиническими и лабораторными данными. Фото что такое корреляция с клиническими и лабораторными данными

Область применения

Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Ложная корреляция

Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.

В современной количественной методологии социальных наук, фактически, произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому, когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевается либо общетеоретическое допущение, либо статистическая зависимость.

См. также

Полезное

Смотреть что такое «Корреляционный анализ» в других словарях:

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — см. АНАЛИЗ КОРРЕЛЯЦИОННЫЙ. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (в математической статистике) … Большой Энциклопедический словарь

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — КОРРЕЛЯЦИОННЫЙ АНАЛИЗ, раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (см. КОРРЕЛЯЦИЯ (взаимная связь … Энциклопедический словарь

Корреляционный анализ — (в экономике) [correlation analysis] ветвь математической статистики, изучающая взаимосвязи между изменяющимися величинами (корреляция соотношение, от латинского слова correlatio). Взаимосвязь может быть полная (т.е. функциональная) и неполная,… … Экономико-математический словарь

корреляционный анализ — (в психологии) (от лат. correlatio соотношение) статистический метод оценки формы, знака и тесноты связи исследуемых признаков или факторов. При определении формы связи рассматривается ее линейность или нелинейность (т. е. как в среднем… … Большая психологическая энциклопедия

корреляционный анализ — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN correlation analysis … Справочник технического переводчика

корреляционный анализ — koreliacinė analizė statusas T sritis Kūno kultūra ir sportas apibrėžtis Statistikos metodas, kuriuo įvertinami tiriamųjų asmenų, reiškinių požymiai arba veiksnių santykiai. atitikmenys: angl. correlation studies vok. Analyse der Korrelation, f;… … Sporto terminų žodynas

Корреляционный анализ — совокупность основанных на математической теории корреляции (См. Корреляция) методов обнаружения корреляционной зависимости между двумя случайными признаками или факторами. К. а. экспериментальных данных заключает в себе следующие… … Большая советская энциклопедия

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел матем. статистики, объединяющий практич. методы исследования корреляц. зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция … Большой энциклопедический политехнический словарь

Корреляционный анализ — Один из основных методов социолингвистики, целью которого является установление соотношений между языковыми явлениями и социальными параметрами. См. также: Социолингвистическая корреляция, Социолингвистическая переменная … Словарь социолингвистических терминов

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *