что такое координатный луч 5 класс математика
Шкалы, координаты
Для определения размера какой-либо величины (длина, вес, температура и т.д.) мы используем измерительные приборы и инструменты со шкалами для отображения результата.
Шкала – это расположенный в определенной последовательности ряд отметок, которые соответствуют числовому значению измеряемой величины.
Например, в школьном курсе математики и геометрии для измерения длины геометрического объекта, в частности отрезка, используется линейка (рисунок 1).
Рисунок 1. Измерительная линейка.
Из урока Измерение величин вы уже знаете, что такое единица измерения, а их соотношения можете посмотреть в справочном разделе.
Деления шкалы – это равные части, на которые она разбита. Каждое деление шкалы обозначается отметками (черточками).
Нулевая отметка шкалы – это отметка, которая соответствует нулевому значению измеряемой нами величины.
Цена деления шкалы – это величина значения одного деления шкалы. То есть, это величина значения между двумя соседними отметками на шкале.
Как мы видим на рисунке 1, деления, обозначенные большими черточками, пронумерованы, и значение каждого такого деления равно 1 см. В этом легко убедиться, если найти разницу между значениями каждого из соседних делений: 1-0=1, 2-1=3, …, 9-8=1, 10-9=1.
Но каждое из больших делений разделено девятью маленькими черточками на 10 делений. Мы знаем, что в 1 см содержится 10 мм, поэтому разделив эти 10 мм на 10 делений, мы получим цену деления линейки, равную 1 мм.
Цена деления может отличаться не только у разных же измерительных приборов, но и у одних и тех же.
Рисунок 2 Цена деления шкалы
Например, на рисунке 2 изображены два термометра. Как вы думаете, они показывают одинаковую температуру, или нет?
Давайте посмотрим, так ли это? На левом термометре разница между двумя соседними пронумерованными отметками равна 10°C: 10-0=10, 20-10=10, и т.д. На правом же термометре эта разница равняется уже 20°C: 20-0=20, 40-20=20, и т.д. На обоих термометрах маленькие черточки делят одно большое пронумерованное деление на 10 частей. Разделив разницу между значениями пронумерованных отметок (10 и 20 соответственно) на количество делений между ними (10), мы получим цену деления каждого из термометров:
Итак, оба термометра показывают 20°C и еще два деления. Но на левом термометре это означает 20°C и еще два раза по 1°C, то есть, 20+2=22°C, а на правом – 20°C и еще два раза по 2°C, то есть, 20+4=24°C.
Координатный луч, единичный отрезок, координаты точки
Различные прямые линии со шкалами играют важную роль в школьной математике. Сейчас я познакомлю вас с одной из них.
Нарисуем точку O и проведем от нее направо луч. Обозначим направление луча стрелкой.
Рис. 3. Луч с началом в точке O
Рис. 4. Луч с равными отрезками
Поставим возле начала луча (точки O ) число 0 (нуль). Возле второго конца отрезка OP (возле точки P ) поставим число 1 (один). Таким образом мы обозначаем, что длина отрезка OP равна 1 (единице).
Аналогичным образом вы можете легко найти числа, соответствующей каждой поставленной нами на луче точке.
Рис. 5. Луч с отрезками и цифрами
Покажу еще раз на примере точки S :
так как RS=OP (по условиям построения данных отрезков),
подставив известные нам значения длины отрезков OR и OP, получим:
Значит, точке S на нашем лучу соответствует число 3.
Оставим на луче только числовые значения, а все буквы кроме O отброс им. В итоге у нас получился вот такой луч с отрезками и числами, которые соответствуют концам этих отрезков.
Рис. 6. Координатный луч
Глядя на рисунок 6, легко заметить, что отрезки, лежащие на луче, это не что иное, как нанесенная на луч шкала. Действительно, смотрите сами.
Точка O с соответствующим ей числом 0 (нуль) называется точка отсчета, что аналогично нулевой отметке шкалы. Обычно этой буквой всегда помечают в рисунках точку отсчета.
Единичный отрезок – это отрезок, длина которого принята нами за единицу длины и равна 1(единице). Точке, обозначающей правый конец единичного отрезка, соответствует число 1.
Координатный луч – это луч с отмеченным на нем единичным отрезком, точкой начала отсчета, которой соответствует число 0 (нуль), и указанным направлением отсчета.
Координатный луч еще называют числовой луч.
Координатный луч — это не что иное, как бесконечная шкала.
Длина единичного отрезка может быть любой. Она выбирается каждый раз отдельно и при ее выборе ориентируются на то, чтобы на рисунке поместились все необходимые в данный момент числа. Например, на рисунке 7-а длина единичного отрезка составляет 5 см, а на рисунке 7-б всего 1 см.
Рис. 7. Разные варианты единичного отрезка
Как вы заметили из предыдущего рисунка, для разметки луча отрезками можно вместо кружочков использовать штрихи везде, кроме точки O (начала отсчета). Кружочки рисуют поверх этих штрихов тогда, когда необходимо отметить на числовом луче какое-то натуральное число. В этом случае мы дополнительно обозначаем его заглавной (большой) буквой латинского алфавита (смотрите рисунок 8).
Координатный луч служит для наглядного отображения и сравнения чисел натурального ряда.
Действительно, длина каждого отрезка числового луча отличается от длины предыдущего на единицу, точно так же, как и каждый элемент числового ряда отличается от предыдущего.
Координата точки числового луча – это число, которое соответствует поставленной на числовом луче точке.
Рис. 8. Координаты точек
Точке A соответствует число 5 координатного луча, точке B – число 8, точке C – число 13. Запишем полученные координаты точек: A ( 5 ), B ( 8 ), C ( 13 ).
В отдельных случаях для обозначения на координатном луче больших натуральных чисел, допускается не отображать на рисунке точку отсчета и единичный отрезок, показывая только тот участок луча, на котором расположены данные числа.
Рис. 9. Большие числа на координатном луче.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.5 / 5. Количество оценок: 6
Что такое луч в математике (5 класс)
Всего получено оценок: 332.
Всего получено оценок: 332.
Луч – это одно из основных базовых построений наравне с точкой и прямой. Изучение луча в курсе математики 5 класса дает начало другим важным темам: системам координат и углам на плоскости.
Определение
Луч это прямая, ограниченная с одной стороны. Это определение лучше усвоится, если выучить свойства луча:
Правильное обозначение луча спорный вопрос. Наиболее правильный вариант это две точки, например ОА. Причем первой точкой обозначают начало луча. Но также обозначают отрезки и прямые, поэтому чаще пишут луч с началом в точке О.
Углы – это единственные фигуры, состоящие из лучей. Что такое угол? Это геометрическая фигура, состоящая из двух лучей, начало которых лежит в одной точке. В фигурах углы состоят из отрезков, а не из лучей.
Может случиться ситуация, когда оде стороны угла будут совпадать, тогда говорят, что величина угла равна 0 градусов. Может получиться и так, что обе стороны угла образуют прямую, тогда говорят, что угол равен 180 градусам. Такой угол называют развернутым, а лучи основным и дополнительным.
Величина угла отражает поворот одного луча относительно другого.
Координатные лучи
Еще одно применение лучей это различные системы координат. В математике 5 класса первой темой идет изучение координатной прямой. Это два луча с углом поворота в 180 градусов. Начало лучей обозначается за нулевую точку или начало отчета. Влево от начала отчета откладываются отрицательные координаты, в право-положительные. Другое название координатной прямой: числовой луч.
Рис. 2. Координатный луч.
С помощью координатного луча удобно сравнивать дроби и таким образом решать неравенство.
С помощью координатных лучей создается и координатная плоскость. Так называемая декартова система координат состоит из двух координатных прямых или 4 лучей. Подобная система позволяет определять положение точки на плоскости, вычерчивать графики функций и графически решать разного рода уравнения.
Помимо декартовой системы существует полярная система координат. В полярной системе используются понятия угла и координатной прямой. Координатная прямая определяет положение точки, а угол степень ее подъема над осью.
Полярная система координат одна из самых древних в истории человечества. Так сложилось, что именно пользуясь этой системой, древние мореплаватели покоряли неизвестные просторы нашего мира. Декартова система появилась гораздо позднее. Но она более удобна для ориентации на местности. Декартову систему проще использовать как в разделах математики, так и других дисциплинах: физике, теплотехнике, гидравлике и программировании.
Декартовая система четырьмя лучами делиться на 4 четверти, положение точки в каждой из которых определяется знаком координат. Координаты подразделяют на абсциссы и ординаты. Проще говоря на х и у. Например точка (3, 4) имеет две положительные координаты, а значит она будет находиться в первой четверти. Обе отрицательные координаты соответствуют третьей четверти, положительный у при отрицательном х это вторая четверть, а отрицательный у при положительном х – четвертая.
Чтобы построить точку в декартовых системах координат необходимо от деления числового луча, соответствующего координате, поднять перпендикуляр. Координаты две, значит и перпендикуляров будет два. Точка их пересечения и будет искомой точкой.
Числовая прямая
Числовая прямая – это луч, с нанесенными на него числами или интервалами чисел. Числовую прямую используют для сравнения дробей, рисунков к задаче и нахождения ОДЗ функции. Последнее встречается чаще всего.
Фигурной скобкой на прямой обозначается область, в которую не могут попадать корни. После решения уравнения, найденные корни наносятся на числовую прямую. Попавшие в фигурную скобку недопустимых значений корни исключаются из решения.
Рис. 3. Числовая прямая.
Что мы узнали?
Мы узнали, что такое луч и числовая прямая. Поговорили о фигурах, составленных из лучей и системах координат, где применяются числовые прямые. Проработали вопрос наглядности изображения нужных точек и разобрались с тем, как правильно проставлять координаты на координатном луче.
Координатный луч
Всего получено оценок: 410.
Всего получено оценок: 410.
Координатный луч – это одна из систем ориентации в плоскости и сравнения чисел. Координатный луч очень часто используется при решении задач. Имеет смысл поговорить о координатном луче, выделить его особенности и отличия, определить правильную область применения.
Что такое координатный луч?
Координатный луч – это один из способов ориентации на плоскости.
Любой координатный луч имеет:
Направление движения обычно указывает сторону увеличения показателей.
Координатный луч позволяет определить положение точки только вдоль прямой. Что это значит? Представим себе координатный луч в виде реки. Так вот, мы можем определить положение путника у реки, но при этом, насколько он ушел вглубь берега – мы понять не сможем.
Поэтому чаще всего, вместо координатной прямой, используется декартова системы координат.
Когда-то мореплаватели к системе координатной прямой добавили угол, на который поднимается точка над линией горизонта. Так появилась полярная система координат. Это одна из самых древних систем навигации в мире.
Но координатную прямую удобно использовать для чертежей при решении задач, поэтому она до сих пор используется в курсе математики.
Чем отличается координатный луч от координатной прямой?
До этого мы уже говорили о координатной прямой. Следует сразу разделить координатный луч, числовой луч и координатную прямой.
Координатный и числовой лучи очень схожи. Различие заключается в том, что числовой луч может начинаться с любой точки и эта точка будет его началом. Все зависит от чисел, которые нам требуется сравнить. Координатный луч начинается всегда с 0, иначе он не может считаться координатным.
Координатная прямая же, в отличие от координатного луча, может быть продлена как в право, так и в лево от начала координат. Это позволяет отмечать на координатной прямой отрицательные числа.
Для того чтобы отметить отрицательные координаты на координатном луче, придется построить другой луч, который будет направлен влево.
Область применения
На самом деле, область применения координатного луча достаточно мала. Это могут быть:
На самом деле, это одна из гениальных идей математики: соединить вместе 4 координатных луча для получения системы ориентации на плоскости. Два луча лежат на одной прямой и направлены в противоположные стороны, при этом два других луча лежат на прямой, перпендикулярной первой и так же направлены в противоположные стороны.
В результате получилась система, которую уже несколько сотен лет применяют для ориентирования на плоскости. Более того, декартову систему можно перевести в пространство.
Эту систему навигации используют спутниковые системы, радары, навигационные системы автомобилей. Такой системой пользуются художники при использовании компьютерной графики. И всему этому положил начало координатный луч. Поэтому нельзя сказать, что он бесполезен. Просто луч имеет малую область применения, но именно он положил начал современным системам навигации.
Что мы узнали?
Мы поговорили об определении координатного луча. Выделили его отличия от числового луча и координатной прямой. Оговорили область применения и особенности координатного луча в математике 5 класса.
Что такое луч в математике (5 класс)
Всего получено оценок: 332.
Всего получено оценок: 332.
Луч – это одно из основных базовых построений наравне с точкой и прямой. Изучение луча в курсе математики 5 класса дает начало другим важным темам: системам координат и углам на плоскости.
Определение
Луч это прямая, ограниченная с одной стороны. Это определение лучше усвоится, если выучить свойства луча:
Правильное обозначение луча спорный вопрос. Наиболее правильный вариант это две точки, например ОА. Причем первой точкой обозначают начало луча. Но также обозначают отрезки и прямые, поэтому чаще пишут луч с началом в точке О.
Углы – это единственные фигуры, состоящие из лучей. Что такое угол? Это геометрическая фигура, состоящая из двух лучей, начало которых лежит в одной точке. В фигурах углы состоят из отрезков, а не из лучей.
Может случиться ситуация, когда оде стороны угла будут совпадать, тогда говорят, что величина угла равна 0 градусов. Может получиться и так, что обе стороны угла образуют прямую, тогда говорят, что угол равен 180 градусам. Такой угол называют развернутым, а лучи основным и дополнительным.
Величина угла отражает поворот одного луча относительно другого.
Координатные лучи
Еще одно применение лучей это различные системы координат. В математике 5 класса первой темой идет изучение координатной прямой. Это два луча с углом поворота в 180 градусов. Начало лучей обозначается за нулевую точку или начало отчета. Влево от начала отчета откладываются отрицательные координаты, в право-положительные. Другое название координатной прямой: числовой луч.
Рис. 2. Координатный луч.
С помощью координатного луча удобно сравнивать дроби и таким образом решать неравенство.
С помощью координатных лучей создается и координатная плоскость. Так называемая декартова система координат состоит из двух координатных прямых или 4 лучей. Подобная система позволяет определять положение точки на плоскости, вычерчивать графики функций и графически решать разного рода уравнения.
Помимо декартовой системы существует полярная система координат. В полярной системе используются понятия угла и координатной прямой. Координатная прямая определяет положение точки, а угол степень ее подъема над осью.
Полярная система координат одна из самых древних в истории человечества. Так сложилось, что именно пользуясь этой системой, древние мореплаватели покоряли неизвестные просторы нашего мира. Декартова система появилась гораздо позднее. Но она более удобна для ориентации на местности. Декартову систему проще использовать как в разделах математики, так и других дисциплинах: физике, теплотехнике, гидравлике и программировании.
Декартовая система четырьмя лучами делиться на 4 четверти, положение точки в каждой из которых определяется знаком координат. Координаты подразделяют на абсциссы и ординаты. Проще говоря на х и у. Например точка (3, 4) имеет две положительные координаты, а значит она будет находиться в первой четверти. Обе отрицательные координаты соответствуют третьей четверти, положительный у при отрицательном х это вторая четверть, а отрицательный у при положительном х – четвертая.
Чтобы построить точку в декартовых системах координат необходимо от деления числового луча, соответствующего координате, поднять перпендикуляр. Координаты две, значит и перпендикуляров будет два. Точка их пересечения и будет искомой точкой.
Числовая прямая
Числовая прямая – это луч, с нанесенными на него числами или интервалами чисел. Числовую прямую используют для сравнения дробей, рисунков к задаче и нахождения ОДЗ функции. Последнее встречается чаще всего.
Фигурной скобкой на прямой обозначается область, в которую не могут попадать корни. После решения уравнения, найденные корни наносятся на числовую прямую. Попавшие в фигурную скобку недопустимых значений корни исключаются из решения.
Рис. 3. Числовая прямая.
Что мы узнали?
Мы узнали, что такое луч и числовая прямая. Поговорили о фигурах, составленных из лучей и системах координат, где применяются числовые прямые. Проработали вопрос наглядности изображения нужных точек и разобрались с тем, как правильно проставлять координаты на координатном луче.
Математика. 5 класс
Конспект урока
Представление натуральных чисел на координатном луче
Перечень рассматриваемых вопросов:
— изображение чисел точками на координатной прямой;
— нахождение координат отмеченной точки;
— сравнение натуральных чисел по их расположению на координатном луче.
Луч – прямая линия, которая имеет начало, но не имеет конца.
Координатный луч – это луч, на котором задано направление, а также отмечены начало отсчёта и единичный отрезок.
Начало отсчёта – особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек.
Единичный отрезок – величина, принимаемая за единицу при геометрических построениях.
Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.
1. Чулков П. В. Математика: тематические тесты. 5 класс. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.
2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.
Теоретический материал для самостоятельного изучения
Как вы уже знаете, для пересчёта предметов используют натуральные числа. Сегодня мы будем представлять их на координатном луче.
Для начала рассмотрим, чем отличается координатный луч от луча.
Вспомним, что такое луч. Луч – это прямая линия, которая имеет начало, но не имеет конца. А теперь рассмотрим координатный луч. Для этого зададим луч. Начало луча обозначим точкой О сверху, а снизу под началом луча подпишем число 0. Точку О примем за начало отсчёта. Говорят, что точка О имеет координату 0 и пишут О(0). Далее на луче, начиная с точки О, отложим выбранный единичный отрезок ОА, под точкой А запишем число 1. Говорят, что точка А имеет координату 1. Отложим единичный отрезок от точки А вправо несколько раз и запишем, соответственно, числа 2, 3, 4 и так далее, обозначив эти точки буквами В, С, D и так далее. Говорят, что точка В имеет координату 2, С – координату 3…
Координатный луч мы будем чертить слева направо, выходящим из точки О в направлении, отмеченном стрелкой. Отмерим на координатном луче единичный отрезок, длину которого будем принимать за единицу при определении координат.
А теперь свяжем натуральные числа и координатный луч.
Известно, что ряд натуральных чисел начинается с единицы. За каждым натуральным числом в ряду следует ещё одно натуральное число, большее предшествующего на единицу. Такая же структура и у координатного луча. Поэтому числа удобно представлять в виде точек на координатном луче.
Обратите внимание, что координатный луч напоминает линейку, на которой отмечены числа 0, 1, 2, 3 и так далее – с той лишь разницей, что любая линейка ограничена (конечна), а координатный луч неограничен (бесконечен).
А теперь зададимся вопросом, как изобразить точку D с координатой 45?
Ответ прост: изменим масштаб координатного луча, например, так, чтобы один единичный отрезок соответствовал 10. Тогда точка D будет серединой отрезка с концами в точках с координатами 40 и 50.
Заметим, что если на координатном луче точка M лежит правее точки N, то она будет соответствовать большему числу. Так натуральные числа можно сравнивать при помощи координатного луча.
А теперь отметим точку Р, которая будет правее точки М. Следовательно, точка Р будет больше точек М и N.
Таким образом, мы получим иллюстрацию одного очень интересного свойства: если первое число меньше второго, а второе меньше третьего, то первое меньше третьего. Это свойство транзитивности натуральных чисел.
Итак, сегодня мы познакомились с понятием координатный луч и научились изображать числа точками на координатном луче.
Изображение точек на координатной прямой.
Начертим координатный луч, исходя из условия задания: точки О, С, А имеют следующие координаты: О(0), С(2) и А(5), отрезок СА = 6 см.
Решение: по условию задачи начертим координатный луч. Отметим на нём точку О(0) (с координатой). Далее следует задать единичный отрезок. Определим его следующим образом: от точки С до точки А умещается три единичных отрезка – это можно определить по координатам точек С и А.
5 – 2 = 3 (единичных отрезка)
Теперь найдём длину одного единичного отрезка. Для этого длину отрезка АС поделим на три единичных отрезка, входящих в отрезок АС.
6 см : 3 единичных отрезка = 2 см в единичном отрезке.
Назовём единичный отрезок ОМ = 2 см, следовательно, координаты точки – М(1).
Теперь изобразим полученный луч.
№ 1. Выберите правильный ответ. Какая из точек – С(78), D(45), М (15), Р(24) – расположена правее других?
При выполнении данного задания нужно использовать правило сравнения чисел с помощью координатного луча. Чем большему числу соответствует координата точки, тем правее она будет расположена на координатном луче.
Правильный ответ: точка С.
№ 2. Напишите координаты точек D, Е, Т и К, отмеченных на координатном луче.
Каждая точка имеет координату, соответствующую натуральному числу, который отсчитывается от 0 по единичным отрезкам.
Таким образом, правильными ответами будут: Е(2); D(4); Т(10); К(12).