что такое конструктор питон

Python. Урок 14. Классы и объекты

Данный урок посвящен объектно-ориентированному программированию в Python. Разобраны такие темы как создание объектов и классов, работа с конструктором, наследование и полиморфизм в Python.

Основные понятия объектно-ориентированного программирования

Объектно-ориентированное программирование (ООП) является методологией разработки программного обеспечения, в основе которой лежит понятие класса и объекта, при этом сама программа создается как некоторая совокупность объектов, которые взаимодействую друг с другом и с внешним миром. Каждый объект является экземпляром некоторого класса. Классы образуют иерархии. Более подробно о понятии ООП можно прочитать на википедии.

Выделяют три основных “столпа” ООП- это инкапсуляция, наследование и полиморфизм.

Инкапсуляция

Наследование

Под наследованием понимается возможность создания нового класса на базе существующего. Наследование предполагает наличие отношения “является” между классом наследником и классом родителем. При этом класс потомок будет содержать те же атрибуты и методы, что и базовый класс, но при этом его можно (и нужно) расширять через добавление новых методов и атрибутов.

Примером базового класса, демонстрирующего наследование, можно определить класс “автомобиль”, имеющий атрибуты: масса, мощность двигателя, объем топливного бака и методы: завести и заглушить. У такого класса может быть потомок – “грузовой автомобиль”, он будет содержать те же атрибуты и методы, что и класс “автомобиль”, и дополнительные свойства: количество осей, мощность компрессора и т.п..

Полиморфизм

Полиморфизм позволяет одинаково обращаться с объектами, имеющими однотипный интерфейс, независимо от внутренней реализации объекта. Например, с объектом класса “грузовой автомобиль” можно производить те же операции, что и с объектом класса “автомобиль”, т.к. первый является наследником второго, при этом обратное утверждение неверно (во всяком случае не всегда). Другими словами полиморфизм предполагает разную реализацию методов с одинаковыми именами. Это очень полезно при наследовании, когда в классе наследнике можно переопределить методы класса родителя.

Классы в Python

Создание классов и объектов

Создание класса в Python начинается с инструкции class. Вот так будет выглядеть минимальный класс.

Класс состоит из объявления (инструкция class), имени класса (нашем случае это имя C) и тела класса, которое содержит атрибуты и методы (в нашем минимальном классе есть только одна инструкция pass).

Для того чтобы создать объект класса необходимо воспользоваться следующим синтаксисом:

имя_объекта = имя_класса()

Статические и динамические атрибуты класса

Как уже было сказано выше, класс может содержать атрибуты и методы. Атрибут может быть статическим и динамическим (уровня объекта класса). Суть в том, что для работы со статическим атрибутом, вам не нужно создавать экземпляр класса, а для работы с динамическим – нужно. Пример:

В представленном выше классе, атрибут default_color – это статический атрибут, и доступ к нему, как было сказано выше, можно получить не создавая объект класса Rectangle.

width и height – это динамические атрибуты, при их создании было использовано ключевое слово self. Пока просто примите это как должное, более подробно про self будет рассказано ниже. Для доступа к width и height предварительно нужно создать объект класса Rectangle:

Если обратиться через класс, то получим ошибку:

При этом, если вы обратитесь к статическому атрибуту через экземпляр класса, то все будет ОК, до тех пор, пока вы не попытаетесь его поменять.

Проверим ещё раз значение атрибута default_color:

Присвоим ему новое значение:

Создадим два объекта класса Rectangle и проверим, что default_color у них совпадает:

Если поменять значение default_color через имя класса Rectangle, то все будет ожидаемо: у объектов r1 и r2 это значение изменится, но если поменять его через экземпляр класса, то у экземпляра будет создан атрибут с таким же именем как статический, а доступ к последнему будет потерян:

Меняем default_color через r1:

При этом у r2 остается значение статического атрибута:

Вообще напрямую работать с атрибутами – не очень хорошая идея, лучше для этого использовать свойства.

Методы класса

Добавим к нашему классу метод. Метод – это функция, находящаяся внутри класса и выполняющая определенную работу.

Методы бывают статическими, классовыми (среднее между статическими и обычными) и уровня класса (будем их называть просто словом метод). Статический метод создается с декоратором @staticmethod, классовый – с декоратором @classmethod, первым аргументом в него передается cls, обычный метод создается без специального декоратора, ему первым аргументом передается self:

Статический и классовый метод можно вызвать, не создавая экземпляр класса, для вызова ex_method() нужен объект:

Конструктор класса и инициализация экземпляра класса

В Python разделяют конструктор класса и метод для инициализации экземпляра класса. Конструктор класса это метод __new__(cls, *args, **kwargs) для инициализации экземпляра класса используется метод __init__(self). При этом, как вы могли заметить __new__ – это классовый метод, а __init__ таким не является. Метод __new__ редко переопределяется, чаще используется реализация от базового класса object (см. раздел Наследование), __init__ же наоборот является очень удобным способом задать параметры объекта при его создании.

Создадим реализацию класса Rectangle с измененным конструктором и инициализатором, через который задается ширина и высота прямоугольника:

Что такое self?

До этого момента вы уже успели познакомиться с ключевым словом self. self – это ссылка на текущий экземпляр класса, в таких языках как Java, C# аналогом является ключевое слово this. Через self вы получаете доступ к атрибутам и методам класса внутри него:

В приведенной реализации метод area получает доступ к атрибутам width и height для расчета площади. Если бы в качестве первого параметра не было указано self, то при попытке вызвать area программа была бы остановлена с ошибкой.

Уровни доступа атрибута и метода

Если вы знакомы с языками программирования Java, C#, C++ то, наверное, уже задались вопросом: “а как управлять уровнем доступа?”. В перечисленных языка вы можете явно указать для переменной, что доступ к ней снаружи класса запрещен, это делается с помощью ключевых слов (private, protected и т.д.). В Python таких возможностей нет, и любой может обратиться к атрибутам и методам вашего класса, если возникнет такая необходимость. Это существенный недостаток этого языка, т.к. нарушается один из ключевых принципов ООП – инкапсуляция. Хорошим тоном считается, что для чтения/изменения какого-то атрибута должны использоваться специальные методы, которые называются getter/setter, их можно реализовать, но ничего не помешает изменить атрибут напрямую. При этом есть соглашение, что метод или атрибут, который начинается с нижнего подчеркивания, является скрытым, и снаружи класса трогать его не нужно (хотя сделать это можно).

Внесем соответствующие изменения в класс Rectangle:

В приведенном примере для доступа к _width и _height используются специальные методы, но ничего не мешает вам обратиться к ним (атрибутам) напрямую.

Если же атрибут или метод начинается с двух подчеркиваний, то тут напрямую вы к нему уже не обратитесь (простым образом). Модифицируем наш класс Rectangle:

Попытка обратиться к __width напрямую вызовет ошибку, нужно работать только через get_width():

Но на самом деле это сделать можно, просто этот атрибут теперь для внешнего использования носит название: _Rectangle__width:

Свойства

Свойством называется такой метод класса, работа с которым подобна работе с атрибутом. Для объявления метода свойством необходимо использовать декоратор @property.

Важным преимуществом работы через свойства является то, что вы можете осуществлять проверку входных значений, перед тем как присвоить их атрибутам.

Сделаем реализацию класса Rectangle с использованием свойств:

Теперь работать с width и height можно так, как будто они являются атрибутами:

Можно не только читать, но и задавать новые значения свойствам:

Если вы обратили внимание: в setter’ах этих свойств осуществляется проверка входных значений, если значение меньше нуля, то будет выброшено исключение ValueError:

Наследование

В организации наследования участвуют как минимум два класса: класс родитель и класс потомок. При этом возможно множественное наследование, в этом случае у класса потомка может быть несколько родителей. Не все языки программирования поддерживают множественное наследование, но в Python можно его использовать. По умолчанию все классы в Python являются наследниками от object, явно этот факт указывать не нужно.

Синтаксически создание класса с указанием его родителя выглядит так:

class имя_класса(имя_родителя1, [имя_родителя2,…, имя_родителя_n])

Переработаем наш пример так, чтобы в нем присутствовало наследование:

Родительским классом является Figure, который при инициализации принимает цвет фигуры и предоставляет его через свойства. Rectangle – класс наследник от Figure. Обратите внимание на его метод __init__: в нем первым делом вызывается конструктор (хотя это не совсем верно, но будем говорить так) его родительского класса:

super – это ключевое слово, которое используется для обращения к родительскому классу.

Теперь у объекта класса Rectangle помимо уже знакомых свойств width и height появилось свойство color:

Полиморфизм

Как уже было сказано во введении в рамках ООП полиморфизм, как правило, используется с позиции переопределения методов базового класса в классе наследнике. Проще всего это рассмотреть на примере. Добавим в наш базовый класс метод info(), который печатает сводную информацию по объекту класса Figure и переопределим этот метод в классе Rectangle, добавим в него дополнительные данные:

Посмотрим, как это работает

Таким образом, класс наследник может расширять функционал класса родителя.

P.S.

Если вам интересна тема анализа данных, то мы рекомендуем ознакомиться с библиотекой Pandas. На нашем сайте вы можете найти вводные уроки по этой теме. Все уроки по библиотеке Pandas собраны в книге “Pandas. Работа с данными”.
что такое конструктор питон. Смотреть фото что такое конструктор питон. Смотреть картинку что такое конструктор питон. Картинка про что такое конструктор питон. Фото что такое конструктор питон

Python. Урок 14. Классы и объекты : 17 комментариев

А вот если Вы добавите вот это
.entry-title a:last-child <
float:right;
>
в свой css будет намного удобнее, нежели вы будите использовать 2-ную табуляцию в HTML. Спасибо.

Класс, о методе super() вообще ни слова

Спасибо за замечание! Добавим!

Про self ничего не сказано. Похоже на ссылку на текущий обьект.

Да, это действительно ссылка на текущий объект. Нужно будет вообще этот урок переработать, в нем плохо раскрыты многие вопросы! Спасибо за комментарий!

О методе __new__(cls) тоже нет ни слова, а он так же участвует в конструировании экземпляра класса.

ОК, спасибо! Добавим!

Наконец-то всё стало понятно. Огромное спасибо за разъяснение на уровне 1 класса 2 четверти!

Определение инкапсуляции неверное. Приведенное определение скорее присуще самому понятию “класс”. А инкапсуляция – это сокрытие деталей реализации.

> Атрибут может быть статическим и не статическим (уровня объекта класса)

В других языках принято “не статические атрибуты” называть динамическими. Предлагаю использовать, чтобы язык не ломать 🙂

Пытаюсь разобраться с декораторами.
@property
def width(self):
return self.__width
@width.setter
def width(self, w):
if w > 0:
self.__width = w
else:
raise ValueError

Понял назначение методов уровня Класс. Но не понятно назначение классовых и статических методов (@classmethod, @staticmethod)

Столкнулся с проблемой
есть класс
class Users(): #класс списка пользователей
def __init__(self):
self.item=[]
self.num=0

есть класс пользователя
class Aduser(): #класс пользователь домена
def __init__(self):
self.fio=”” # ФИО
self.login=”” # login
self.email=”” # e-mail
self.list=[] # принадлежность к спискам
self.spec=”” # должность
self.dept=”” # отдел
self.stage=True # состояние активности учетной записи
self.desc=”” # примечание
usrs = Users()
usr = Aduser()

не мону понять почему не срабатывает конструкция
usrs.item.append[usr]
точнее срабатывает но в usrs.item[] приходит пустой объект Adusers()

Ссылки на предыдущие уроки не нашел, причем тут декораторы и вообще, что это (хотя бы ссылкой) тоже не нашел.

Работаю с питоном уже больше года. Долго пытался понять что такое @property и @setter, А тут автор за 10 строчек объяснил, браво!

Источник

Работа с конструкторами в Python

Что такое конструктор в Python?

Конструктор в Python – это особый тип метода (функции), который используется для инициализации членов экземпляра класса.

В C ++ или Java конструктор имеет то же имя, что и его класс, в Python конструктор обрабатывается по-разному. Он используется для создания объекта.

Конструкторы бывают двух типов:

Определение конструктора выполняется, когда мы создаем объект этого класса. Конструкторы также проверяют, что у объекта достаточно ресурсов для выполнения любой задачи запуска.

Создание конструктора на Python

В Python метод __init __() имитирует конструктор класса. Этот метод вызывается при создании экземпляра класса. Он принимает ключевое слово self в качестве первого аргумента, который позволяет получить доступ к атрибутам или методу класса.

Мы можем передать любое количество аргументов во время создания объекта класса, в зависимости от определения __init __(). В основном он используется для инициализации атрибутов класса. У каждого класса должен быть конструктор, даже если он просто полагается на конструктор по умолчанию.

Рассмотрим следующий пример для инициализации атрибутов класса Employee при работе с конструкторами в Python.

Подсчет количества объектов класса

Конструктор вызывается автоматически, когда мы создаем объект класса. Рассмотрим следующий пример.

Непараметрический

Непараметрический конструктор используется, когда мы не хотим манипулировать значением, или конструктором, который имеет только self в качестве аргумента. Разберем на примере.

Параметризованный конструктор Python

У параметризованного конструктора есть несколько параметров вместе с самим собой.

Конструктор Python по умолчанию

Когда мы не включаем конструктор в класс или забываем его объявить, он становится конструктором по умолчанию. Он не выполняет никаких задач, а инициализирует объекты. Рассмотрим пример.

Более одного конструктора в одном классе

Давайте посмотрим на другой сценарий, что произойдет, если мы объявим два одинаковых конструктора в классе.

В приведенном выше коде объект st вызвал второй конструктор, тогда как оба имеют одинаковую конфигурацию. Первый метод недоступен для объекта st. Внутренне объект класса всегда будет вызывать последний конструктор, если у класса есть несколько конструкторов.

Примечание. Перегрузка конструктора в Python запрещена.

Встроенные функции классов Python

Встроенные функции, определенные в классе, описаны в следующей таблице.

SNФункцияОписание
1getattr(obj,name,default)Используется для доступа к атрибуту объекта.
2setattr(obj, name,value)Она используется для установки определенного значения для определенного атрибута объекта.
3delattr (obj, name)Необходима для удаления определенного атрибута.
4hasattr (obj, name)Возвращает истину, если объект содержит определенный атрибут.

Встроенные атрибуты класса

Наряду с другими атрибутами класс Python также содержит некоторые встроенные атрибуты класса, которые предоставляют информацию о классе.

Встроенные атрибуты класса приведены в таблице ниже.

Источник

Основы ООП в Python — классы, объекты, методы

О ОП — самая используемая парадигма программирования. Это одновременно и особый способ мышления, и отдельная методика. Её концепцию проще всего понимать на примерах из реальной жизни. И это неспроста. Объектно-ориентированное программирование помогает представлять содержимое программы наиболее естественным для нашего мира способом.

Главным понятием ООП является понятие программного объекта. Вообще говоря, большинство сущностей на планете Земля — это некие объекты. И с частью из них мы взаимодействуем при помощи программирования. Банковский счёт, персонаж компьютерной игры или анимированный виджет сайта — всё это легко представить в виде объектов. Можно сказать, что объектно-ориентированное программирование позволяет смоделировать реальный объект в виде программного.

Множество объектов со схожими свойствами формируются в классы. Идея класса также является одной из основополагающих концепций ООП. Со стороны программы, класс — это всего лишь тип данных, но для программиста это куда более глубокая абстрактная структура. Но перейдём уже к конкретике.

💁‍♂️ Итак, мы — разработчики игр. Наша студия трудится над новым автосимулятором. В игре будут представлены разные виды транспорта: легковые автомобили, гоночные, грузовые и пассажирские. Все их можно описать одним словом — автотранспорт. Сделав это, мы абстрагировались от деталей и, таким образом, определили класс. Объектом этого класса может быть, как Бьюик 1968-го года, так и грузовой Freightliner Columbia желтого цвета.

У класса есть свойства и функции (в ООП их называют методами).

Свойствами класса «автотранспорт» могут быть, например: год выпуска, вид и цвет. На уровне объектов это будет выглядеть так: Бьюик Электра — это объект класса «Автотранспорт» со следующими свойствами:

Можно сказать, что объект — это вполне конкретный экземпляр класса

Помимо физических атрибутов, которые описывают внешний вид и характеристики транспортного средства, автомобили обладают между собой и другими фундаментальными сходствами. Например, все они могут ехать, тормозить, переключать скорости, поворачивать и сигналить. В нашем случае, всё это — методы класса «Автотранспорт». То есть действия, которые любые объекты данного класса могут выполнять.

Мы разрабатываем игру, поэтому предполагается, что машины в ней будут исправными. Значит, вполне естественно, что каждая из них может ехать и тормозить.

В Питоне класс «Автотранспорт» может выглядеть так:

# класс автотранспорт class MotorTransport(object): def __init__(self, color, year, auto_type): self.color = color self.year = year self.auto_type = auto_type # тормозить def stop(self): print(«Pressing the brake pedal») # ехать def drive(self): print(‘WRRRRRUM!’)

Теперь никто не помешает нам получить собственную красную феррари. Пусть и в симуляторе.

# создадим объект класса Автотранспорт ferrari_testarossa = MotorTransport(‘Red’, 1987, ‘passenger car’) # жмём на газ и вперёд! ferrari_testarossa.drive() > WRRRRRUM!

Принципы ООП

Абстракция

Абстракция — это выделение основных, наиболее значимых характеристик объекта и игнорирование второстепенных.

Любой составной объект реального мира — это абстракция. Говоря «ноутбук», вам не требуется дальнейших пояснений, вроде того, что это организованный набор пластика, металла, жидкокристаллического дисплея и микросхем. Абстракция позволяет игнорировать нерелевантные детали, поэтому для нашего сознания это один из главных способов справляться со сложностью реального мира. Если б, подходя к холодильнику, вы должны были иметь дело с отдельно металлом корпуса, пластиковыми фрагментами, лакокрасочным слоем и мотором, вы вряд ли смогли бы достать из морозилки замороженную клубнику.

Полиморфизм

Наследование

Это способность одного класса расширять понятие другого, и главный механизм повторного использования кода в ООП. Вернёмся к нашему автосимулятору. На уровне абстракции «Автотранспорт» мы не учитываем особенности каждого конкретного вида транспортного средства, а рассматриваем их «в целом». Если же более детализировано приглядеться, например, к грузовикам, то окажется, что у них есть такие свойства и возможности, которых нет ни у легковых, ни у пассажирских машин. Но, при этом, они всё ещё обладают всеми другими характеристиками, присущими автотранспорту.

Мы могли бы сделать отдельный класс «Грузовик», который является наследником «Автотранспорта». Объекты этого класса могли бы определять все прошлые атрибуты (цвет, год выпуска), но и получить новые. Для грузовиков это могли быть грузоподъёмность, снаряженная масса и наличие жилого отсека в кабине. А методом, который есть только у грузовиков, могла быть функция сцепления и отцепления прицепа.

Инкапсуляция

Инкапсуляция — это ещё один принцип, который нужен для безопасности и управления сложностью кода. Инкапсуляция блокирует доступ к деталям сложной концепции. Абстракция подразумевает возможность рассмотреть объект с общей точки зрения, а инкапсуляция не позволяет рассматривать этот объект с какой-либо другой.

Вы разработали для муниципальных служб класс «Квартира». У неё есть свойства вроде адреса, метража и высоты потолков. И методы, такие как получение информации о каждом из этих свойств и, главное, метод, реализующий постановку на учёт в Росреестре. Это готовая концепция, и вам не нужно чтобы кто-то мог добавлять методы «открыть дверь» и «получить место хранения денег». Это А) Небезопасно и Б) Избыточно, а также, в рамках выбранной реализации, не нужно. Работникам Росреестра не требуется заходить к вам домой, чтобы узнать высоту потолков — они пользуются только теми документами, которые вы сами им предоставили.

Класс

Классы, в некотором смысле, подобны чертежам: это не объекты сами по себе, а их схемы. Класс «банковских счетов» имеет строго определенные и одинаковые для всех атрибуты, но объекты в нём — сами счета — уникальны.

Как в Python создать класс

class SimpleClass: pass

Для именования классов в Python обычно используют стиль «camel case», где первая буква — заглавная.

Конструктор

Метод, который вызывается при создании объектов, в ООП зовётся конструктором. Он нужен для объектов, которые изначально должны иметь какие-то значение. Например, пустые экземпляры класса «Студент» бессмысленны, и желательно иметь хотя бы минимальный обозначенный набор вроде имени, фамилии и группы.

В качестве Питоновского конструктора выступает метод __init__() :

class Student: def __init__(self, name, surname, group): self.name = name self.surname = surname self.group = group alex = Student(«Alex», «Ivanov», «admin»)

Атрибуты класса

Поля могут быть статическими и динамическими:

☝️ Обратите внимание — статический и динамический атрибут может иметь одно и то же имя:

class MightiestWeapon: # статический атрибут name = «Default name» def __init__(self, name): # динамический атрибут self.name = name weapon = MightiestWeapon(«sword») print(MightiestWeapon.name) print(weapon.name)

Методы класса

Метод — это функция класса.

class SpaceShip: def atack(self): print(‘Пиу!’) star_destroyer = SpaceShip() star_destroyer.atack() > Пиу!

Что такое self?

🐈 Отличный пример с котофеями:

Уровни доступа атрибутов и методов

В Питоне не существует квалификаторов доступа к полям класса. Отсутствие аналогов связки public/private/protected можно рассматривать как упущение со стороны принципа инкапсуляции.

Декораторы

Декоратор — это функция-обёртка. В неё можно завернуть другой метод, и, тем самым, изменить его функциональность, не меняя код.

Объекты или экземпляры класса

Чем объекты отличаются от классов

Как уже было сказано, объект — это конкретный экземпляр класса. Все мы относимся к классу людей, но каждый из нас — уникальный объект этого класса.

Как создать объект класса в Python

Если у нас есть реализация класса, то его экземпляр создать очень просто:

class AirConditioner: def __init__(self, model, capacity): self.model = model self.capacity = capacity def turn_on(self): print(‘Now in the room will be cool’) # создадим объект класса Кондиционер ballu = AirConditioner(‘BPAC-07’, 785) ballu.turn_on() > Now in the room will be cool

Атрибуты объекта

Атрибуты класса могут быть динамическими и статическими. На уровне объекта они инициализируются так:

class MightiestWeapon: name = «Default name» def __init__(self, weapon_type): self.weapon_type = weapon_type # атрибут name можно переопределить и не создавая объекта MightiestWeapon.name = ‘Steel Sword’ print(MightiestWeapon.name) > Steal Sword # создаём объект и сразу же инициализируем динамический атрибут с помощью конструктора hero_sword = MightiestWeapon(‘sword’) # и теперь, уже для конкретного объекта, можно задать имя hero_sword.name = ‘Excalibur’ # новое статическое имя по умолчанию для всего класса не изменится print(MightiestWeapon.name) > Steal Sword print(hero_sword.name) > Excalibur

Наследование

Нередко в процессе написания кода выясняется, что некоторые объекты аналогичны другим за исключением нескольких различий. Определение сходств и различий между такими объектами называется «наследованием».

# класс «Животное». Это достаточно абстрактный класс всего с одним методом «Издать звук». class Animal: def make_a_sound(self): print(«Издаёт животный звук»)

Мы все прекрасно знаем, что котики, к примеру, любят всё ронять, а собакены — рыть землю. Создадим два соответствующих класса-наследника:

# факт наследования в Python указывается при объявлении класса-наследника. # в скобках, после имени класса, указывается класс-родитель class Cat(Animal): def drop_everything(self): print(‘Вставай скорее, я всё уронил!’) class Dog(Animal): def dig_the_ground(self): print(‘Однажды я докопаюсь до ядра планеты!’)

Теперь объекты этих двух классов могут не только издавать животные звуки, но и выполнять собственные уникальные действия:

Tom = Cat() Tom.make_a_sound() > Издаёт животный звук Tom.drop_everything() > Вставай скорее, я всё уронил!

Переопределение

Сейчас у нас и кошка, и собака просто «издают животные звуки», а хотелось бы, конечно, слышать звуки, свойственные именно этим животным. Для этого существует механика переопределения. Достаточно объявить в классе-наследнике метод с тем же названием, что и в базовом классе:

class Dog(Animal): def dig_the_ground(self): print(‘Однажды я докопаюсь до ядра планеты!’) # отныне для объектов класса «Собака» будет выполняться именно эта реализация метода def make_a_sound(self): print(‘Гав-гав!’) Balto = Dog() Balto.make_a_sound() > Гав-гав!

Документирование классов

Весь код нужно комментировать и документировать. Классы — не исключение. Стоит помнить, что код вы пишите не для себя, и вполне вероятно, что написанное вами придётся поддерживать другим людям. Комментарии повышают читаемость и увеличивают легкость восприятие кода в разы, тем самым экономя время и деньги.

что такое конструктор питон. Смотреть фото что такое конструктор питон. Смотреть картинку что такое конструктор питон. Картинка про что такое конструктор питон. Фото что такое конструктор питон

ООП ещё долгое время будет оставаться передовой парадигмой программирования. Но учить её полезно и по другой причине. Прямая связь объектно-ориентированного программирования с реальным миром помогает глубже понимать устройство и принципы работы, как самого языка, так и написания кода в целом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *