что такое константа диссоциации в химии
Теория электролитической диссоциации.
Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.
Электролитическая диссоциация – это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.
Например, уксусная кислота диссоциирует так в водном растворе:
Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).
Степень диссоциации α – отношение числа молекул, распавшихся на ионы, к общему числу молекул:
Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.
Различают сильные и слабые электролиты.
Сильные электролиты – это те электролиты, степень диссоциации которой превышает 30%.
Электролиты средней силы – это те, степень диссоциации которой делит в пределах от 3% до 30%.
Слабые электролиты – степень диссоциации в водном 0,1 М растворе меньше 3%.
Примеры слабых и сильных электролитов.
Сильные электролиты
Слабые электролиты
Практически все соли и кислоты: HBr, KOH, NaOH, Ca(OH)2, HNO3, HClO4.
Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.
Кажущаяся степень диссоциации.
Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.
Уравнение диссоциации можно представить в следующем виде:
И степень диссоциации можно выразить так:
С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.
Так как диссоциация – процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:
Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):
К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.
Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.
Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,
Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:
На первой ступени ортофосфорная кислота – кислота средней силы, а 2ой – слабая, на 3ей – очень слабая.
Примеры констант равновесия для некоторых растворов электролитов.
Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.
Но у константы низкое значение:
Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.
Концентрация металлической меди и серебра введены в константу равновесия.
В приведенной таблице есть данные:
Эту константу называют ионным произведением воды, которое зависит только от температуры. Согласно диссоциации на 1 ион Н + приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: [H + ] = [OH — ].
Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.
Кислотность раствора ( рН ).
Взаимосвязь между константой и степенью диссоциации.
Рассмотрим пример диссоциации уксусной кислоты:
Молярная концентрация С=1/V, подставим в уравнение и получим:
Эти уравнения являются законом разведения В. Оствальда, согласно которому константа диссоциации электролита не зависит от разведения растовра.
Константа диссоциации
Константа диссоциации — вид константы равновесия, которая показывает склонность большого объекта диссоциировать (разделяться) обратимым образом на маленькие объекты, как например когда комплекс распадается на составляющие молекулы, или когда соль разделяется в водном растворе на ионы. Константа диссоциации обычно обозначается и обратна константе ассоциации. В случае с солями, константу диссоциации иногда называют константой ионизации.
где комплекс разбивается на x единиц A и y единиц B, константа диссоциации определяется так:
Содержание
Определение
Электролитическая диссоциация слабых электролитов, согласно теории Аррениуса, является обратимой реакцией, то есть схематически её можно представить уравнениями (для одновалентных ионов:):
Константу равновесия такой реакции можно выразить уравнением:
(1) |
Константу равновесия применительно к реакции диссоциации называют константой диссоциации.
Диссоциация электролитов с многовалентными ионами
В случае диссоциации электролитов с многовалентными ионами, диссоциация происходит по ступеням, причём для каждой ступени существует собственное значение константы диссоциации.
Первая степень диссоциации для таких электролитов всегда много больше последующих, что означает, что диссоциация таких соединений идёт главным образом по первой стадии.
Связь константы диссоциации и степени диссоциации
Исходя из определения степени диссоциации, для электролита КА в реакции диссоциации [A − ] = [K + ] = α·c, [KA] = c — α·c = c·(1 — α), где α — степени диссоциации электролита.
(2) |
Это выражение называют законом разбавления Оствальда. При очень малых α (α Отличие экспериментальных результатов от модели Аррениуса, вывод константы диссоциации через активности
Вышеприведённые выкладки базируются на теории Аррениуса, которая является слишком грубой, не учитывающей факторы электростатического взаимодействия ионов. Отклонения от идеального состояния в растворах электролитов возникают при очень малых концентрациях, так как межионные силы обратно пропорциональны квадрату расстояния между центрами ионов, в то время как межмолекулярные силы обратно пропорциональны седьмой степени расстояния, то есть межионные силы даже в разведённых растворах оказываются намного больше межмолекулярных.
Льюис показал, что для реальных растворов можно сохранить простые уравнения (см. выше), если вместо концентраций ионов вводить её функцию, так называемую активность. Активность (a) соотносится с концентрацией (c) через поправочный коэффициент γ, называемый коэффициентом активности:
Таким образом, выражение для константы равновесия, по Аррениусу описываемое уравнением (1), по Льюису будет выглядеть:
В теории Льюиса связь между константой и степенью диссоциации (в теории Аррениуса записываемая уравнением (2) выражается соотношением:
Если никаких других влияний, отклоняющих раствор от идеального состояния нет, то недиссоциированные молекулы ведут себя как идеальные газы и γKA = 1, а истинное выражение закона разбавления Оствальда примет вид:
При c→0 и γ→1 вышеприведённое уравнение закона разбавления Оствальда принимает вид (2). Чем сильнее диссоциирует электролит, тем быстрее значение коэффициента активности γ отклоняется от единицы, и тем быстрее наступает нарушение классического закона разведения.
Константа диссоциации сильных электролитов
Сильные электролиты диссоциируют практически нацело (реакция необратимая), поэтому в знаменателе выражения для константы диссоциации стоит ноль, и всё выражение стремится к бесконечности. Таким образом, для сильных электролитов термин «константа диссоциации» лишён смысла.
Примеры расчётов
Диссоциация воды
Вода представляет собой слабый электролит, диссоциирующий в соответствии с уравнением
Константа диссоциации воды при 25 °C составляет
Считая, что в большинстве растворов вода находится в молекулярном виде (концентрация ионов H + и OH − мала), и учитывая, что молярная масса воды составляет 18,0153 г/моль, а плотность при температуре 25 °C — 997,07 г/л, чистой воде соответствует концентрация [H2O] = 55,346 моль/л. Поэтому предыдущее уравнение можно переписать в виде
Эта величина называется ионным произведением воды. Так как для чистой воды [H + ] = [OH − ], можно записать
Водородный показатель воды, таким образом, равен
Диссоциация слабой кислоты
Найдём pH и степень диссоциации 0,01M раствора плавиковой кислоты HF. Её константа диссоциации равна
Обозначим степень диссоциации через α. Тогда [H + ] = [F − ] = Cα, [HF] = C(1-α). Подставив эти выражения в формулу для константы диссоциации, получим
Откуда следует квадратное уравнение относительно α:
Решая его по стандартной формуле, получим
Применение приближённой формулы даёт ошибку около 15 %:
Исходя из найденного значения степени диссоциации, найдём pH раствора:
См. также
Полезное
Смотреть что такое «Константа диссоциации» в других словарях:
константа диссоциации — – константа равновесия реакций диссоциации. Словарь по аналитической химии [3] см. также константа ионизации … Химические термины
константа диссоциации — disociacijos konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Disociacijos reakcijos pusiausvyros konstanta. atitikmenys: angl. dissociation constant vok. Dissoziationskonstante, f rus. константа диссоциации, f; постоянная… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
константа диссоциации — disociacijos konstanta statusas T sritis chemija apibrėžtis Disociacijos reakcijos pusiausvyros konstanta. atitikmenys: angl. dissociation constant rus. константа диссоциации … Chemijos terminų aiškinamasis žodynas
константа диссоциации — [dissociation constant] отношение концентрованных ионов, образованных в результате распада молекул соединения, к концентрации этого соединения; Смотри также: Константа константа скорости химической реакции константа равновесия … Энциклопедический словарь по металлургии
Константа диссоциации кислоты — У этого термина существуют и другие значения, см. Константа. Константа диссоциации кислоты (Ka) константа равновесия реакции диссоциации кислоты на ион водорода и анион кислотного остатка. Для многоосновных кислот, диссоциация которых… … Википедия
константа диссоциации кислоты — см. константа кислотности … Химические термины
Константа кислотности — Константа диссоциации кислоты (Ka) константа равновесия реакции диссоциации кислоты на ион водорода и анион кислотного остатка. Для многоосновных кислот, диссоциация которых проходит в несколько стадий, оперируют отдельными константами для разных … Википедия
константа ионизации — (константа диссоциации) – константа равновесия для процесса диссоциации. Общая химия : учебник / А. В. Жолнин [1] … Химические термины
Константа — Константа: Постоянная Математическая Физическая Константа (в программировании) Константа диссоциации кислоты Константа равновесия Константа скорости реакции Константа (Остаться в живых) См. также Констанция Констанций Константин Констант… … Википедия
константа — • константа диссоциации константа нестойкости комплекса константа равновесия константа скорости реакции … Химические термины
Электролитическая диссоциация. Степень и константа диссоциации
По способности проводить электрический ток в водном растворе или в расплаве, вещества делятся на электролиты и неэлектролиты.
Электролитами называются вещества, растворы или расплавы которых проводят электрический ток. К электролитам относятся соли, кислоты, основания. В молекулах этих веществ имеются ионные или ковалентные сильно полярные химические связи.
Неэлектролитами называются вещества, растворы или расплавы которых не проводят электрический ток. К неэлектролитам относятся, например, кислород, водород, многие органические вещества (сахар, эфир, бензол и др.). В молекулах этих веществ существуют ковалентные неполярные или малополярные связи.
Для объяснения электропроводности растворов и расплавов солей, кислот и оснований шведский ученый С. Аррениус создал теорию электролитической диссоциации (1887 г.):
1.Молекулы электролитов при растворении или расплавлении распадаются на ионы.
Процесс распада молекул электролитов на ионы в растворе или в расплаве называется электролитической диссоциацией, или ионизацией.
Ионы — это атомы или группы атомов, имеющие положительный или отрицательный заряд.
2.В растворе или расплаве электролитов ионы движутся хаотически. При пропускании через раствор или расплав электрического тока, положительно заряженные ионы движутся к отрицательно заряженному электроду (катоду), а отрицательно заряженные ионы движутся к положительно заряженному электроду (аноду). Поэтому положительные ионы называются катионами, отрицательные ионы — анионами.
3.Диссоциация — процесс обратимый. Это значит, что одновременно идут два противоположных процесса: распад молекул на ионы (ионизация, или диссоциация) и соединение ионов в молекулы (ассоциация, или моляризация).
Диссоциацию молекул электролитов выражают уравнениями, в которых вместо знака равенства ставят знак обратимости. В левой части уравнения записывают формулу молекулы электролита, в правой — формулы ионов, которые образуются в процессе электролитической диссоциации. Например:
Каждая молекула нитрата магния диссоциирует на ион магния и два нитрат-иона. Следовательно, в результате диссоциации одной молекулы Mg(NO3)2 образуются три иона.
Общая сумма зарядов катионов равна общей сумме зарядов анионов и противоположна по знаку (так как растворы электролитов электронейтральны).
Механизм электролитической диссоциации. Гидратация ионов
Причины и механизм диссоциации электролитов объясняются химической теорией раствора Д. И. Менделеева и природой химической связи. Как известно, электролитами являются вещества с ионной или ковалентной сильно полярной связями. Растворители, в которых происходит диссоциация, состоят из полярных молекул. Например, вода — полярный растворитель. Диссоциация электролитов с ионной и полярной связями протекает различно. Рассмотрим механизм диссоциации электролитов в водных растворах.
I. Механизм диссоциации электролитов с ионной связью
В результате этого взаимодействия между молекулами растворителя и ионами электролита притяжение между ионами в кристаллической решетке вещества ослабевает. Кристаллическая решетка разрушается, и ионы переходят в раствор. Эти ионы в водном растворе находятся не в свободном состоянии, а связаны с молекулами воды, т. е. являются гидратированными ионами.
Диссоциация ионных соединений в водном растворе протекает полностью. Так диссоциируют соли и щелочи: KCl, LiNO3, Ba(OH)2 и др.
II. Механизм диссоциации электролитов, которые состоят из полярных молекул
При растворении в воде веществ с полярной ковалентной связью происходит взаимодействие дипольных молекул электролита с дипольными молекулами воды. Например, при растворении в воде хлороводорода происходит взаимодействие молекул НСl с молекулами Н2O. Под влиянием этого взаимодействия изменяется характер связи в молекуле HCl: сначала связь становится более полярной, а затем переходит в ионную связь. Результатом процесса является диссоциация электролита и образование в растворе гидратированных ионов.
Так диссоциируют кислородсодержащие и бескислородные кислоты: H2SO4, HNO3, НI и др. Диссоциация электролитов с полярной связью может быть полной или частичной. Это зависит от полярности связей в молекулах электролитов.
Таким образом, главной причиной диссоциации в водных растворах является гидратация ионов. В растворах электролитов все ионы находятся в гидратированном состоянии. Например, ионы водорода соединяются с молекулой воды и образуют ионы гидроксония Н3O+ по донорно-акцепторному механизму:
Свойства ионов
Ионы по физическим, химическим и физиологическим свойствам отличаются от нейтральных атомов, из которых они образовались. Например, ионы натрия Na + и хлорид-ионы Сl — не взаимодействуют с водой, не имеют цвета, запаха, неядовиты.
Атомы натрия Na 0 энергично взаимодействуют с водой. Вещество хлор C12 в свободном состоянии — газ желто-зеленого цвета, ядовит, сильный окислитель.
Различные свойства атомов и ионов одного и того же элемента объясняются разным электронным строением этих частиц. Химические свойства свободных атомов металлов определяются валентными электронами, которые атомы металлов легко отдают и переходят в положительно заряженные ионы. Атомы неметаллов легко присоединяют электроны и переходят в отрицательно заряженные ионы. Ионы находятся в более устойчивых электронных состояниях, чем атомы.
Степень диссоциации
В водных растворах некоторые электролиты полностью распадаются на ионы. Другие электролиты распадаются на ионы частично, часть их молекул остается в растворе в недиссоциированном виде.
Число, показывающее, какая часть молекул распалась на ионы, называется степенью электролитической диссоциации (степенью ионизации).
Степень электролитической диссоциации (α) равна отношению числа молекул, которые распались на ионы, к общему числу молекул в растворе:
где n — число молекул, распавшихся на ионы; N — общее число растворенных молекул.
Например, степень диссоциации (α) уксусной кислоты СН3СООН в 0,1 М растворе равна 1,36%. Это означает, что из 10000 молекул СН3СООН 136 молекул распадаются на ионы по уравнению:
Степень диссоциации зависит от природы растворителя и природы растворяемого вещества, концентрации раствора, температуры и других факторов.
Различные вещества диссоциируют в разной степени. Например, муравьиной кислоты НСООН при одинаковых условиях больше α уксусной кислоты СН3СООН.
При уменьшении концентрации электролита, т. е. при разбавлении раствора, степень диссоциации увеличивается, так как увеличиваются расстояния между ионами в растворе и уменьшается возможность соединения их в молекулы.
При повышении температуры степень диссоциации, как правило, увеличивается.
В зависимости от степени диссоциации электролиты делятся на сильные и слабые.
Сильные электролиты — это такие электролиты, которые в водных растворах полностью диссоциируют на ионы, т. е. их степень диссоциации равна 1 (100%). К сильным электролитам относятся: 1) соли; 2) сильные кислоты (HClO4, НСlO3, НNО3, H2SO4, HCl, НВr, HI и др.); 3) щелочи (LiОН, NaOH, КОН, RbOH, СsОН, Ca(OH)2, Sr(OH)2, Ba(OH)2.
Слабые электролиты — это такие электролиты, которые в водных растворах не полностью диссоциируют на ионы, т. е. их степень диссоциации меньше 1 (100%). К слабым электролитам относятся: 1) слабые кислоты (НСlO2, HClO, HNO2, H2SO3, Н2СO3, H2SiO3, Н3РО4, H3РО3, H3BO3, СН3СООН, Н2S, HCN, HF и др.); 2) слабые нерастворимые в воде основания Fe(OH)2, Pb(OH)2, Cu(OH)2 и др.); 3) гидроксид аммония (NH4OH); 4) вода (Н2О).
Константа диссоциации (ионизации)
Для характеристики слабых электролитов применяют константу диссоциации (Kд). Вследствие того, что слабые электролиты диссоциируют на ионы не полностью, в их растворах устанавливается динамическое равновесие между недиссоциированными молекулами и ионами. Для слабого электролита общей формулы АnВm уравнение диссоциации имеет вид:
Применяя закон действующих масс, запишем выражение константы равновесия:
Константу равновесия в этом случае называют константой диссоциации (Kд), или константой ионизации.
Константа ионизации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем легче электролит распадается на ионы, тем больше ионов в его растворе, тем сильнее электролит. Например:
Следовательно, уксусная кислота СН3СООН более сильный электролит, чем циановодородная кислота HCN.
Для слабого электролита константа диссоциации — постоянная величина при данной температуре, которая не зависит от концентрации раствора. Константа диссоциации зависит от природы электролита, природы растворителя и температуры. Константы диссоциации некоторых слабых электролитов приведены в таблице.