что такое комплексные корни
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени:
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №41. Извлечение корня из комплексного числа.
Перечень вопросов, рассматриваемых в теме
1) понятие корня из комплексного числа;
2) алгоритмы извлечения корня из комплексного числа;
3) пример извлечения корня из комплексного числа в тригонометрической форме.
Определение. Корнем n-ой степени из комплексного числа ω называется комплексное число z такое, что zn=ω. Множество всех корней n-ой степени из ω обозначается через .
Теорема. Уравнение z n =ω, где ω- комплексное число, n- натуральное, имеет ровно n различных комплексных корней.
Все n корней zk лежат на оркужности радиусом с центом в начале кооринат; они делят окружность на n дуг величиной
каждая и являются вершинами вписанного в нее правильного n-угольника.
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Определение. Корнем n-ой степени из комплексного числа ω называется комплексное число z такое, что zn=ω. Множество всех корней n-ой степени из ω обозначается через .
Теорема. Уравнение z n =ω, где ω- комплексное число, n- натуральное, имеет ровно n различных комплексных корней.
Доказательство. Пусть ω=|ω|∙(cosφ+isinφ), число z будем искать в виде
Преобразуем уравнение z n =ω, используя формулу Муавра:
Отсюда вытекают равенства:
|z| n =|ω|, nζ= θ+2πk, k- целое,
Из которых для модуля искомого корня получается определенное значение , тогда как его аргумент
, k- целое, может принимать различные значения при разных k. При этом значениям k= 0, 1, 2, …, n-1 соответствуют различные значения корня, а при k= n значение корня совпадает с его значением при k=0. При k=n+1 получим значение корня, что и при k=1, и т.д.
Таким образом, число различных значений корня равно n- это
, где k=0, 1, 2,…, n-1 что и требовалось доказать.
Все n корней zk лежат на оркужности радиусом с центом в начале кооринат; они делят окружность на n дуг величиной
каждая и являются вершинами вписанного в нее правильного n-угольника.
Пример 1. Найдите все корни n-ой степени из действительного числа x>0.
Решение. Если х- положительное действительное число, то |x|=x, θ=arg x=0. Формула корней в этом случае дает ответ:
, где k=0, 1, 2,…, n-1.
При k=0 получим – это арифметический корень. При четном n=2m имеется еще один дейсвтиельный корень., получающийся при k=m. (ζ= arg zm=π):
Корни n-ой степени из 1 часто обозначают через εk, k= 0, 1, 2, …, n-1. Согласно предыдущему примеру:
Пример 2. Вычислите корни третьей степени из комплексного числа 2+2i.
Решение: Найдем тригонометрическую форму данного числа:
По формуле корней из комплексного числа имеем:
, где k пробегает значения 0, 1, 2. Запишем полученные корни:
Используя формулы для косинуса и синуса разности углов, получаем:
Немного иначе извлекаются корни из комплексных чисел, аргумент которых не приводится к виду , где m, n – целые числа.
Пример 3. Найдите
Решение. Пусть ω=3+4i. Положим φ=arg ω.
, тогда ω=5(cosφ+isinφ), где
,
.
Следовательно, , где k=0, 1.
Найдем и
, используя формулу двойного угла:
, откуда
,
; тогда
,
Угол φ лежит в первой четверти, а следовательно, и угол
тоже, поэтому
Тогда
Ответ:
Пример 4. Выполнить операцию извлечения корня z 3 для заданных комплексных чисел в алгебраической форме представления: .
Решение: Тригонометрическая форма записи некоторого комплексного числа имеет вид z=r(cosφ+i⋅sinφ). По условию . Вычислим модуль исходного комплексного числа:
Вычислим аргумент исходного комплексного числа, используя формулу (*):. Подставим полученные значения и получим:
Для k=0 получаем:
Разбор решения заданий тренировочного модуля
№1. Тип задания: множественный выбор
Найдите
Выберите верные ответы из предложенных:
Решение. Пусть ω=3-4i. Положим φ=arg ω.
, тогда ω=5(cosφ+isinφ), где
,
.
Следовательно, , где k=0, 1.
Найдем и
, используя формулу двойного угла:
, откуда
,
; тогда
,
Угол φ лежит в первой четверти, а следовательно, и угол
тоже, поэтому
Тогда
№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Комплексные числа
Алгебраическая форма записи комплексных чисел
Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.
Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Комплексно сопряженные числа
Модуль комплексного числа
Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле
Для произвольного комплексного числа z справедливо равенство:
а для произвольных комплексных чисел z1 и z2 справедливы неравенства:
Деление комплексных чисел, записанных в алгебраической форме
Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле
Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:
Деление на нуль запрещено.
Изображение комплексных чисел радиус-векторами координатной плоскости
Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.
При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.
Аргумент комплексного числа
Считается, что комплексное число нуль аргумента не имеет.
Тогда оказывается справедливым равенство:
(3) |
(4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
Расположение числа z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
Положительная вещественная полуось | ||||
Положительная мнимая полуось | ||||
Второй квадрант | ||||
Отрицательная вещественная полуось | Положительная вещественная полуось | |||
Знаки x и y | ||||
Главное значение аргумента | 0 | |||
Аргумент | φ = 2kπ | |||
Примеры |
значение
аргумента
значение
аргумента
значение
аргумента
x z
квадрант
x z
мнимая
полуось
y z
квадрант
Положительная вещественная полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Положительная мнимая полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Отрицательная вещественная полуось
Отрицательная мнимая полуось
x z = x + i y может быть записано в виде
Формула Эйлера. Экспоненциальная форма записи комплексного числа
В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :
Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде
Из формулы (7) вытекают, в частности, следующие равенства:
а из формул (4) и (6) следует, что модуль комплексного числа
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.
Действительно, умножение и деление двух произвольных комплексных чисел и
записанных в экспоненциальной форме, осуществляется по формулам
Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.
Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле
Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.
Извлечение корня натуральной степени из комплексного числа
Пусть — произвольное комплексное число, отличное от нуля.
Для того, чтобы решить уравнение (8), перепишем его в виде
следствием которых являются равенства
(9) |
Из формул (9) вытекает, что уравнение (8) имеет n различных корней
(10) |
то по формуле (10) получаем:
- чем заделать трещины в фанере
- лак бт 577 технические характеристики для чего используется