что такое коммутатор уровня ядра
Коммутаторы уровня доступа, распределения, ядра
Сетевое оборудование структурировано по модели OSI, которая включает 7 уровней. Более подробно об этом мы говорили в соответствующем материале. Однако чаще остальных в большинстве инструкций упоминают следующие уровни:
О том, что это значит, мы поговорим в этой статье.
Что такое «уровни управления коммутаторов»?
Трехуровневая модель сети впервые была предложена инженерами компании Cisco. Смысл этой модели состоит в том, чтобы объединить все устройства в архитектуре сети в группы по древовидному принципу. Если представить, что уровни доступа — это дерево (возможно, это звучит забавно, но древовидная структура почитается всеми сетевыми специалистами), то:
Так легче ориентироваться в уровнях, подуровнях и прочих хитросплетениях сетевого администрирования.
Такая иерархия в больших и сложных сетях позволяет распределять устройства по отдельным кластерам, согласно их функциям и техническим возможностям, а также упрощает контроль их работы. Трафик при этом передается от нижестоящего узла на вышестоящий, маршрутизируется и направляется по конечному адресу. По сути такая система служит огромным приемно-сортировочным пунктом, который вначале стремится к централизации данных, а затем рассылает пакеты по запрашиваемым портам-адресатам.
Коммутаторы уровня ядра
Основная задача такого оборудования — обеспечить быструю и безотказную транспортировку огромного объема трафика. Само собой, без задержек. Также предварительно надо озаботиться настройкой ACL и маршрутизации в целом, иначе поток сильно замедлится.
Зачастую при проблемах с пиковой производительностью приходится сжимать зубы и полностью менять сетевую инфраструктуру на более мощную. Классическим расширением тут не отделаешься, поскольку 8 портов по 100 Мбит + 8 портов по 100 Мбит будут на голову хуже 4 портов по 1 Гбит. И не забывайте про резервное кольцо на всякий случай.
Сетевые устройства уровня ядра зачастую работают по принципу VLAN на один узел Distribution-уровня. А это еще кто такие? А вот сейчас познакомим.
Коммутаторы уровня распределения (агрегации)
Говоря простым языком — распределители трафика между VLAN-сетями с последующей фильтрацией по ACL-протоколу. Такие устройства ориентированы на описание политики сети для конечного потребителя. Они же формируют широковещательные потоки Broadcast и Multicast-доменов и рассылок. Ваше IPTV — их рук дело.
Здесь периодически используют статические маршруты на базе динамических протоколов. Нередко можно встретить устройства распределения трафика с внушительной емкостью SFP-портов, которые одновременно являются и портами расширения (дополнительные устройства, объединение в кластер), и инструментом для использования связей с коммутаторами уровнем ниже. С их же помощью определенное число узлов объединяют в кольцо.
А еще подобные коммутаторы нередко встречаются с функционалом L2+ (L3 Lite) и принципом калибровки «VLAN каждого сервиса соответствует одному узлу Access».
Как вы понимаете, мы подобрались к третьей категории устройств
Access-коммутаторы (уровня доступа)
Эти устройства созданы для того, чтобы к ним подключались сами пользователи. Вы наверняка встречали маркировку DSCP, но не знали, что она значит. Все просто: трафик, маркированный меткой DSCP, приходит как раз от абонентов, чтобы его было легче отслеживать.
Зачастую это классические коммутаторы L2 (реже — L3) с классическим принципом настройки:
Как определить подходящее устройство
Вы уже поняли, что корпоративная сеть делится на три уровня. Преимущества такого подхода — оптимизация расходов, грамотный выбор оборудования L2 и L3 (иногда L2+). Если стоит выбор между уровнями, спросите себя, где оно будет стоять. Если компания небольшая, то выбор L2 очевиден.
Большая сеть по умолчанию должна быть надежной, так что здесь использование коммутаторов L3 — вопрос надежности. При этом устройство должно поддерживать VLAN, ACL и QoS.
Коммутаторы ядра по умолчанию бывают третьего уровня, при этом зачастую комплектуются жирными пропускными Ethernet-каналами:
Они не гоняют пакеты. Скорее выполняют роль меж-виртуальной маршрутизации:
Иными словами — делают все для максимальной скорости передачи под предельными нагрузками. Нередко на «ядерные» коммутаторы ложится и защита от DDoS с использованием протоколов третьего уровня. А потому такие устройства должны быть максимально отказоустойчивыми.
Коммутаторы уровня доступа, распределения, ядра
Устройство сетей операторов связи
В зависимости от оператора сеть может быть организована на основе нескольких технологий. Зачастую используются технологии Ethernet и PON, все зависит от предпочтений провайдера, списка востребованных услуг, плотности абонентов и еще многих факторов. В нашей статье мы будем рассматривать классическую Ethernet сеть, развернутую в рамках города с высокой плотностью абонентов.
Для наглядности рассмотрим схему сети интернет провайдера, основанную на модели OSI, но заметим, что «в жизни» схема сети модифицируется и перерабатывается провайдером в рамках собственных задач и возможностей.
Сеть провайдера состоит из следующих уровней:
Как видно по схеме сеть провайдера весьма большая, и для ее реализации необходима масса разнообразного оборудования, начиная от маршрутизаторов и коммутаторов, заканчивая оптическими патч-кордами для стыковки трансиверов. Именно на примере такой сети можно показать и достаточно легко объяснить существующее множество модификаций трансиверов.
Уровень доступа
Начнем снизу сети – с уровня доступа. Это ближайший к конечным абонентам сегмент операторской сети. В качестве коммутатора доступа, расположенного на чердаке или в подвале многоквартирного дома, зачастую используются бюджетное и неприхотливое оборудование такое как L2-коммутатор, например D-Link XXX или его аналоги от компаний Cisco, Huawei, Eltex и так далее. Все эти модели объединяют схожие характеристики – 24 или 48 10/100Base-T портов для подключения абонентов (в последнее время становится востребована модификация с портами 100/1000Base-T) и двумя или четырьмя 1,25 Гбит/с SFP-портов для подключения к соседним коммутаторам доступа и к уровню агрегации.
Для организации соединений 1,25 Гбит/с зачастую используются оптические модули WDM SFP или одноволоконные трансиверы SFP. Для этого типа подключения выбираются именно одноволоконные модули в связи с удобством их инсталляции и обслуживания. Для образования соединения нужно только одно волокно, в качестве оптического коннектора используются простые и надежные коннекторы типа SC/UPC (Subscriber Connector). Реже используются трансиверы с разъемом LC/UPC (Lucent Connector), меньшая распространённость LC разъемов объясняется их недостаточной надежностью по сравнению с SC.
В связи с небольшой удаленностью коммутаторов доступа друг от друга и от уровня агрегации, используются SFP модули с дальностью передачи 3 км или 20 км. Также некоторыми провайдерами используется модификация WDM SFP трансивера на 10 км, которая представляет собой универсальное решение для организации каналов уровня доступа. Стандартные одноволоконные трансиверы ведут передачу на длинах волн 1310 нм и 1550 нм и работают парно, то есть один трансивер передает на длине волны 1310 нм, принимает на 1550 нм, а второй передает на 1550 нм и принимает на 1310 нм. Но иногда сети операторов связи, построены по принципу PON-сетей в рамках, когда по одному волокну передается интернет трафик и КТВ-сигнал. В таком случае используются нестандартные WDM SFP модули с длинами волн передачи 1310 нм и 1490 нм, это позволяет освободить длину волны 1550 нм, которая необходима для передачи КТВ.
Все вышеперечисленное по большей части относится к подключению физических лиц, юридические лица часто подключаются при помощи WDM медиаконвертера 10/100. Медиаконвертер позволяет организовать на удаленной площадке порт RJ45 с пропускной способностью 100Мб/с. Зачастую их используют для подключения отдельных объектов, на которых не требуется большой пропускной способности. Наиболее востребованы модификации конвертеров со средней дальностью передачи – до 20 км. Также существуют медиаконвертеры с SFP слотом, которые позволяют использовать нестандартные SFP модули для подключения абонента. На рынке встречаются модели, предполагающие установку 1,25 Гбит/с модулей или 100 Мбит/с модулей, также встречаются гибридные модели, работающие с обоими типами SFP трансиверов.
Уровень агрегации
Коммутаторы уровня агрегации подключаются к ядру сети по топологии «Звезда», реже применяется топология «Шина». Объем и скорость передаваемой информации на этом уровне сети заметно выше, чем на уровне доступа. Для организации каналов связи «агрегация – ядро сети» зачастую используются трансиверы со скоростью передачи 10 Гбит/с. В зависимости от схемы прокладки оптических кабелей и их волоконной емкости на уровне агрегации, могут применяться технологии спектрального уплотнения WDM и CWDM, в основном это вызвано дефицитом волокон и необходимостью их экономить. В случае, если уровень агрегации подключается к ядру сети по топологии «Звезда» с организацией одного канала 10 Гбит/с, с каждой точки агрегации логично использовать WDM трансиверы форм-фактора SFP+ или XFP (форм-фактор зависит от используемых коммутаторов агрегации).
В том же случае, если топология подключения уровня агрегации сложнее, чем классическая «Звезда» или же до каждой точки агрегации необходимо доставить больше одного канала 10 Гбит/с, то экономически оправданным является построение CWDM системы, которая позволяет организовать 9 дуплексных каналов связи в рамках одного оптического волокна. Необходимо отметить, что CWDM системы позволяют строить как простые трассы типа «точка-точка», так и трассы со сложной топологией «точка-многоточие» или «кольцо».
Вне зависимости от топологии сети, удаленность узлов агрегации от ядра сети может составлять от нескольких километров до нескольких десятков километров, редко расстояние превышает 20 км.
Уровень ядра сети
Уровень ядра сети самый ответственный, на нем важна и высокая производительность, и максимальная отказоустойчивость. Резервирование оборудования ядра сети производится с использованием топологии «каждый-с-каждым» и физическим резервированием каналов связи и сервисов. Расстояние между активным сетевым оборудованием на данном уровне может составлять как десятки метров и находиться в рамках одного здания, так и десятков километров с разнесением ядра сети на несколько площадок. Передаваемые скорости внутри ядра сети могут составлять 40 – 100 Гбит/с, все зависит от величины провайдера и объема его абонентской базы.
Соответственно, для организации соединений между коммутаторами ядра сети могут использоваться, как 10 Гбит/с трансиверы, так и высокоскоростные 40 и 100 Гбит/с трансиверы. В зависимости от удаленности сетевого оборудования соответственно применяются, как многомодовые трансиверы типа SR, так и высокопроизводительные системы уплотнения CWDM или DWDM с использованием транспондеров или мукспондеров для передачи высокоскоростных каналов связи.
Серверный уровень
Серверный уровень, по факту являясь неотъемлемой частью ядра сети, зачастую располагается недалеко, в пределах одного здания. Его подключение также требует резервирования для обеспечения бесперебойности работы сервисов. В связи с небольшими расстояниями между оборудованием, в пределах машинного зала или здания, на этом уровне сети распространены трансиверы для «коротких» соединений, такие как, DAC-кабели, AOC-кабели, всевозможные вариации Break-out кабелей и трансиверы типа SR и LRM. В основном все соединения имеют скорость передачи 10 Гбит/с и 40 Гбит/с, но с растущим объемом потребляемого трафика все чаще начинает использоваться связка 25 Гбит/с и 100 Гбит/с.
Трансиверы, обеспечивающие скорость передачи 25 Гбит/с это новый форм-фактор – SFP28. Являясь развитием форм-фактора SFP, новый тип трансиверов сохранил компактные габариты корпуса, при этом увеличил скорость передачи до 25 Гбит/с. Важной особенностью данного форм-фактора стала возможность соединения с трансиверами QSFP28 100G. Дело в том, что трансиверы QSFP28 являются четырёх поточными, т.е. номинальная скорость 100 Гбит/с образуется в результате объединения четырёх потоков по 25 Гбит/с. Таким образом, с одним трансивером QSFP28 можно агрегировать до четырёх потоков предаваемых трансиверами SFP28. Для этого нужно подобрать правильные модификации, например MT-QSFP-100G-DF-31-LR4-CD-MPO; при помощи breakout патчкорда можно соединить с модулями MT-SFP28-25G-DF-31-LR-CD. А любой двухволоконный QSFP28 можно соединять с SFP28 при помощи мультиплексоров, CWDM, DWDM или LWDM, в зависимости от модели.
Кроме трансиверов и кабелей на серверном уровне для организации соединений используются сетевые карты или NIC. На данный момент самыми распространёнными стали карты со скоростью передачи на один порт 10/25/40 Гбит/с, реже встречаются высокоскоростные 100Гбит/с. В зависимости от производителя сетевые карты могут быть построены на основе процессоров от Intel, Broadcom, Mellanox, Qlogic и других менее известных. По стечению обстоятельств в России массовую популярность завоевали карты на основе процессоров Intel, например, X520-DA2 на основе чипа Intel 82599ES. Такая популярность породила большой объем OEM продукции на основе оригинальных чипсетов от Intel.
Зачастую доустановка или смена сетевой карты в сервере вызвана увеличением пропускной способности сети, которую спровоцировало повышение запросов абонентов к качеству сервисов. По опыту, выход из строя сетевой карты маловероятен, так как заложенной прочности достаточно для безаварийной работы весь жизненный цикл сервера.
Пограничный уровень сети
Данный уровень сети не изображается на классической схеме сети, но представляет собой важный сегмент сети, а именно точку сопряжения с вышестоящим провайдером. Данный уровень представляет собой границу между локальной сетью провайдера и Интернетом.
На данном уровне используются высокоскоростные модули, дальность которых напрямую зависит от удаленности точки подключения маршрутизатора.
Как правильно выбрать коммутатор ядра?
Howard
Коммутаторы ядра лежат в основе корпоративных сетей и несут ответственность за высокоскоростную маршрутизацию и коммутацию. Рост трафика на уровне доступа и на уровне распределения повлияет на производительность коммутаторов ядра. Поэтому, как выбрать наиболее подходящие коммутаторы ядра для компусных и корпоративных сетей, важно в долгосрочной перспективе. Читайте, чтобы узнать больше о факторах, которые следует учитывать при выборе коммутаторов ядра.
Обязанность коммутаторов ядра
В структуре корпоративной иерархической сети коммутатор уровня ядра является верхним, на который полагаются другие уровни доступа и распределения. Он объединяет все потоки трафика от устройств уровня распределения и устройств уровня доступа, и иногда коммутаторам ядра приходится иметь дело с внешним трафиком от других выходных устройств. Поэтому для коммутаторов ядра важно отправлять как можно больше пакетов. Уровень ядра всегда состоит из высокоскоростных коммутаторов и маршрутизаторов, оптимизированных для производительности и доступности.
Рисунок 1: коммутаторы ядра в трехуровневой архитектуре
Расположенный на уровне ядра корпоративных сетей, коммутатор уровня ядра функционирует в качестве магистрального коммутатора для доступа к локальной сети и централизует несколько устройств агрегации в ядре. На этих трех уровнях коммутаторы ядра требуют наиболее высокой производительности коммутатора. Как правило, они являются наиболее мощными с точки зрения быстрой пересылки больших объемов данных. В большинстве случаев коммутаторы ядра управляют высокоскоростными соединениями, такими как 10G Ethernet, 40G Ethernet или 100G Ethernet. Чтобы обеспечить высокоскоростную передачу трафика, коммутаторы ядра не должны выполнять какие-либо манипуляции с пакетами, такие как меж-виртуальная маршрутизация, списки доступа и т. д., которые выполняются распределительными устройствами.
Внимание: В небольших сетях часто бывает необходимо реализовать свернутый уровень ядра, объединяющий уровень ядра и уровень распределения в один, а также коммутаторы. Дополнительная информация о свернутом ядре доступна в разделе как выбрать подходящий коммутатор уровня распределения?
Факторы, которые следует учитывать при выборе коммутаторов ядра для предприятий
Скорость пересылки пакетов и емкость коммутации очень важны для коммутатора ядра в корпоративных сетях. По сравнению с коммутаторами уровня доступа и коммутаторами уровня распределения, коммутаторы ядра должны обеспечивать максимально высокую скорость пересылки и пропускную способность коммутации. Конкретная скорость пересылки во многом зависит от количества устройств в сети, коммутаторы ядра могут быть выбраны с низу до верх на основе устройств уровня распределения. Например, сетевые дизайнеры могут определить необходимую скорость пересылки коммутаторов ядра, проверив и изучив различные потоки трафика из уровней доступа и распределения, а затем идентифицируя один или несколько подходящих коммутаторов ядра для сети.
Избыточность
Надежность
Обычно коммутаторы ядра являются коммутаторами уровня 3, выполняющими как функции коммутации, так и функции маршрутизации. Связь между коммутаторами уровня распределения и ядра осуществляется с использованием линиий связи уровня 3. коммутаторы ядра должны выполнять расширенную защиту от DDoS с использованием протоколов уровня 3 для повышения безопасности и надежности. Агрегирование каналов необходимо в коммутаторах ядра, чтобы коммутаторы уровня распределения доставляли сетевой трафик на уровень ядра максимально эффективно.
Кроме того, отказоустойчивость является проблемой для рассмотрения. Если произойдет сбой в коммутаторах уровня ядра, это затронет каждого пользователя. Следует избегать таких конфигураций, как списки доступа и фильтрация пакетов, в случае замедления сетевого трафика. Отказоустойчивые протоколы, такие как VRRP и HSRP, также доступны для группировки устройств в виртуальные и обеспечения надежности связи в случае выхода из строя одного физического коммутатора. Более того, когда в некоторых корпоративных сетях имеется более одного коммутатора ядра, коммутаторы ядра должны поддерживать такие функции, как MLAG, чтобы обеспечить работу всего канала в случае сбоя коммутатора ядра.
QoS Способность
QoS является важной услугой, которая может потребоваться для определенных типов сетевого трафика. На современных предприятиях с растущим объемом трафика данных требуется все больше и больше голосовых и видеоданных. Что, если в ядре предприятия возникает перегрузка сети? Служба QoS будет иметь смысл. Благодаря СпособностИ QoS коммутаторы ядра могут предоставлять разную полосу пропускания различным приложениям в соответствии с их различными характеристиками. По сравнению с трафиком, который не так чувствителен ко времени, как, например, электронная почта, критический трафик, чувствительный ко времени, должен получать более высокие гарантии QoS, так что в первую очередь может передаваться более важный трафик с высокой скоростью пересылки данных и гарантированной низкой потерей пакетов.
Как вы можете видеть из содержания выше, существует множество факторов, которые определяют, какие корпоративные коммутаторы ядра наиболее подходят для вашей сетевой среды. Кроме того, вам может потребоваться несколько бесед с поставщиками коммутаторов и знать, какие конкретные функции и услуги они могут предоставить, чтобы сделать мудрый выбор.
Коммутатор ядра
Коммутатор ядра
Стоит отметить, что для повышенной степени надежности необходимо организовать отказоустойчивость (то есть, установить резервное оборудование) на каждом уровней сетевой инфраструктуры. Рассмотрим структуру сети на основе иерархической модели:
Коммутаторы агрегации поддерживают большое количество VLAN, стэкирование и различные аплинк-модули. Они должны распознавать и обрабатывать большое количество MAC адресов (всех пользователей). Коммутаторы агрегации также позволяют значительно снизить нагрузку на сеть за счет распределения трафика между отдельными VPN без задействования коммутаторов уровня ядра. Эти устройства имеют минимум два аплинк канала: для доступа и для ядра. Обычно они снабжены скоростными портами (Gigabit Ethernet), а для аплинк-подключений используют порты стандарта 10 Gigabit Ethernet или 40 Gigabit Ethernet. Функционал данных устройств не предусматривает поддержку технологии PoE на портах.
Данные устройства обеспечивают обработку всей входящей информации и обмен с каналами провайдера услуг. На этом уровне важна надежность и резервирование устройств, а также наличие запасных блоков питания, вентиляторов (2 и более) и кабельных соединений. Коммутатор ядра должен обладать высокой пропускной способностью (благодаря портам 1 Гбит, 10 Гбит или 40 Гбит), чтобы эффективно распределять пакеты данных между отдельными сегментами сетевой инфраструктуры. Кроме того, устройства уровня ядра должны поддерживать технологии агрегирования подключений, для того, чтобы обеспечить отказоустойчивость сети в случае обрыва соединения на одном из каналов связи.
Это более простые в своей конфигурации устройства (в сравнении с устройствами вышестоящих уровней), которые собирают на себе все клиентское оборудование. Они снабжены портами доступа Fast Ethernet или Gigabit Ethernet, медными портами и оптическими\медными аплинками. Коммутаторы доступа могут поддерживать стэкирование, а также технологии питания PoE и PoE+, подавая на подключенные устройства различную мощность. В случае, когда доступ к сети выделяется исключительно для корпоративных клиентов, необходимо, чтобы коммутаторы уровня доступа дополнительно поддерживали такие технологии, как QinQ, VPLS (Virtual Private LAN Service), E-Line и E-LAN.
Технологии, применяемые для коммутатора ядра
Резервирование на логическом уровне
Под этим типом резервирования подразумевается активизация резервного канала передачи данных при потере связи с основным каналом. В зависимости от норм, установленных конкретным стандартом отказоустойчивости, приемлемое время восстановления может составлять 10, 50 или 300 мс. Для обеспечения отказоустойчивости на логическом уровне производители коммутаторов ядра используют такие технологии, как M-LAG (для резервирования линков и устройств) и EtherChannel (для резервирования линков), которые принимают соответствующие меры по предотвращению образования “петель” и “единых точек отказа”.
Резервирование ядра сети
Резервирование ядра сети может осуществляться на двух уровнях: аппаратном и логическом. Ниже приведены описания основных принципов резервирования каждого из этих уровней.
Резервирование на аппаратном уровне
» ВТК СВЯЗЬ предлагает широчайший выбор сетевого оборудования представительского класса. Команда ВТК СВЯЗЬ в течение многих лет успешно разрабатывает проекты по организации сетевой инфраструктуры.
А также занимается монтажом и настройкой сетевого оборудования. Обращаясь к нашим специалистам, Вы можете быть уверены в продуктивности работы установленного оборудования. «
Требования к коммутатору ядра
Исходя из вышеуказанных описаний, можно выделить ряд требований, необходимых для коммутатора ядра:
Коммутатор ядра от Cisco
В частности, Cisco предлагает следующие решения коммутатора ядра:
Новую серию коммутаторов Cisco Catalyst 6500
Они работают на ОС NX-OS, с помощью которой дополнительно осуществляются функции балансировки нагрузки между каналами. Приобрести модели Nexus также можно на ВТК СВЯЗЬ.
Коммутатор ядра на
ВТК СВЯЗЬ
Стоимость коммутатора ядра
Стоимость коммутатора ядра линейки Cisco Catalyst 6500 колеблется в диапазоне от 2 500 у.е. до 5 000 у.е.
Коммутатор ядра линейки Nexus можно приобрести за сумму от 5 100 у.е. до 32 000 у.е.
Приобрести коммутатор ядра можно на ВТК СВЯЗЬ. В случае, если у Вас возникли затруднения при выборе, мы рекомендуем обратиться к менеджерам нашего магазина. Специалисты ВТК СВЯЗЬ ознакомят Вас с ключевыми техническими характеристиками каждой из рассматриваемых моделей, чтобы новоприобретенное устройство максимально оправдало Ваши ожидания.
ВТК СВЯЗЬ
115280 Москва м. Автозаводская
Ленинская Слобода 26 строение 6
БЦ Симонов Плаза, офис 1519