что такое коллектор в генераторе автомобиля
Для чего в машинах постоянного тока используется коллектор?
Коллектор — это система медных пластин, изолированных друг от друга и от вала якоря. К пластинам припаяны отводы от обмотки якоря. Для соединения коллектора с зажимами машины и внешней цепью служат скользящие контакты (щетки).
Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).
Для рассмотрения работы коллектора обратимся к рис. 2, на котором рамка с проводниками А и В показана в разрезе. Для большей наглядности проводник А показан толстым кружком, а проводник В двумя тонкими кружками.
Щетки замкнуты на внешнее сопротивление тогда э. д. с., индуктируемая в проводниках, будет вызывать в замкнутой цепи электрический ток. Поэтому при рассмотрении работы коллектора можно говорить не об индуктированной э. д. с., а об индуктированном электрическом токе.
Рис. 1. Коллектор электрической машины
Рис. 2. Упрощенное изображения коллектора
Рис. 3. Выпрямление переменного тока с помощью коллектора
Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.
Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.
Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.
В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.
В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.
Рис. 4. Коллектор двигателя постоянного тока
Представление о характере изменения тока во внешней цепи за один оборот рамки, снабженной коллектором, дает кривая рис. 5. Из кривой видно, что наибольших значений ток достигает в точках, соответствующих 90° и 270°, т. е. когда проводники пересекают силовые линии непосредственно под полюсами. В точках 0° (360°) и 180° ток во внешней цепи равен нулю, так как проводники, проходя нейтральную линию, силовых линий не пересекают.
Рис. 5. Кривая изменения тока во внешней цепи за один оборот рамки после выпрямления коллектором
Из кривой нетрудно заключить, что хотя направление тока во внешней цепи и остается неизменным, но величина его все время меняется в пределах от нуля до максимума.
Электрический ток, постоянный по направлению, но переменный по величине, носит название пульсирующего тока. Для практических целей пульсирующий ток очень неудобен. Поэтому в генераторах стремятся сгладить пульсации и сделать ток более ровным.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Схема автомобильного генератора
Давайте сначала дадим точное и понятное для всех определение, что вообще такое генератор автомобиля, в том числе и генератор хендай санта фе или любой другой машины, так как принцип работы у них всех одинаковый, разница только немного в конструктивных особенностях.
Генератор автомобиля – это устройство, которое способно преобразовывать механическую энергию, создаваемую двигателем в электрическую энергию, которая в свою очередь питает все энергозависимые системы автомобиля.
Если у вас тут же возник вопрос, а можно ли ехать на автомобиле без генератора – ответ да можно, но только до тех пор, пока у вас не сядет аккумулятор. Работая в паре с аккумулятором, они создают стабильное напряжение бортовой сети автомашины.
Устройства генератора автомобиля
Из чего же состоит сам генератор, давайте перечисли эти части
Вот схема генератора автомобиля для тех, кто понимает
А вот ротор поподробнее, фото автомобильного ротора ниже
Для чего в генераторе регулятор напряжения?
При изменении частоты оборотов коленчатого вала и соответственно ротора в бортовой сети могут возникнуть скачки напряжения, которые негативно сказываются на работе потребителей. Скачки устраняются за счет ограничения тока возбуждения, передаваемого через щетки с регулятора напряжения на ротор. Управление осуществляется путем изменения времени подключения обмотки якоря в зависимости от нагрузки на бортовую сеть.
Если возникает неисправность регулятора или повреждение щеточного узла и контактных колец, возможен недозаряд или перезаряд аккумуляторной батареи. Длительная эксплуатация машины с таким дефектом приведет к выходу из строя АКБ.
Неисправность генератора можно определить по индикатору на панели приборов. Горение лампочки заряда аккумулятора после запуска говорит о недостаточном напряжении в сети, а мигание указывает на превышение.
Рекомендуем: Гидроусилитель руля (ГУР): описание, функции, назначение, устройство, фото
Принцип работы генератора
Итак продолжаем наши разъяснения по поводу устройства и работы автомобильного генератора и вот как именно происходит преобразование вращательного движения в электрическую энергию в генераторе автомобиля:
Если по-простому или так сказать обобщить, то принцип работы генератора такой: при вращении ротора он создает сильное магнитное поле, которое в свою очередь начинает производить воздействие на обмотку статора, из-за этого в ней появляется электрический ток, который по сути уже и используется для разных нужд автомобиля.
Вот кстати, как статор выглядит отдельно
Кстати если вдруг у вас на автомобиле особенно на хендай санта фе постоянно крутит стартер у нас есть статья как это устранить и не только на санта фе, просто слово Статор напомнило стартер вот и решил ссылкой поделиться.
Вот ещё нашел одно фото устройство генератора
Подробно об алгоритме работы
Принцип действия генератора основан на простом физическом явлении, называемом электромагнитной индукцией. Суть в следующем: если навести на многовитковую обмотку из медной проволоки магнитное поле, изменяющее направление с определенной частотой, то на выходе катушки возникнет переменный ток той же частоты. Остается лишь создать упомянутое поле вокруг обмоток статора, вырабатывающих напряжение.
На практике генерация электричества происходит по такому алгоритму:
Рекомендуем: Что лучше выбрать между вариатором, механической, автоматической и роботизированной коробкой передач
Реле-регулятор напряжения может входить в состав генераторной установки либо применяться в качестве отдельного блока.
Ток в статорных обмотках возникает в результате вращения переменного магнитного поля, создаваемого катушкой ротора. Чем быстрее крутится вал, тем выше напряжение и частота на выходе. Преобразование в постоянный ток обеспечивают полупроводники (диоды), закрепленные на теплоотводящей пластине и обдуваемые крыльчаткой вентилятора.
Устройство генератора безщеточного типа позволяет обмотке статора возбуждаться без внешнего источника питания. Намагничивание стальных втулок начинается при малых оборотах вала благодаря особой конструкции ротора и дополнительной катушке. Поэтому когда вы заводите с толкача машину с разряженным аккумулятором, оборотов коленчатого вала хватает, чтобы электрогенератор включился в работу.
Как проверить работоспособность генератора автомобиля
Для того чтобы ответить на вопрос как проверить генератор на работоспособность или так сказать на правильность выдаваемого напряжения на выходе, а также и регулятор напряжения генератора – так как работают они сообща вам потребуется простой мультиметр, выставляете его в положение измерения постоянного тока на предел 20вольт и выше и произведите замеры на выходе генератора.
Поэтому по возможности лучше перемерять двумя разными мультиметрами от разных производителей и уже оттуда вывести среднюю величину, если данные не будут совпадать.
Признаки неисправности генератора автомобиля
неисправности генератора автомобиля возникают в тех же частях из чего состоит генератор автомобиля, или точнее выразится в тех же узлах и деталях, из которых он и состоит
Вот теперь вы узнали, как проверить исправность генератора автомобиля, так что можете приступить собственно к проверке, возможно из-за этого у вас постоянно разряжается аккумулятор, так как генератор не выдаёт вам положенное напряжение.
Устройство автомобильного генератора
Автогенератор включает в себя несколько составляющих:
1 — задний подшипник; 2 — выпрямительный блок; 3 — контактные кольца; 4 — щетка; 5 — щеткодержатель; 6 — кожух; 7 — диод; 8 — втулка подшипника; 9 — винт; 10 — задняя крышка; 11 — крыльчатка; 12 — винт; 13 — ротор; 14 — обмотка ротора; 15 — передняя крышка; 16 — вал ротора; 17 — шайба; 18 — гайка; 19 — шкив; 20 — передний подшипник; 21 — обмотка ротора; 22 — статор.
Ротор
Ротором (от англ. rotation — вращение) называется подвижная часть автогенератора. Она представляет собой вал с расположенной на ней обмоткой возбуждения, находящейся между двумя полюсными половинками. Последние изготавливаются штамповкой, на каждой из них имеется шесть выступов в форме клюва, расположенных сверху обмотки. Эти половинки образуют систему полюсов и контактные кольца. Задача колец заключается в подаче электротока на обмотку через ее выводы.
Обмотка возбуждения предназначена для создания магнитного поля. Для решения этой задачи на нее должен быть подан слабый электроток. До запуска силового агрегата подачу тока для образования магнитного поля осуществляет АКБ. Когда ДВС заработает, и число оборотов достигнет нужной величины, подача тока на обмотку возбуждения будет производиться генератором
На роторе, кроме того, размещены:
Рекомендуем: Трос ручного тормоза: замена, регулировка
Ротор располагается внутри статора, зажатого между крышками корпусной части. Крышки снабжены посадочными местами, в которых помещаются роторные подшипники. Кроме того, в крышке, расположенной со стороны приводного шкива, имеются отверстия для вентиляции.
Схема вентиляции генераторов
Статор
Этот элемент, в отличие от вышеописанного, неподвижен (статичен), из-за чего и получил свое название. Его задача заключается в получении электротока переменной величины, возникающего под влиянием магнитного поля ротора. Статор состоит из обмоток и сердечника. Последний изготавливается из листовой стали и имеет пазы для укладки трех обмоток (по количеству фаз). Обмотки могут укладываться одним из двух способов: петлевым или волновым. Схема их соединения также может быть разной – в форме звезды или треугольника.
1 — сердечник; 2 — обмотка; 3 — пазовый клин; 4 — паз; 5 — вывод для соединения с выпрямителем.
При подключении по схеме «звезда» все обмотки соединяются вместе одним из концов в общей точке. Их вторые концы выполняют роль выводов. Схема «треугольник» предусматривает соединение обмоток по другому принципу: 1-я со 2-й, 2-я – с 3-ей, а 3-я, в свою очередь – с 1-й. В этом случае функцию выводов выполняют точки соединения. Наглядно обе схемы показаны на рисунке.
Схема «звезда» и «треугольник»
Блок щеток
Задача этой составляющей генератора заключается в передаче электричества на обмотку возбуждения. Конструктивно блок представляет собой корпус с расположенной в нем парой подпружиненных графитных щеток. Последние прижимаются с помощью пружин к контактным кольцам, но жестко с ними не скреплены.
Регулятор напряжения
Регулятор нужен для того, чтобы поддерживать величину напряжения на выходе в установленных пределах. Это необходимо, поскольку количество тока, как и его параметры, зависит от числа оборотов двигателя, а долговечность аккумулятора напрямую связана с подаваемой разностью потенциалов. Недостаточное напряжение приведет к «хроническому» недозаряду АКБ, а избыточное – к перезаряду. Как в первом, так и во втором случае срок службы батареи заметно снизится. Современные автомобили комплектуются электронными полупроводниковыми регуляторами.
Диодный мост (выпрямительный блок)
Сколько ампер выдает генератор автомобиля
Силу тока, которую может выдать генератор автомобиля зависит о модели генератора, обычно стандартный генератор способен выдавать 80-100 Ампер выпрямленного тока.
Ну а если вам нужны точные данные, какой ток выдает генератор автомобиля именно у вас, тогда найдите спецификацию вашего генератора или автомобиля и посмотрите в справочнике.
Зарядка аккумулятора автомобиля генератором
Зарядка аккумулятора автомобиля от генератора происходит автоматически при работе двигателя автомобиля, генератор постоянно вырабатывает ток, которым питается ваш аккумулятор и все бортовые системы автомобиля.
Надеемся мы прояснили немного тему этой стать – как устроен генератор и каковы его принципы работы, и теперь у вас в голове сложилась более полная картина что такое и как работает это важнейшее устройство в автомобиле, а также какими выходными параметрами и характеристиками оно должно обладать.
Что такое коллектор в генераторе автомобиля
Коллектор — это система медных пластин, изолированных друг от друга и от вала якоря. К пластинам припаяны отводы от обмотки якоря. Для соединения коллектора с зажимами машины и внешней цепью служат скользящие контакты (щетки).
Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).
Для рассмотрения работы коллектора обратимся к рис. 2, на котором рамка с проводниками А и В показана в разрезе. Для большей наглядности проводник А показан толстым кружком, а проводник В двумя тонкими кружками.
Щетки замкнуты на внешнее сопротивление тогда э. д. с., индуктируемая в проводниках, будет вызывать в замкнутой цепи электрический ток. Поэтому при рассмотрении работы коллектора можно говорить не об индуктированной э. д. с., а об индуктированном электрическом токе.
Рис. 1. Коллектор электрической машины
Рис. 2. Упрощенное изображения коллектора
Рис. 3. Выпрямление переменного тока с помощью коллектора
Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.
Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.
Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.
В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.
В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.
Рис. 4. Коллектор двигателя постоянного тока
Представление о характере изменения тока во внешней цепи за один оборот рамки, снабженной коллектором, дает кривая рис. 5. Из кривой видно, что наибольших значений ток достигает в точках, соответствующих 90° и 270°, т. е. когда проводники пересекают силовые линии непосредственно под полюсами. В точках 0° (360°) и 180° ток во внешней цепи равен нулю, так как проводники, проходя нейтральную линию, силовых линий не пересекают.
Рис. 5. Кривая изменения тока во внешней цепи за один оборот рамки после выпрямления коллектором
Из кривой нетрудно заключить, что хотя направление тока во внешней цепи и остается неизменным, но величина его все время меняется в пределах от нуля до максимума.
Электрический ток, постоянный по направлению, но переменный по величине, носит название пульсирующего тока. Для практических целей пульсирующий ток очень неудобен. Поэтому в генераторах стремятся сгладить пульсации и сделать ток более ровным.
В отличие от генераторов, в двигателях постоянного тока коллектор выполняет роль автоматического переключателя направления тока во вращающихся проводниках якоря. Если в генераторе коллектор служит для выпрямления переменного тока в постоянный, то в электродвигателе роль коллектора сводится к распределению тока в обмотках якоря таким образом, чтобы в течение всего времени работы электродвигателя в проводниках, находящихся в данный момент под северным полюсом, ток проходил постоянно в каком-либо одном направлении, а в проводниках, находящихся под южным полюсом, — в противоположном направлении.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
133. Назначение и устройство коллектора в генераторах постоянного тока
При вращении якоря в магнитном поле полюсов в проводниках его обмотки индуктируется э. д. с, переменная по величине и направлению. Если концы одного витка припаять к двум медным кольцам, на кольца наложить щетки, соединенные с внешней сетью, то при вращении витка в магнитном поле, как показано на фиг. 264, в замкнутой цепи потечет переменный электрический ток. На этом основано действие генераторов переменного тока.
Если же концы витка присоединить к двум медным полукольцам, изолированным друг от друга и называемым пластинами коллектора, и наложить на них щетки, то при вращении витка в магнитном поле, как показано на фиг. 265, в витке будет по-прежнему индуктироваться переменная э. д. с. Однако во внешней цепи будет протекать изменяющийся по величине ток постоянного направления (пульсирующий ток). Для установления этого обратимся к фиг. 266. Здесь показан якорь кольцевой формы с одним витком. Начало витка Н припаяно к коллекторной пластине а, конец витка К к пластине б. К коллекторным пластинам прижаты две неподвижные щетки, соединенные с внешней сетью. Рассмотрим три характерных положения внтка в пространстве между полюсами. В положении а (фиг. 266) виток находится в зоне действия северного полюса. Учитывая направление вращения якоря, определяем направление э. д. с.
в витке по правилу правой руки. Необходимо учесть, что э. д. с. индуктируется только в той части витка, которая лежит поверх якоря. Поэтому вследствие плохого использования обмотки кольцевой якорь в настоящее время не применяется. Ток в данном положении направлен от начала витка к концу его. Через правую щетку ток пойдет во внешнюю цепь. Поэтому эту щетку можно назвать положительной. Пройдя сопротивление внешней цепи, ток притекает к левой щетке генератора, которую можно назвать отрицательной.
В положении б на фиг. 266 виток находится на нейтральной линии. Нейтральной линией, или геометрической нейтралью, называется линия, проходящая через центр якоря и перпендикулярная оси полюсов. Активная сторона витка в этом положении скользит вдоль магнитных линий, не пересекая их. Поэтому э. д. с. в витке не наводится и ток в цепи равен нулю. Ширина щетки больше ширины коллекторного деления, образованного пластиной н изолирующим промежутком, и виток, находясь на нейтральной линии, замыкается в этот момент щетками накоротко.
В положении в виток находится в зоне действия южного полюса. Определяя направление э. д. с, индуктированной в витке,
находим, что ток направлен от конца витка к его началу. Если бы коллекторная пластина а по-прежнему соприкасалась с левой щеткой, а пластина б с правой щеткой, то изменение направления тока в внтке вызвало бы перемену тока во внешней цепи. Но этого теперь не случится, так как изменение направления тока в витке после перехода его через нейтральную линию совпадает с таким моментом, когда под правую щетку подошла пластина а и под левую щетку — пластина б.
Сравнивая первое и третье положения, легко убедиться, что в обоих случаях ток витка во внешнюю сеть притекает от правой, положительной щетки и возвращается из сети к левой, отрицательной щетке. Во внешней сети направление тока не меняется. Так как виток занимает различные положения в магнитном поле, то э. д. с, наводимая в внтке, а вместе с ней и ток во внешней сети будут меняться по величине.
На фиг. 267 показан характер изменения тока во внешней цепи. Такой ток постоянного направления и переменной величины называется пульсирующим. Для увеличения напряжения на зажимах машины на якоре наматывают несколько витков (катушек) из большого числа витков изолированной проволоки. Располагая на якоре две катушки, как показано на фиг. 268, а, получим параллельное соединение катушек, причем напряжение генератора будет равно напряжению, создаваемому одной катушкой. Ток сети будет равен двойной величине тока, протекающего по каждой катушке. Расположим на якоре четыре катушки, сдвинутые на 90 одна относительно другой, и соединим их между собой последовательно (фиг. 268, б). Число коллекторных пластин также увеличим до четырех. Направление индуктированной э. д. с. в катушках определяем по правилу правой руки.
На фиг. 269 показаны кривые э. д. с. катушек 1 и 2. Так как катушки сдвинуты в пространстве на 90°, то кри-
вые э. д. с. также сдвинуты по фазе на 90°. Кривые э. д. с. у катушек 3 и 4 имеют тот же характер, что и у катушек 1 и 2, с той лишь разницей, что э. д. с. катушек 1 и 3, с одной стороны, и катушек 2 и 4, с другой, равны по величине, но противоположны по направлению. Поэтому для выяснения вопроса ограничимся рассмотрением кривых э. д. с. катушек 1 и 2. Поскольку катушки соединены между собой последовательно, то мгновенная величина э. д. с. , создаваемая двумя катушками, равна сумме мгновенных значений э. д. с. каждой катушки. На фиг. 270 показано сложение мгновенных значений э. д. с. обеих катушек. Кривая суммарной э. д. с. имеет меньшую пульсацию, чем кривые э. д. с. отдельных катушек. Суммарная э. д. с. катушек, находящихся под другим полюсом, имеет ту же величину, но противоположна по направлению суммарной э. д. с. верхних катушек. Обе э. д. с включены параллельно по отношению к щеткам генератора.
Восемь катушек, размещенных на якоре, при сложении их мгновенных э. д. с. дадут, как показано на фнг. 271, суммарную э. д. с. пульсации которой будут еще меньше, чем в предыдущем случае. Таким образом, размещая на якоре большое число проводников, увеличивая соответственно число коллекторных пластин, можно получить от генератора э. д. с, пульсации которой станут так незначительны, что ток, отдаваемый в сеть, практически можно считать постоянным током. Так, например, уже при 16 катушках на якоре колебания э. д. с. будут менее одного процента. В современных машинах число катушек на якоре бывает свыше ста.
Заканчивая рассмотрение действия коллектора, приходим к выводу, что коллектор в генераторах постоянного тока служит для преобразования переменной э. д. с, индуктируемой в обмотке якоря, в постоянную э. д. с. на щетках генератора. Здесь интересно отметить, что если якорь генератора снабдить и коллектором и контактными кольцами, то от генератора можно получить и постоянное и переменное напряжение.
Коллектор, показанный на фиг. 272, состоит из пластин твер-дотянутой меди. Между пластинами коллектора прокладываются листочки из миканита (слюды) толщиной 0,5—1 мм. Пластины коллектора имеют выступ, напоминающий форму ласточкина хвоста. На вал со стороны якоря надевают изолирующую втулку, которая своим коническим выступом входит в прорезь ласточкина хвоста. С другой стороны коллекторные пластины удерживаются нажимным изолирующим диском, выступы которого также заходят в прорези ласточкина хвоста. Чтобы коллекторные Пластины не рассыпались, втулка и нажимной диск стягиваются болтами.
Для припаивання (оловом) проводников обмотки якоря к коллекторным пластинам служат специальные медные пластины, называемые петушками.
Главный энергетик: Генератор в автомобиле: устройство, неисправности, ремонт
Генератор на автомобилях появился в 10-х годах ХХ века вместе с аккумулятором, которому требовалось устройство для бортовой зарядки во время движения.
С тех пор задачи генератора не изменились, но нагрузки возросли – если поначалу заряд аккумулятора расходовался только на работу стартера и фар, то сегодня автомобиль оброс большим набором прожорливых потребителей в виде всевозможных опционных сервоприводов, подогревателей, электрогидравлических устройств в рулевом, подвеске и тормозной системе. Электроэнергии современной оснащенной машине требуется много, и генератор, как главный и единственный ее производитель, должен обеспечивать «поставку» полномерно и бесперебойно.
Под напряжением
По конструкции на сегодня наиболее распространенным является классическое навесное исполнение генератора, когда он в виде отдельного устройства устанавливается снаружи двигателя и ротор приводится от коленвала ременной передачей. Такой вариант пока оказывается самым удачным, поскольку обеспечивает наибольшую легкость снятия-установки генератора для замены и ремонта. Хотя время от времени предлагаются и различные альтернативные конструкции, например, такие, где генератор интегрируется в двигатель. Здесь маховик мотора, снабженный обмоткой возбуждения, выполняет роль ротора, вокруг которого в картере устанавливается внешняя статорная обмотка. В этом случае в одном совмещаются два устройства – генератор работает и в качестве стартера.
Кстати, эта набирающая сегодня популярность идея «стартерогенератора» достаточно давняя и представляет собой воскрешение старых конструкций на новый лад. Впервые стартер и генератор на автомобиле появились именно в виде такого вот единого устройства, разработанного жившим в начале ХХ века инженером Чарльзом Кеттерингом, которое в 1912 году было установлено на Cadillac и годом позже на Lancia. Однако впоследствии оба устройства были разделены – из-за разницы задач, требующих различных конструкций, и удобства обслуживания-ремонта. Поэтому «интегрированный» вариант пока что выглядит как эксперимент – выигрыш в компактности не слишком значительный, а ремонт в случае отказа – гораздо более сложный и трудоемкий. Впрочем, о ремонте – немного позднее. Сначала о том, как узнать, что он нужен.
До лампочки
В случае когда лампа не загорается, причиной может быть, в первую очередь, разряженный и севший аккумулятор. Помимо этого, проблема может таиться в разрыве в электроцепи – проводки, контакте на «массу» (кузов), выходе из строя предохранителя или (редко) самой лампы. Возникает это и при неисправностях в самом генераторе – главным образом из-за неплотного контакта щеток коллектора по причине их износа или из-за дефектов в реле-регуляторе.
Те же проблемы со щетками, реле и электроцепью могут быть и тогда, когда лампа не гаснет или слабо мигает при пуске двигателя. В этом случае причиной часто является ослабление натяжения или обрыв приводного ремня, а также неисправность выпрямительного блока. Это может означать и самую крупную неприятность – замыкание или обрыв (перегорание) в обмотках, происходящее, как правило, по вине неисправного реле-регулятора.
На машинах с большим и даже средним пробегом нередко начинают возникать и механические проблемы с генератором. И в первую очередь происходит износ подшипников, в которых вращается ротор. Определяется это по характерному шуму – его можно услышать, стоя рядом с машиной. В данном случае может к тому же начать мигать контрольная лампа, поскольку при износе подшипников, как правило, ухудшается контакт щеток.
Теоретически ресурс генератора должен быть очень велик – устройство это простое, и ломаться в нем почти нечему. Однако на практике значительная часть ресурса без всяких кавычек съедается коррозией – главным врагом всех электроприборов автомобиля. Российский же климат, как известно, к тому располагает полностью: осадки, перепады температур и влажности, дорожная соль – все это приводит на автосервис гораздо раньше, чем задумывалось конструкторами и хотелось бы самому автовладельцу.
Насчет того, как срочно надо спешить на авторемонтную станцию, – единой формулы нет. Иногда мигание лампы означает мелкие «глюки» в проводке, с которыми многие ездят подолгу – и ничего. Но, например, если лампа мигает из-за реле регулятора, то не исключено, что впереди перегорания-замыкания в обмотках, а тут уже, как правило, генератор целиком идет под замену. (Хотя в большинстве случаев эта неисправность реле обнаруживается раньше – от получающегося перезаряда начинает выкипать и очень заметно терять в емкости АКБ.) Определить, почему «лампа горит не так», невозможно. В старых машинах ставили вольтметры, которые помогали прояснить вопрос, но сейчас их нет, поскольку они занимают место на панели, а для цивилизованного Запада достаточно и лампочки, предупреждающей: «что-то не так, надо на сервис».Единственное, пожалуй, что можно попробовать сделать самому до визита на СТО, – это распылить на электропроводку специальный аэрозоль, такой, как WD-40 или его аналог, что может помочь при мелких «глюках» в виде влаги на проводке и контактах. Если же это не помогло, то придется ехать на ремонтную станцию, иначе рано или поздно произойдет очевидное – «намертво» сядет аккумулятор. Особо быстро это наступает в режиме городской езды с частыми стоянками-запусками. Можно, конечно, то и дело снимать аккумулятор с машины и носить его домой заряжать от сетевого зарядника, как делают некоторые, но для современного автовладельца это не вариант. Техника должна работать автономно.