что такое коллайдер в чем состоит принцип его работы
Азбука естествознания: большой адронный коллайдер
Сегодняшний гость – Большой адронный коллайдер. Мы разберём, что это такое, зачем он нужен, стоило ли его бояться и как физики преуспели в рекламе своих исследований.
Начнём с названия. Большим устройство назвали за действительно колоссальный размер: длина его основного кольца — больше 25 километров. Адронным — потому что он оперирует адронами (от греч. ἁδρός — массивный) — массивными частицами, состоящими из кварков. По сути, в самом коллайдере ускорялись протоны (которые относятся к барионам — разновидности адронов из трёх кварков), а также более тяжёлые ионы, которые уже не являются элементарными частицами. Но название прижилось. Кстати, помните, что это адроны, а не Андроны Кончаловские или какие-то иные. Ну и коллайдер (от англ. collide — сталкиваться) — устройство для сталкивания таких частиц, как говорится, лоб в лоб (шутка от редакции: у элементарных частиц много видов спи́на, но лба всё-таки нет).
Зачем это нужно? Физикам давно известно, что при столкновении частиц на больших скоростях выделяется много энергии. Но на квантовом уровне энергия — это разные формы существования материи, разные частицы. Знаменитая формула Эйнштейна E=mc² — как раз об этом соотношении массы частицы и энергии, в ней заключённой. Конечно, часть энергии ещё переходит в кинетическую: знакомая многим со школы формула E=mv²/2 на обычных скоростях работает и для элементарных частиц. То есть, что получается: две достаточно массивные (ἁδρός) частицы разгоняются в электрическом поле до огромных скоростей, а затем сталкиваются лоб в лоб и разлетаются на множество «искр», среди которых могут попасться интересные учёным.
Почему же он такой большой? Ранее мы упомянули формулу E=mv²/2. На самом деле БАК оперирует такими энергиями, что эта формула уже неприменима. Когда скорость частицы приближается к скорости света, её энергия возрастает на порядки. Так вот, чтобы эффективно сообщать энергию частицам, ускорители часто строят в виде кольца, чтобы, пока частицы летят по этому кольцу, они ускорялись несколько раз. Однако для заворачивания частиц по кольцу используется магнитное поле, которое в случае таких огромных энергий должно быть тоже очень сильным. В БАК используются огромные электромагниты на сверхпроводниках. Однако для их работы требуется охлаждение жидким гелием до очень низких температур, и даже так у них есть пределы. Если же кольцо ускорителя сделать большим, то можно снизить кривизну, то есть уменьшить необходимую центростремительную силу, и тем самым ускорять частицы до более высоких энергий.
В любом случае, Большой адронный коллайдер — пример потрясающего международного сотрудничества. Идея коллайдера была предложена ещё в 1984 году, проект был утверждён в 1995, строительство началось в 2001, а испытания начались только в 2008. Бюджет проекта составил почти 10 миллиардов долларов (хотя он обычно измеряется в швейцарских франках или евро, так как БАК находится на границе Швейцарии и Франции). Помимо непосредственных научных результатов, само строительство было интересной и оригинальной инженерной задачей. Производство, установка и синхронизация всех сверхпроводящих магнитов и систем охлаждения для них, настройка всех детекторов, огромные вычислительные мощности для управления проектом и обработки результатов — всё это потребовало использования самых передовых технологий.
Поиск финансирования на такой огромный и долгосрочный проект — непростая задача. И учёные блестяще справились и с ней. Проект рекламировался на всех уровнях, постоянно генерировал новости. Несколько музыкальных групп из учёных выпустили клипы, частично записанные прямо в туннелях БАК. Можно даже предположить, что учёные не слишком противились, а может, даже и поддерживали конспирологические теории о том, что запуск БАК на полную мощность может уничтожить нашу планету. Ведь это даёт громкие заголовки и повышает узнаваемость проекта. А серьёзные люди, от которых зависит финансирование, вряд ли всё-таки поверят в возможность уничтожения Земли, но с большей вероятностью выделят деньги на такой мощный проект.
Что такое адронный коллайдер?
Большой адронный коллайдер (Large Hardon Collider, LHC) — это типичный (хотя и сверхмощный) ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов (ионов свинца) и изучения продуктов их соударений. БАК — это микроскоп, с помощью которого физики будут разгадывать, из чего и как сделана материя, получая сведения об её устройстве на новом, еще более микроскопическом уровне.
Многие ждали с нетерпением, а что же будет после его запуска, но нечего в принципе и не произошло — наш мир сильно скучен, чтобы случилось что-то действительно интересное и грандиозное. Вот она цивилизация и её венец творения человек, как раз получилась некая коалиция цивилизации и людей, сплотившись вместе уже на протяжении века, в геометрической прогрессии загаживаем землю, и бесчинно разрушаем всё то, то накапливалось миллионы лет. Об этом мы поговорим в другом сообщении, и так – вот он АДРОННЫЙ КОЛЛАЙДЕР.
Вопреки многочисленным и разносторонним ожиданиям, народов и СМИ всё прошло тихо и мирно. О, как же было всё раздуто, например газеты твердили от номера к номеру: «БАК = конец света!», «Путь к катастрофе или открытиям?», «Аннигиляционная Катастрофа», чуть ли не конец света пророчили и гигантскую черную дыру, в которую засосет всю землю. Видимо эти теории выдвигали завистливые физики, у которых в школе не получилось получить аттестат об окончании с цифрой 5, по этому предмету.
Слово «коллайдер» происходит от английского collide – сталкиваться. В коллайдере два пуска частиц летят навстречу друг другу и при столкновении энергии пучков складываются. Тогда как в обычных ускорителях, которые строятся и работают вот уже несколько десятилетий (первые их модели относительно умеренных размеров и мощности, появились ещё перед второй мировой войной в 30-х годах), пучек ударяет по неподвижной мишени и энергии такого соударения гораздо меньше.
«Адронным» коллайдер назван, потому что предназначается для разгона адронов. Адроны – это семейство элементарных частиц, к которым относятся протоны и нейтроны, из них состоят ядра всех атомов, а также разнообразные мезоны. Важное свойство адронов – то, что они не являются по-настоящему элементарными частицами, а состоят из кварков, «склееных» глюонами.
Большим коллайдер стал из-за своих размеров – это крупнейшая физическая экспериментальная установка из всех когда-либо существующих в мире, только основное кольцо ускорителя тянется более, чем на 26 км.
Предполагается, что скорость разогнанных БАКом протонов составит 0,9999999998 от скорости света, а количество столкновений частиц, происходящих в ускорителе каждую секунду, достигнет 800 млн. Суммарная энергия сталкивающихся протонов составит 14 ТэВ (14 тераэлектро-вольта, а ядер свинца – 5,5ГэВ на каждую пару сталкивающихся нуклонов. Нуклоны (от лат. nucleus — ядро) — общее название для протонов и нейтронов.
Существуют разные мнения по поводу техники создания ускорителей на сегодняшний день: одни уверяют, что она подошла к своему логическому приделу, другие же что предела совершенству нет – и различными обзорами приводят обзоры конструкций, размер которых в 1000 раз меньше, а по производительности выше БАК’а. В электронике или компьютерной технике постоянно идет миниатюризация при одновременном росте работоспособности.
Large Hardon Collider, LHC — a typical (albeit extremely) accelerator of charged particles in the beams, designed to disperse the protons and heavy ions (lead ions) and study the products of their collisions. BAC — this microscope, in which physics will unravel, what and how to make the matter of getting information about its device in a new, even more microscopic level.
Many waited eagerly, but what comes after his run, but nothing in principle and has not happened — our world is missing much that has happened is something really interesting and ambitious. Here it is a civilization and its crown of creation man, just got a sort of coalition of civilization and the people, unity, together for over a century, in a geometric progression zagazhivaem land, and beschinno destroying anything that accumulated millions of years. On this we will talk in another message, and so — that he Hadron Collider.
Despite the many and varied expectations of peoples and the media all went quiet and peacefully. Oh, how it was all bloated, like the newspaper firm by number of rooms: «BAC = the end of the world!», «The road to discovery or disaster?», «Annihilation catastrophe», almost the end of the world and things are a gigantic black hole in zasoset that all the land. Perhaps these theories put forward envious of physics, in which the school did not receive a certificate of completion from the figure 5, on the subject.
Here, for example, was a philosopher Democritus, who in ancient Greece (and, incidentally, today’s students write it in one word, as seen this strange non-existent, like the USSR, Czechoslovakia, Austria-Hungary, Saxony, Kurland, etc. — «Drevnyayagretsiya»), he had some theory that matter consists of indivisible particles — atoms, but the proof of this, scientists have found only after about 2350 years. Atom (indivisible) — can also be divided, it is found even after 50 years on the electrons and nuclei and the nucleus — protons and neutrons at. But they, as it turned out, not the smallest particles and, in turn, are composed of quarks. To date, physics believe that quarks — the limit of division of matter and anything less does not exist. We know of six types of quarks: the ceiling, strange, charmed, charming, genuine, bottom — and they are connected via gluons.
The word «Collider» comes from the English collide — face. In the collider, two particles start flying towards each other and with the collision energy beams added. While in conventional accelerators, which are under construction and work for several decades (the first of their models on moderate size and power, appeared before the Second World War in the 30-s), puchek strikes on fixed targets and the energy of the collision is much smaller.
«Hadronic» collider named because it is designed to disperse the hadrons. Hadrons — is a family of elementary particles, which include protons and neutrons, composed of the nucleus of all atoms, as well as a variety of mesons. An important feature of hadrons — that they are not truly elementary particles, and are composed of quarks, «glued» gluon.
The big collider has been because of its size — is the largest physical experimental setup ever in the world, only the main accelerator ring stretches for more than 26 km.
It is assumed that the velocity of dispersed tank will 0.9999999998 protons to the speed of light, and the number of collisions of particles originating in the accelerator every second, to 800 million total energy of colliding protons will be 14 TeV (14 teraelektro-volt, and the nuclei of lead — 5.5 GeV for each pair of colliding nucleons. nucleons (from Lat. nucleus — nucleus) — the generic name for the protons and neutrons.
There are different views on the creation of accelerator technology to date: some say that it came to its logical side, others that there is no limit to perfection — and the various surveys provided an overview of structures, which are 1000 times smaller, but higher productivity BUCK ‘ Yes. In the electronics or computer technology is constantly miniaturization, while the growth of efficiency.
[Прелесть физики] Большой адронный коллайдер – спасение современной физики
Danial Baizak
Квантовая физика – один из самых запутанных разделов науки, описывающей весь мир вокруг нас. Абсолютно все, что вы можете потрогать и о чем можете подумать, состоит из мельчайших частиц, а если быть точнее – элементарных.
Введение в строение микромира
Итак, начнем с небольшого экскурса в микромир. Благодаря квантовой физике человечеству известно, что пространство вовсе не пустое, как было принято думать. На самом же деле оно содержит бесчисленное множество мельчайших частиц вроде молекул и атомов. Мир вокруг нас состоит из вещества, образованного молекулами и атомами; атомы же состоят из нуклонов и электронов … и все? Постойте, это далеко не конец! Если углубиться еще дальше, а именно в строение составляющих атом протонов, нейтронов и электронов, то можно понять, что атом далеко не мельчайшая частица материи.
Стандартная модель физики элементарных частиц. Источник изображения
Стандартная модель – совокупность теорий, которые составляют представление о фундаментальных частицах, их взаимодействиях и строении материи.
Фермионы (кварки и лептоны) дают начало веществу во Вселенной. Кварки являются некими строительными элементами – кирпичиками, складывающимися в целый дом. Бозоны же, в свою очередь, определяют, как материя взаимодействует между собой. К примеру, глюон, относящийся к бозонам, отвечает за сильные взаимодействия между кварками, словно бетон, который скрепляет все кирпичи вместе. Фотон – безмассовая частица света, ответственная за электромагнитные взаимодействия, а W- и Z-бозоны – за ядерные распады.
На рисунке представлены протон и нейтрон. Глюоны – маленькие частички-пружинки, соединяющие кварки нижние (d) и верхние (u). Нейтрон состоит из 2 нижних, 1 верхнего кварков и 3 глюонов, а протон – из 2 верхних, 1 нижнего кварков и 3 глюонов. (рис. 2)
Все частицы образовались в результате Большого Взрыва, произошедшего примерно \(13.8\) млрд лет назад. Спустя \(10^<-36>\) секунд после момента Большого Взрыва все пространство заполнилось некой “кашей”, собранной из кварков и глюонов, – кварк-глюонной плазмой. После этого этапа температура Вселенной упала до значений, при которых стал возможен следующий этап – фазовый переход – бариогенезис. В этот миг заполняющие пространство кварки и глюоны объединились в так называемые барионы – уже всем известные протоны и нейтроны.
Пока материя собиралась из элементарных частиц, параллельно образовывалась антиматерия. Соединяясь, материя и антиматерия взаимоуничтожились, превращаясь в электромагнитное излучение. Все атомы и молекулы, из которых состоит материя, существуют с самого зарождения Вселенной. Они не только застали древнюю Вселенную, но и наблюдали ее расширение и развитие.
Долгие годы исследований вывели человечество на правильный путь понимания того, как сконструирована вся материя во Вселенной. Однако исследования материи продолжаются, подкидывая все новые частички пазла в уже, казалось бы, собранную картину мира.
Как изучать элементарные частицы?
Из-за столь малых размеров элементарных частиц их невозможно разглядеть и потрогать, а изучить не так уж и просто. К тому же, сама Вселенная позаботилась о “сохранности” элементарных частиц: многие фундаментальные частицы не существуют в настоящее время. Вся текущая материя состоит из нескольких видов фермионов, а остальные же частицы существовали только во времена Большого Взрыва и по сей день их можно выявить лишь в специальных коллайдерах.
Для изучения процессов, происходивших в те далекие времена зарождающейся Вселенной, и был создан большой адронный коллайдер. Построенный всего лишь за \(7\) лет (\(2001\)-\(2008\) г), большой адронный коллайдер (БАК) – настоящее чудо инженерии, расположенное в Женеве. Первые испытания коллайдера прошли удачно, но в скором времени в ходе испытаний \(19\) сентября произошла авария – квенч – явление, возникающее в сверхпроводящих электромагнитах и сопровождающееся спонтанным переходом магнита в непроводящее состояние. Один из электрических контактов расплавился, что привело к непредвиденной поломке конструкций, загрязнению и нарушению работы гелиевой системы охлаждения коллайдера. После починки и неудачного “первого раза” большой адронный коллайдер продолжил нормальную работу во благо науки, став мощным инструментом для дальнейшего развития физики. С его помощью ученые смогли получить множество фундаментальных частиц, а затем, изучая их структуру и свойства, все глубже пробраться к истокам Вселенной.
С какой целью проводятся исследования на БАКе?
В БАКе ученые способны воссоздать условия при зарождении Вселенной, благодаря чему БАК стал местом многочисленных экспериментов для исследования физических теорий о фундаментальном устройстве мира. Большой адронный коллайдер является частью Европейской организации по ядерным исследованиям, именуемой ЦЕРН. Вот некоторые проблемы и теории, которые изучают в ЦЕРНе:
Нынешние теории не дают описания всех фундаментальных взаимодействий, и, по мнению ученых, должны быть частью более глубокой теории.
Суперсимметрия – теория, связывающая бозоны и фермионы, согласно которой в суперсимметричном мире бозоны выполняют роль фермионов, а фермионы – роль бозонов.
Поле Хиггса – поле, благодаря которому частицы обретают массу.
Топ-кварки – одна из фундаментальных частиц, существовавшая во времена зарождения Вселенной. Изучением их и других кварков занимаются в БАКе.
Кварк-глюонная плазма – это состояние материи, при котором кварки и глюоны (составляющие протонов и нейтронов), находятся в свободном состоянии.
Столкновения фотонов и адронов проводятся в БАКе для изучения их свойств и получаемых продуктов этих столкновений. Адроны – класс составных частиц, подверженных сильному взаимодействию. Данный класс частиц делится на две группы – барионы и мезоны (протоны, нейтроны, пентакварки).
Антиматерия – материя, состоящая из античастиц. Особенность этих частиц состоит в том, что они обладают такими же массой и спином, как их братья-близнецы элементарные частицы, но отличаются всеми остальными свойствами. К примеру, античастица электрона позитрон имеет положительный заряд.
Принцип работы коллайдера
В коллайдере происходят запланированные столкновения пучков протонов или ионов свинца, которые, достигая околосветовой скорости, сталкиваются во встречных направлениях. В результате таких столкновений протоны и нейтроны распадаются на более мелкие частицы, фиксируемые детекторами. (рис. \(3\))
Рис 3. Результат столкновения двух протонов, приводящий к образованию самых разных частиц, в том числе Бозона Хиггса. Источник.
Для достижения столь огромной скорости разгон осуществляется в \(5\) этапов:
I этап. Первый и самый маленький линейный ускоритель длиной менее \(100\) м начинает разгонять пучки протонов, предавая им энергию в \(0.05\) ГэВ, и далее направляет эти пучки в последующие синхротроны.
1 эВ равен энергии, необходимой для переноса электрона в электростатическом поле между точками с разницей потенциалов в 1 В, то есть 1 эВ = \(1.6·10^<-19>\) Дж. Для наглядности полет комара эквивалентен энергии в 1 ТэВ. Но особенность коллайдера заключается в том, что он помещает эту энергию в систему, которые в миллиарды раз меньше комара.
II этап. Бустерный синхротрон длиной \(157\) метров разгоняет частицы до \(91.6\) % от скорости света, придавая им энергию в \(1.4\) ГэВ.
III этап. Протонный синхротрон длиной \(628\) м разгоняет частицы до \(99.93\) % от скорости света, придавая им энергию \(25\) ГэВ.
IV этап. Протонный суперсинхротрон длиной \(6900\) м разгоняет частицы до \(99.9998\) % от скорости света, придавая им энергию в \(450\) ГэВ.
V этап. Главное кольцо БАК длиной \(27\) км разгоняет частицы до \(99.9999991\) % от скорости света, придавая им энергию до \(7000\) ГэВ. Именно в этом кольце и происходит все самое интересное. (рис. \(4\))
Рис 4. Схема разгона частиц для последующего попадания в главное кольцо. p и Pb соответствуют I этапу, II этап происходит в непомеченном круге, III этап происходит в PS (Proton Synchrotron), IV этап – в SPS (Super Proton Synchrotron) и V этап – в кольце LHC (Large Hadron Collider). Источник
Столкновения пучков регистрируются детекторами. На главном кольце коллайдера расположены 4 главных детектора (ALICE, CMS, LHCb, ATLAS) и 3 вспомогательных детектора (TOTEM, LHCf, MoEDAL).
ALICE (A Large Ion Collider Experiment) – детектор, предназначенный для изучения столкновений тяжелых ионов, по типу ионов свинца (свинец – самый тяжелый из стабильных элементов). В результате столкновений достигается необходимая температура и энергия для образования кварк-глюонной плазмы. Таким образом, полученная в ALICE температура в \(9\) трлн. градусов симулирует условия при зарождении Вселенной.
CMS (Compact Muon Solenoid) – детектор общего назначения, предназначен для поиска и изучения бозонов Хиггса, а также отклонений от Стандартной модели.
LHCb (Large Hadron Collider beauty experiment) – самый маленький среди основных детекторов. На LHCb был открыт новый класс частиц – пентакварки. Изучение антиматерии, асимметрии, Стандартной модели являются главными целями ученых, работающих на LHCb.
ATLAS (A Toroidal LHC ApparatuS) – детектор, предназначенный для изучения протон-протонных столкновений и выявления сверхтяжелых элементарных частиц вроде бозона Хиггса или суперсимметричных партнеров фундаментальных частиц.
Частица всего
Пожалуй, одним из самых громких открытий, сделанных с помощью БАКа, является открытие бозона Хиггса. Произошло это \(4\) июля \(2012\) года на детекторе ATLAS, где была зафиксирована новая частица с массой \(126 \frac<ГэВ> <с^2>\). Питер Хиггс, предсказавший существование этого бозона еще \(50\) годами ранее, в \(2013\) году был удостоен Нобелевской премии по физике за разработку теории, объясняющую механизм получения массы веществом. Бозон Хиггса является важной частью Стандартной модели, давая ответ на один из самых фундаментальных вопросов: каким образом у частиц появляется масса. Частицы наподобие фермионов, протонов и нейтронов получают массу из-за взаимодействия с полем Хиггса, создаваемым одноименным бозоном. Большинство частиц, проходя сквозь это поле, начинают “вязнуть” и таким образом обретают массу, другие же вовсе могут находиться в поле и не иметь никакой массы.
Открытие бозона Хиггса не только объяснило взаимодействие между различными составляющими материи, но и изменило общее понимание Стандартной модели, ее развития и более подробного изучения. Приблизил ли нас бозон Хиггса к разгадке главной тайны тысячелетия или вовсе отдалил на сотни лет назад еще неизвестно. Известно одно – квантовая физика куда загадочнее, чем может казаться.
Как совершенствуют коллайдер?
Для изучения столкновений частиц необходимо колоссальное количество энергии для их разгона, и иногда в коллайдере может попросту не хватить этой энергии. Любые погрешности и неточности чреваты неточностями в данных, где отклонения в тысячные доли могут существенно повлиять на конечный результат. Поэтому в ближайшее время инженеры БАКа планируют установить дополнительные \(130\) сверхпроводящих магнитов из оловянно-ниобиевого сплава (\(Nb_3Sn\)) для увеличения энергии, скорости и количество частиц, а также улучшения светимости коллайдера. Минуточку, что же такое светимость?
Светимость – это параметр ускорителя, который характеризует интенсивность столкновений частиц с определенной мишенью. Для повышения светимости БАК инженеры устанавливают “крабовые резонаторы” (рис. \(5\)), используемые в коллайдерах, чтобы обеспечивать необходимый разворот частиц для увеличения светимости. Также эта схема помогает свести к минимуму лишние и ненужные столкновения встречных пучков частиц. На большом адронном коллайдере планируется установить \(15\) “крабовых резонаторов”, что заметно повысит его эффективность. На данный момент светимость коллайдера составляет всего лишь \(1029 \frac<частиц><см^2\cdot с>\), но в будущем после улучшения коллайдера ученые хотят довести светимость до небывалых \(1700 \frac<частиц><см^2\cdot с>\). Совершенствование коллайдера необходимо для повышения точности получаемой информации, которую мы используем для изучения устройства Вселенной.
Специалист CERN настраивает “крабовые резонаторы” / © CERN
Что ожидают получить ученые?
Повышение эффективности и производительности коллайдера увеличит количество получаемых бозонов Хиггса, что заметно ускорит процесс изучения поля Хиггса. После успешной модификации сотрудники ЦЕРНа ожидают получать \(15\) миллионов частиц бозона Хиггса (на фоне прошлогодних \(3\) миллионов). Количество получаемых элементарных частиц определяет вектор дальнейшего развития физики, а именно изучение некоторых основополагающих теорий, среди которых:
Суперсимметрия – теория о преобразовании фундаментальных частиц друг в друга, то есть обратные превращения фермионов (кварков, лептонов) и бозонов. Образно говоря, из этой теории следует, что возможны процессы превращения вещества (фермионов) во взаимодействия (бозоны), и наоборот.
Теория Всего – совокупность физико-математических теорий, описывающих абсолютно все возможные вещества и их взаимодействия. Более удобная концепция мира для ученых имеет существенный изъян: если изучить все о строении и принципах работы Вселенной, пропадает необходимость в дальнейшем познании.
Мультивселенная – теория о существовании параллельных вселенных, которую поддерживает большинство физиков, космологов, философов и даже обычных людей, не заинтересованных в этой теме. Если эта теория окажется верной, то «Теория Всего», активно разрабатываемая учеными, может потерпеть крах – ведь законы в параллельных вселенных могут не совпадать с законами нашей вселенной!
Заключение
Стремление к познанию движет человеком. Веками задаваясь простым, но таким сложным вопросом “как устроен наш мир?”, ученые вновь убедились, что наша Вселенная хранит куда больше тайн и загадок. Большой адронный коллайдер стал спасением современной физики, столкнувшейся с сотнями вопросов, оставшихся без ответов. Огромная система сверхпроводящих магнитов, чем и является по своей сущности БАК, за двадцать лет своего существования сумела приблизить все человечество к главной загадки Вселенной, некогда лежащей тысячи световых лет от нас. И пусть физика любит удивлять нас новыми вопросами, взявшимися точно из ниоткуда, теперь у людей есть свой козырь в рукаве – большой адронный коллайдер.
Фонд «Beyond Curriculum» публикует цикл материалов «В чем прелесть предмета» в партнерстве с проектом «Караван знаний» при поддержке компании «Шеврон». Караван знаний – инициатива по исследованию и обсуждению передовых образовательных практик с участием ведущих казахстанских и международных экспертов.
Редактор статьи: Дарина Мухамеджанова