что такое коэффициент жесткости пружины

Что такое жесткость пружины и как ее рассчитать

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружиныДля определения устойчивости и сопротивления к внешним нагрузкам используется такой параметр, как жесткость пружины. Также он называется коэффициентом Гука или упругости. По сути, характеристика жесткости пружины определяет степень ее надежности и зависит от используемого материала при производстве.

Измерению коэффициента жесткости подлежат следующие типы пружин:

Изготовление пружин любого типа вы можете заказать здесь.

Какую жесткость имеет пружина

При выборе готовых пружин, например для подвески автомобиля, определить, какую жесткость она имеет, можно по коду продукта либо по маркировке, которая наносится краской. В остальных случаях расчет жесткости производится исключительно экспериментальными методами.

Жесткость пружины по отношению к деформации бывает величиной переменной или постоянной. Изделия, жесткость которых при деформации остается неизменной называются линейными. А те, у которых есть зависимость коэффициента жесткости от изменения положения витков, получили название «прогрессивные».

В автомобилестроении в отношении подвески существует следующая классификация жесткости пружин:

Определение величины жесткости зависит от следующих исходных данных:

Как рассчитать жесткость пружины

Для расчета коэффициента жесткости применяется формула:

k = G * (Dw)^4 / 8 * Na * (Dm)^3,

где G – модуль сдвига. Данную величину можно не рассчитывать, так как она приведена в таблицах к различным материалам. Например, для обыкновенной стали она равна 80 ГПа, для пружинной – 78,5 ГПа. Из формулы понятно, что наибольшее влияние на коэффициент жесткости пружины оказывают оставшиеся три величины: диаметр и число витков, а также диаметр самой пружины. Для достижения необходимых показателей жесткости изменению подлежат именно эти характеристики.

Вычислить коэффициент жесткости экспериментальным путем можно при помощи простейших инструментов: самой пружины, линейки и груза, который будет воздействовать на опытный образец.

Определение коэффициента жесткости растяжения

Для определения коэффициента жесткости растяжения производятся следующие расчеты.

Определение коэффициента жесткости сжатия производится по этой же формуле. Только вместо подвешивания груз устанавливается на верхнюю часть вертикально установленной пружины.

Подводя итог, делаем вывод, что показатель жесткости пружины является одной из существенных характеристик изделия, которая указывает на качество исходного материала и определяет долговечность использования конечного изделия.

Источник

Коэффициент жесткости: применение и формула для расчета

При воздействии внешних сил тела способны приобретать ускорения или деформироваться. Деформацией называют изменение размеров и (или) формы тела. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.
Пусть на пружину на рис.1 действует растягивающая сила, направленная вертикально вниз.

При воздействии деформирующей силы ($\overline$) длина пружины увеличивается. В пружине возникает сила упругости ($<\overline>_u$), которая уравновешивает деформирующую силу. Если деформация небольшая и упругая, то удлинение пружины ($\Delta l$) пропорционально деформирующей силе:

Коэффициент жесткости пружины зависит от материала, из которого изготовлена пружина, ее геометрических характеристик. Так, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси вычисляется при помощи формулы:

Сила упругости и закон Гука

Для начала определим основные термины, которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация — это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д. ), то деформация пластическая.

Примерами пластических деформаций являются:

В свою очередь, упругими деформациями будут считаться:

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

где F — сила упругости, x — расстояние, на которое изменилась длина тела в результате растяжения, k — необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Виды деформации

Деформация – это изменение формы, или размеров тела.

Есть несколько видов деформации:

Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.

Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б – эта же линейка, деформируемая кручением.

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины
Рис. 1. пластиковая линейка, деформированная изгибом – а) и кручением – б)

В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ — на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ — Н/м.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости. В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k — общая жесткость системы, k1, k2, …, ki — отдельные жесткости каждого элемента, i — общее количество всех пружин, задействованных в системе.

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно, величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

Измерение жесткости пружины опытным путем — в этом видео.

Применение и разновидности пружин

Пружина является упругим изделием, что обеспечивает трансформацию нарастающих двигательных импульсов к приборным и механизменным составляющим собственного звена. Встречается устройство во многих изделиях как в бытовых приборах, так и в производственных элементах. А степень надежности работы механизмов на производстве зависит от коэффициента пружинной жесткости. Эту величину следует соизмерять с усилием, приложенным к пружине, что определяет ее сжатие или растяжение. Пружинное вытяжение зависит от свойств металла, который ее составляет, а не от коэффициента упругости.

Пружинный элемент имеет разнообразные структуры. Все зависит от того, для чего он предназначен. По деформационным особенностям и структурным характеристикам пружина бывает:

Коэффициентный показатель жесткости определенного элемента зависит от способа деформационной передачи. Параметры деформации подразделяют все механизмы на такие:

При одновременном применении нескольких пружинных механизмов в одном изделии жесткостный показатель будет обусловлен крепежным элементом. Если все соединено параллельным креплением, то показатель будет расти, а последовательное крепление предусматривает уменьшение.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:

Последовательность действий для опыта такова:

Практические занятия

Механики и физики обозначают с помощью k, c и D коэффициент упругости, пропорциональности, жесткости. Смысл математической записи одинаковый. Численно показатель равняется силе, которая создаёт колебания на одну единицу длины. На практических работах по физике используется в качестве последней величины 1 метр.

Чем выше k, тем больше сопротивление предмета относительно деформации. Дополнительно коэффициент показывает степень устойчивости тела к колебаниям со стороны внешней нагрузки. Параметр зависит от длины и диаметра винтового изделия, количества витков, сырья. Единица измерения жесткости пружины — Н/м.

На практике перед школьниками и механиками может стоять более сложная задача, к примеру, найти общую жёсткость. В таком случае пружины соединены последовательным либо параллельным способом. В первом случае уменьшается суммарная жесткость. Если пружины расположены последовательно, используется следующая формула: 1/k = 1/k1 + 1/k2 + … + 1/ki, где:

Если невесомые (расположены горизонтально) предметы соединены параллельно, значение общего k будет увеличиваться. Величина вычисляется по следующей формуле: k = k1 + k2 + … + ki.

Основная методика для вычислений

На практике коэффициент Гука определяется самостоятельно. Для эксперимента потребуется пружина, линейка, груз с определённой массой. Необходимо соблюдать следующую последовательность действий:

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

Если вышеописанные вычисления произведены, необходимо найти значение коэффициента жёсткости. Используется закон Гука, из которого следует, что k=F/x.

Решение задач

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

Для нахождения жёсткости в случае использования разных предметов, включая пружинные маятники с разной частотой колебаний, применяется формула Гука либо следствие, вытекающее из неё.

Задача № 1. Пружина имеет длину 10 см. На неё оказывается сила в 100 Н. Изделие растянулось на 14 см. Нужно найти k.

Решение: предварительно вычисляется абсолютное удлинение: 14−10=4 см. Результат переводится в метры: 0,04 м. Используя основную формулу, находится k. Его значение равняется 2500 Н/м.

Задача № 2. На пружину подвешивается груз массой 10 кг. Изделие растягивается на 4 см. Нужно найти длину, на которую растянется пружина, если использовать груз массой в 25 кг.

Решение: Определяется сила тяжести путем умножения 10 кг на 9.8. Результат записывается в Ньютонах. Определяется k=98/0.04=2450 Н/м. Рассчитывается, с какой силой воздействует второй груз: F=mg=245 Н. Для нахождения абсолютного удлинения используется формула x=F/k. Во втором случае х равняется 0,1 м.

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

Читать также: Хадо для гидроусилителя руля отзывы
Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

Ответ: во втором случае пружина растянется на 10 см.

Расчет пружины сжатия из проволоки прямоугольного сечения.

Жесткость пружины из проволоки или прутка прямоугольного сечения при тех же габаритах, что и из круглой проволоки может быть гораздо больше. Соответственно и сила сжатия пружины может быть больше.

Представленная ниже программа является переработанной версией программы расчета цилиндрических пружин из круглой проволоки, подробное описание которой вы найдете, перейдя по ссылке. Прочтите эту статью, и вам проще будет разобраться в алгоритме.

Основным отличием в расчете, как вы уже догадались, является определение жесткости витка (C1), задающей жесткость пружины (C) в целом.

Далее представлены скриншот программы и формулы для цилиндрической стальной пружины из прямоугольной проволоки, у которой поджаты по ¾ витка с каждого конца и опорные поверхности отшлифованы на ¾ длины окружности.

Внимание.

После выполнения расчета по программе выполняйте проверку касательных напряжений.

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

4. I=(D1/B)-1

5. При 1/3 B: C1=(78500*B4)/(Y*(D1 B)3)

8. Tnom=1,25*(F2/C1)+H

9. Tmax=π*(D1 B)*tg (10°)

11. S3=T H

12. F3=C1*S3

14. Nрасч=(L2 H)/(H+F3/C1 F2/C1)

16. C=C1/N

17. L0=N*T+H

18. L3=N*H+H

19. F2=C*L0 C*L2

21. F1=C*L0 C*L1

22. N1=N+1,5

23. A=arctg (T/(π*(D1 H)))

24. Lразв=π*N1*(D1 H)/cos (A)

25. Q=H*B*Lразв*7,85/106

Типы пружин

Пружины можно классифицировать по направлению прилагаемой нагрузки:

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.

Попробуй обратиться за помощью к преподавателям

Факторы, определяющие жесткость конструкций

Жесткость конструкций определяют следующие факторы:

Модуль упругости является устойчивой характеристикой металлов, мало зависит от термообработки и содержания (в обычных количествах) легирующих элементов и определяется лишь полностью атомно-кристаллической решеткой основного компонента. Из технических металлов только W, Мо и Be имеют повышенный модуль упругости (соответственно Е = 40, 35 и 31·104 МПа).

Однако применение того или иного материала по большей части определяется условиями работы детали. Поэтому главным практическим средством увеличения жесткости является маневрирование геометрическими параметрами системы.

На жесткость сильно влияют размеры и форма сечений. В случае растяжения-сжатия жесткость пропорциональна квадрату, а при изгибе — четвертой степени размеров сечения (в направлении действия изгибающею момента).

Влияние линейных размеров детали невелико для случая растяжения-сжатия (жесткость обратно пропорциональна первой степени длины) и очень значительна при изгибе (жесткость обратно пропорциональна третьей степени длины).

Конструктивные параметры влияют на жесткость по-разному: [см. формулы (), ()]: при растяжении-сжатии λ = F/l, при изгибе λизг = I/l3. Для бруса круглого сечения в случае растяжения-сжатия λ = 0,785·d2/l и в случае изгиба λизг = 6,25·10-4 d4/l3. Условие равножесткости для брусьев с различными значениями l и d, нагруженных одинаковой силой Р: при растяжении-сжатии d2/l = const, при изгибе d4/l3 = const. На жесткость конструкции косвенно влияет прочность материала. При прочих равных условиях деформации пропорциональны напряжениям. Но напряжения принимают, как правило, пропорциональными прочности материала; допустимые напряжения представляют собой отношение предела прочности (или предела текучести) к коэффициенту прочности. Следовательно, чем выше прочность материала, тем больше допустимые напряжения и при прочих равных условиях больше деформация системы. Напротив, чем меньше запас прочности и ближе действующие в системе напряжения к пределу прочности, тем больше деформация и меньше жесткость системы.

Наиболее простой способ уменьшения деформаций заключается в уменьшении уровня напряжений. Однако этот путь нерационален, так как он сопряжен с увеличением массы конструкции. В случае изгиба рациональным способом уменьшения деформаций является целесообразный выбор формы сечений, условий нагружения, типа и расстановки опор. Поскольку влияние линейных параметров системы при изгибе велико [формула ()], то в данном случае имеются эффективные способы увеличения жесткости, позволяющие уменьшить деформации системы в десятки раз по сравнению с исходной конструкцией, а иногда практически полностью исключить изгиб.

В случае кручения эффективными средствами повышения жесткости являются уменьшение длины детали на участке кручения и, особенно, увеличение диаметра, так как полярный момент инерции возрастает пропорционально четвертой степени диаметра. В случае растяжения-сжатия возможность увеличения жесткости гораздо меньше, так как форма сечения не играет никакой роли, а деформации зависят только от площади сечения, которая определяется условием прочности. Единственным способом повышения жесткости здесь является уменьшение длины детали. Если же длина задана, то остается только переход на материалы с более высоким модулем упругости.

Деформация зависит не только от максимального действующего напряжения в опасном сечении детали, но и от закона распределения напряжений по всем остальным сечениям, т. е. от формы детали по ее длине. Равнопрочные детали (у которых максимальные напряжения во всех сечениях одинаковы) обладают наименьшей жесткостью.

Жесткость за пределами упругих деформаций. На практике приходится учитывать возможность появления пластических деформаций. Даже в системах, рассчитанных па работу в пределах упругости, нередко возникают местные пластические деформации в слабых местах конструкции, на участках концентрации напряжений и в элементах, неблагоприятно расположенных относительно действующих сил, и т. д. Общие или местные пластические деформации могут возникнуть на перегрузочных режимах работы. Важно, чтобы эти деформации не нарушали работоспособность детали.

Поведение материала в этих условиях можно проследить на диаграмме нагрузка — относительная деформация для случая растяжения пластичной стали (рис. 92).

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

Пока деталь работает в области упругих деформаций (при нагрузках меньших, чем 45 кН), последние незначительны (в среднем ε Читайте также: Гибка металла при помощи гибочного инструмента

Возникновение незначительных остаточных деформаций не вызывает опасности, если нагрузка статическая и деформация детали не влияет на работу узла и смежных деталей. Напротив, при известных условиях они способствуют упрочнению детали. Степень упрочнения зависит от соотношения между пределом прочности σв и пределом упругости материала (или близким к последнему пределом текучести σ0,2). Отношение σ0,2/σв мало у мягких и пластичных материалов и повышается с увеличением предела прочности, достигая 0,85—0,95 для высокопрочных сталей. Таким образом, степень упрочнения может быть значительной лишь для пластичных материалов; возможности упрочнения пластической деформацией прочных сталей невелики.

Если же остаточные деформации влияют на работу узла (как это имеет место, например, в точных соединениях), то их необходимо полностью устранить или ограничить узкими пределами. Таким образом, деформация за пределом упругости зависит в первую очередь от прочности материала и характера ее изменения в области пластической деформации, т. е. от вида кривой нагружения.

На рис. 92 приведено сравнение пластической деформации деталей, выполненных из трех сталей различной прочности. Пусть на деталь действует растягивающая сила 75 кН, вызывающая напряжение, превосходящее предел упругости для всех сталей. Относительная деформация ε под действием этой силы для сталей, соответствующих кривым 1–3, равна соответственно 2,5; 1 и 0,5%. Таким образом, деформация детали, выполненной из наиболее прочной стали 3, в 2 раза меньше, чем в случае стали 2, и в 5 раз меньше, чем в случае стали 1.

Преимущества прочных сталей в рассматриваемом случае можно иллюстрировать иначе. Пусть задана предельная относительная деформация ε = 1%. Деталь, выполненная из наиболее прочной стали 3, приобретает эту деформацию при нагрузке 95 кН, из стали 2 — при нагрузке 75 кН и из стали 1 — при нагрузке 60 кН.

Из сказанного очевидно, что жесткость в области пластических деформаций определяется преимущественно прочностными факторами.

Жесткость тонкостенных и составных конструкций. В тонкостенных, в частности оболочковых, конструкциях особое значение имеет устойчивость системы. Конструкции такого рода склонны в известных условиях при напряжениях, безопасных с точки зрения номинального расчета на прочность и жесткость, подвергаться резким местным или общим деформациям, носящим характер внезапного крушения.

Главным средством борьбы с потерей устойчивости (наряду с повышением прочности материала) является усиление легко деформирующихся участков системы введением местных элементов жесткости или связей между деформирующимися участками и узлами жесткости.

В составных конструкциях (в системах из нескольких деталей, соединенных неподвижно) жесткость зависит также от такого фактора, редко учитываемого, но имеющего на практике большое значение, как жесткость узлов сопряжения. Наличие зазоров в узлах сопряжения приводит к появлению деформаций, иногда во много раз превосходящих собственные упругие деформации элементов конструкции. В подобных узлах следует обращать особое внимание на жесткость крепления и заделки деталей.

Эффективными способами увеличения жесткости составных систем являются силовая затяжка соединения, посадка с натягом, увеличение опорных поверхностей и придание деталям повышенной жесткости на участках сопряжения.

Физические характеристики пружин

Цилиндрические пружины характеризуются рядом параметров, сочетание которых обуславливает их жесткость — способность сопротивляться деформации:

Задай вопрос специалистам и получи ответ уже через 15 минут!

Существуют и другие физические характеристики, влияющие на работоспособность пружин. Например, при повышении температуры металл становится менее упругим, а при существенном ее понижении может стать хрупким. При интенсивной эксплуатации пружина со временем теряет часть упругости по причине постепенного разрушения связей между атомами кристаллической решетки.

Понятие жесткости

Жесткость как физическая величина характеризует силу, которую нужно приложить к пружине для достижения определенной степени растяжения или сжатия.

Коэффициент жесткости рассчитывается по формуле Гука:

Коэффициент жесткости можно вычислить экспериментально, подвешивая на расположенную вертикально и закрепленную за верхний конец пружину грузы с известной массой. В этом случае имеет место зависимость

$m cdot g — k cdot x = 0$,

Расчет жесткости цилиндрической пружины

Довольно просто понять как работает плоская пружина. Если положить на край письменного стола линейку и прижать один ее конец рукой к поверхности, но второй можно упруго изгибать, запасая и высвобождая энергию. Очевидно, что в момент изгиба расстояния между молекулами материала в некоторых фрагментах линейки увеличиваются, в некоторых уменьшаются. Электромагнитные связи, действующие между молекулами, стремятся вернуть вещество к прежнему геометрическому состоянию.

Несколько сложнее дело обстоит с цилиндрической пружиной. В ней энергия запасается не благодаря деформации изгиба, а за счет скручивания проволоки, из которой пружина навита, относительно продольной оси этой проволоки.

Представим сильно увеличенное сечение проволоки, из которой навита цилиндрическая пружина, выполненное перпендикулярной ее оси плоскостью. При таком рассмотрении можно абстрагироваться от спиральной формы и мысленно разбить весь объем проволоки на множество соприкасающихся торцевыми поверхностями «цилиндров», диаметр которых равен диаметру проволоки, а высота стремится к нулю. Между соприкасающимися торцами действуют молекулярные силы, препятствующие деформации.

Читать также: Снять бензонасос тойота авенсис

При растяжении или сжатии пружины угол наклона между витками изменяется. Соседние «цилиндры» при этом вращаются друг относительно друга в противоположных направлениях вокруг общей оси. В каждом таком сечении запасается энергия. Отсюда следует, что чем из более длинного куска проволоки навита пружина (здесь играют роль диаметр и высота цилиндра, а также шаг витка), тем большее количество энергии она способна запасти. Увеличение диаметра проволоки также повышает ее энергоемкость. В целом формула, учитывающая основные факторы жесткости пружины, выглядит так:

Подставим в формулу числовые значения, попутно переведя их в единицы системы СИ:

Так и не нашли ответ на свой вопрос?

Просто напиши с чем тебе нужна помощь

Пружины можно назвать одной из наиболее распространенных деталей, которые являются частью простых и сложных механизмов. При ее изготовлении применяется специальная проволока, накручиваемая по определенной траектории. Выделяют довольно большое количество различных параметров, характеризующих это изделие. Наиболее важным можно назвать коэффициент жесткости. Он определяет основные свойства детали, может рассчитываться и применяться в других расчетах. Рассмотрим особенности подобного параметра подробнее.

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

Калькулятор расчета рабочего объёма двигателя внутреннего сгорания

Рабочий объем цилиндра представляет собой объем находящийся между крайними позициями движения поршня.Формула расчета цилиндра известна еще со школьной программы – объем равен произведению площади основания на высоту.

И для того чтобы вычислить объем двигателя автомобиля либо мотоцикла также нужно воспользоваться этими множителями. Рабочий объём любого цилиндра двигателя рассчитывается так: где, h — длина хода поршня мм в цилиндре от ВМТ до НМТ (Верхняя и Нижняя мёртвая точки)r — радиус поршня ммп — 3,14 не именное число.Для расчета рабочего объема двигателя вам будет нужно посчитать объем одного цилиндра и затем умножить на их количество у ДВС.

И того получается: Vдвиг = число Пи умножено на квадрат радиуса (диаметр поршня) умноженное на высоту хода и умноженное на кол-во цилиндров.Поскольку, как правило, параметры поршня везде указываются в миллиметрах, а объем двигателя измеряется в см.

Чтобы посчитать объем интересующего вас двигателя нужно внести 3 цифры в соответствующие поля, — результат появится автоматически. Все три значения можно посмотреть в паспортных данных автомобиля или тех.

характеристиках конкретной детали либо же определить, какой объем поршневой поможет штангенциркуль.Таким образом, если к примеру у вас получилось что объем равен 1598 см³, то в литрах он будет обозначен как 1,6 л, а если вышло число 2429 см³, то 2,4 литра.

Длинноходный и короткоходный поршеньТакже замете, что при одинаковом количестве цилиндров и рабочем объеме двигатели могут иметь разный диаметр цилиндров, ход поршней и мощность таких моторов так же будет разной. Движок с короткоходными поршнями очень прожорлив и имеет малый КПД, но достигает большой мощности на высоких оборотах.

А длинноходные стоят там, где нужна тяга и экономичность.Следовательно, на вопрос «как узнать объем двигателя по лошадиным силам» можно дать твердый ответ – никак. Ведь лошадиные силы хоть и имеют связь с объемом двигателя, но вычислить его по ним не получится, поскольку формула их взаимоотношения еще включает много разных показателей. Так что определить кубические сантиметры двигателя можно исключительно по параметрам поршневой.

Чаще всего узнают объем двигателя когда хотят увеличить степень сжатия, то есть если хотят расточить цилиндры с целью тюнинга. Поскольку чем больше степень сжатия, тем больше будет давление на поршень при сгорании смеси, а следовательно, двигатель будет более мощным.

Zhurikhin › Блог › Расчет Динамической степени сжатия (DCR)

Для простоты, сравним всем известные двигатели семейства ВАЗ и проследим их эволюцию в разрезе введенного нами параметра.Итак, первый двигатель, который мы рассмотрим — это ВАЗ 2106, основные параметры, такие как диаметр цилиндра, ход поршня и остальные можно легко найти в интернете, я уже произвел все необходимые расчеты, и для простоты, буду указывать уже сокращенные данные. Этот двигатель имеет геометрическую степень сжатия – 8,5 и угол закрытия ВК равным 55°, на основе всех данных, значение DCR для этого двигателя будет равно 7,5. Сравним со значением из таблицы, получаем, что для данного типа двигателя допустимо применение 92 бензина, причем с небольшим запасом.

В принципе, для того времени, когда разрабатывался этот двигатель октановое число топливо применялось со значение 91, а системы управления двигателем не позволяли достаточно точно производить настройку, поэтому некий запас конечно был необходим.Теперь рассмотри другой двигатель из этого семейства – ВАЗ 21213.

Определение и формула жесткости пружины

При рассмотрении того, что такое коэффициент жесткости пружины следует уделить внимание понятию упругости. Для ее обозначения применяется символ F. При этом сила упругости пружины характеризуется следующими особенностями:

Не стоит забывать о том, что жесткость – характеристика, свойственная упругим телам, способным деформироваться. Довольно распространенным вопросом можно назвать то, как обозначается жесткость пружины на чертежах или в технической документации. Чаще всего для этого применяется буква k.

Слишком сильная деформация тела становится причиной появления различных дефектов. Ключевыми особенностями можно назвать следующее:

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

Довольно большое распространение получили красные пружины и другого типа. Цветовое обозначение применяется в случае производства автомобильных изделий. Для расчета применяется следующая формула: k=Gd 4 /8D 3 n. В этой формуле указываются нижеприведенные обозначения:

Рассматриваемая формула применяется в случае расчета коэффициента жесткости для цилиндрических пружин, которые устанавливаются в самых различных механизмах. Подобная единица измеряется в Ньютонах. Коэффициент жесткости для стандартизированных изделий можно встретить в технической литературе.

Трактовка понятий

В физике упругая деформация возникает из-за силы, равной по модулю оказываемому воздействию. Сила упругости для пружины (F) пропорциональна её удлинению. Для определения жесткости пружины зависимость записывается математически с помощью следующей формулы: F = k·x; где х — длина предмета после его растяжения, а k — коэффициент жесткости.

Формула считается частным случаем закона Гука, который используется для растяжимого тонкого стержня. Чрезмерное воздействие приводит к появлению разных дефектов. Для процесса характерны некоторые особенности, от чего зависит жесткость пружины:

На практических занятиях по физике в 7 классе применяются изделия разных типов. В автомобилестроении используется цветовое обозначение. Для расчета коэффициента жесткости пружины специалисты ориентируются на формулу k=Gd 4 /8D 3 n, где:

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

С помощью формулы может измеряться жёсткость цилиндрической пружины, используемой в разных механизмах. Показатель измеряется в Ньютонах и обозначается Н.

Формула жесткости соединений пружин

Не стоит забывать о том, что в некоторых случаях проводится соединение тела нескольким пружинами. Подобные системы получили весьма широкое распространение. Определить жесткость в этом случае намного сложнее. Среди особенностей соединения можно отметить нижеприведенные моменты:

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

В обеих случаях применяется определенная формула, которая определяет особенности подключения. Модуль силы упругости может существенно отличаться в зависимости от особенностей конкретного изделия.

При последовательном соединении изделий показатель рассчитывается следующим образом: 1/k=1/k1+1/k2+…+1/kn. Рассматриваемый показатель считается довольно важным свойством, в данном случае он снижается. Параллельный метод подключения рассчитывается следующим образом: k=k1+k2+…kn.

Подобные формулы могут использоваться при самых различных расчетах, чаще всего на момент решения математических задач.

Коэффициент жесткости соединений пружин

Приведенный выше показатель коэффициента жесткости детали при параллельном или последовательном соединении определяет многие характеристики соединения. Довольно часто проводится определение тому, чему равно удлинение пружины. Среди особенностей параллельного или последовательного соединения можно отметить нижеприведенные моменты:

Читать также: Выставка ретро автомобилей в москве

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

Для проведения расчетов нужно построить схему подключения всех элементов. Основание представлено линией со штриховкой, изделие обозначается схематически, а тело в упрощенном виде. Кроме этого, от упругой деформации во многом зависит кинетическая и другая энергия.

Когда менять пружины

Пружины имеет смысл менять в следующих случаях:

Многие автомеханики советуют менять пружины на автомобиле каждые 10 лет его эксплуатации. Однако это зависит, во-первых, от качества используемых пружин, а во-вторых, от пробега и условий эксплуатации машины. Перед тем как принять такое решение, лучше дополнительно продиагностировать состояние установленных на машину деталей. Еще одна рекомендация состоит в том, чтобы менять пружины на каждой второй замене амортизаторов, то есть, через каждые 80…100 тысяч километров пробега.

Использование «уставших» пружин приводит к тому, что автовладелец вынужден менять амортизаторы в 2…3 раза чаще!

Перед заменой детали необходимо произвести выбор лучших пружин, которые обеспечат не только комфортную езду, но и безопасность движения. Оптимальным вариантом будет установка пружин, аналогичных тем, которые были установлены на автомобиль с завода. В этом поможет VIN-код детали (артикул).

Заключение

Проверка пружин подвески — дело несложное, и вполне под силу даже начинающему автолюбителю. Однако зачастую при диагностике пружину необходимо демонтировать с ее посадочного места, поэтому нужно быть к этому готовым, в том числе иметь под рукой необходимый инструмент. Ездить на поломанной пружине опасно, поэтому если она полностью лопнула или дала значительную трещину — ее нужно заменить на новую. В случае, если она просто просела, но состояние металла хорошее, то для выравнивания клиренса автомобиля достаточно воспользоваться резиновыми проставками соответствующей толщины.

Коэффициент жесткости цилиндрической пружины

На практике и в физике довольно большое распространение получили именно цилиндрические пружины. Их ключевыми особенностями можно назвать следующие моменты:

Не стоит забывать о том, что выделяют два типа деталей: сжатия и растяжения. Их коэффициент жесткости определяется по одной и той же формуле. Разница заключается в следующем:

Расчет коэффициента цилиндрической пружины может проводится при использовании ранее указанной формулы. Она определяет то, что показатель зависит от следующих параметров:

что такое коэффициент жесткости пружины. Смотреть фото что такое коэффициент жесткости пружины. Смотреть картинку что такое коэффициент жесткости пружины. Картинка про что такое коэффициент жесткости пружины. Фото что такое коэффициент жесткости пружины

Коэффициент жесткости считается одним из наиболее важных параметров, который учитывается при проведении самых различных расчетов.

Как рассчитывают степень сжатия двигателя

Поскольку очень желательно, чтобы двигатель внутреннего сгорания, установленный на автомобиле, имел максимально возможную степень сжатия, то необходимо уметь ее определять

Важно это еще и для того, чтобы при регулировке силового агрегата, направленной на его форсирование, избежать опасности детонации, которая может просто разрушить мотор

Стандартная формула, по которой рассчитывается степень сжатия двигателя внутреннего сгорания, имеет следующий вид:

Для того чтобы определить значение этой величины для одного цилиндра, нужно сначала разделить общий рабочий объем силового агрегата на их количество. Таким образом определяется значение параметра V из приведенной выше формулы. Определить объем камеры сгорания (то есть значение величины С) несколько сложнее, но вполне возможно. Для этого опытные автомобилисты и механики, специализирующиеся на ремонте и наладке двигателей внутреннего сгорания, используют бюретку, которая проградуирована в кубических сантиметрах. Наиболее простой способ заключается в том, чтобы залить в камеру сгорания жидкость (например, бензин), а после этого измерить с помощью бюретки ее объем. Полученные данные нужно подставить в формулу расчета.

На практике значение степени сжатия двигателя обычно определяется в следующих случаях:

Единицы измерения

При проводимых расчетах также должно учитываться то, в каких единицах измерениях проводятся вычисления. При рассмотрении того, чему равно удлинение пружины уделяется внимание единице измерения в Ньютонах.

Для того чтобы упростить выбор детали многие производители указывают его цветовым обозначением.

Разделение пружины по цветам проводится в сфере автомобилестроения.

Среди особенностей подобной маркировки отметим следующее:

Как правило, подобное свойство отмечается на внешней стороне витка. Производители наносят небольшую полоску, которая и существенно упрощает процесс выбора.

Особенности расчета жесткости соединений пружин

Приведенная выше информация указывает на то, что коэффициент жесткости является довольно важным параметром, который должен рассчитываться при выборе наиболее подходящего изделия и во многих других случаях. Именно поэтому довольно распространенным вопросом можно назвать то, как найти жесткость пружины. Среди особенностей соединения отметим следующее:

Как ранее было отмечено, выделяют последовательный и параллельный метод соединения. Оба характеризуются своими определенными особенностями, которые должны учитываться.

В заключение отметим, что рассматриваемая деталь является важной частью конструкции различных механизмов. Неправильный вариант исполнения не сможет прослужить в течение длительного периода. При этом не стоит забывать о том, что слишком сильная деформация становится причиной ухудшения эксплуатационных характеристик.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Как проверить пружину подвески

Чтобы проверить состояние пружины подвески автомобиля ее необходимо предварительно демонтировать со своего посадочного места, очистить от грязи и ржавчины. Это позволит визуально оценить ее состояние, проверить наличие трещин, сколов и прочих дефектов.

В первую очередь необходимо проверить пружину на жесткость. Однако перед тем нужно узнать, к какому классу она относится, а также, какие именно пружины рекомендует устанавливать производитель автомобиля на ту часть подвески, откуда она была демонтирована.

Все пружины делятся на два основных класса — А и В. Их отличия состоят в жесткости и длине. Длина А-пружин составляет до 27,8 см, а длина В-пружин составляет свыше 27,8 см. Что касается цветовой маркировки, то это зависит от конкретной автомобильной марки и производителя пружин.

Проверка прессом

Чтобы определить усталость пружин методом сжатия нужно знать какой жесткости она должна быть установлена в указанном месте с тем, чтобы знать, с чем сравнивать полученный в будущем результат. Так, в гаражных условиях жесткость пружины можно проверить при помощи следующих инструментов:

Алгоритм проверки в этом случае будет таким:

В случае, если пружина сжалась на определенное расстояние при недостаточном усилии, то это говорит о том, что она значительно ослабла и ее желательно заменить. Однако решение о замене необходимо принимать еще и на основании визуального осмотра, а также информации о том, сколько километров пробега машина проездила с данной пружиной.

Однако на практике такой метод осуществить достаточно проблематично, поскольку для теста необходимо развивать значительные усилия. Например, при тестировании пружин автомобиля ВАЗ-2110 нужно развить усилия, равные 325 килограмм-силы. При этом значении стандартные пружины передней подвески должны иметь длину не менее 201 мм (для так называемой «европейской» пружины аналогичное значение будет составлять 182 мм). Для задней стандартной пружины при том же усилии ее длина будет составлять не менее 233 мм (для «европейской» — не менее 223 мм).

Теоретические вычисления

Допустимое геометрическое изменение пружины, а также ее жесткость можно еще вычислить по соответствующим формулам. Так, геометрическое изменение вычисляется следующим образом: Х = F × L / C. Здесь X — изменение размера пружины, F — прикладываемое усилие, L — начальная длина пружины, C — коэффициент пропорциональности, табличная величина (зависит от радиуса витковой части пружины, материала ее изготовления, диаметра прута).

Аналогично жесткость пружины вычисляется по другой формуле — k = F / X. Здесь тоже F — это сила, а X — измеренный в результате опыта размер сжатой пружины. Сложность подобных вычислений обусловлена тем, что нужно знать коэффициент пропорциональности, а эту информацию можно найти только в технической документации.

Проверка по мануалу

В технической документации (мануале) к любому автомобилю есть подробное описание процедуры проверки клиренса, и, в частности, пружин. Рассмотрим подобную диагностику на примере популярного автомобиля Toyota Camry. Так, для этого предварительно необходимо измерить четыре параметра:

Далее необходимо найти разницу между значениями А и В, а также C и D. После этого сравнить с приведенными данными в таблице минимально допустимыми значениями. Если полученные в результате замера значения будут ниже, чем приведенные в ней, то необходимо проводить дополнительную диагностику. Возможно придется воспользоваться дополнительными проставками, либо заменить пружину на новую. Если же полученные значения больше, чем минимально допустимые — значит, с пружиной все в порядке (если нет дополнительных симптомов неисправности).

Колеса (ось)Значение клиренса, мм
Двигатель 1MZ-FE, (объем 3,0 литра) диаметр резины любой
ПередниеA — B: 116
ЗадниеD — C: 40
Двигатель 1AZ-FE (объем 2,0 литра), 2AZ-FE (объем 2,4 литра), диаметр резины — 15 дюймов
ПередниеA — B: 115
ЗадниеD — C: 40
Двигатель 1AZ-FE (объем 2,0 литра), 2AZ-FE (объем 2,4 литра), диаметр резины — 16 дюймов
ПередниеA — B: 115
ЗадниеD — C: 38
Двигатель любой, диаметр резины более 16 дюймов
ПередниеA — B: 101
ЗадниеD — C: 25

Для других моделей автомобилей в технической документации можно найти описание аналогичной процедуры с соответствующими значениями. Как правило, алгоритм проверки идентичен или мало чем отличается (могут отличаться контрольные измерительные точки).

Дополнительно

Также имеет смысл проверить пружины передней подвески в случае, если например, при переезде “лежачего полицейского” в городских условиях (или подобного препятствия) нос машины значительно опускается вниз, вплоть до того, что чиркает покрытие асфальта. Это говорит о том, что пружины значительно ослабли, и, соответственно, нуждаются либо в установке дополнительных проставок, либо в замене.

При проверке состояния пружины также необходимо обратить внимание на состояние резиновых проставок под них. Со временем они естественным образом изнашиваются, соответственно, при значительном износе резиновые прокладки необходимо заменить на новые. При этом важно учитывать их высоту с тем, чтобы обеспечить нормальное значение клиренса автомобиля.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *