что такое коэффициент технического использования
Коэффициент технического использования
Отношение математического ожидания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и простоев, обусловленных техническим обслуживанием и ремонтом за тот же период (п.6.28. ГОСТ 27.002-89 Надежность в технике. Основные понятия. Термины и определения).
Kти = Тработа / (Тработа + Тремонт + Тто)
где Tработа — время нахождения объекта в работоспособном состоянии за наблюдаемый интервал (обычно год, месяц);
Tремонт — время нахождения объекта в плановом и неплановом ремонте;
Tто — время нахождения объекта в плановом и неплановом техническом обслуживании.
Связанные понятия
Глоба́льная навигацио́нная спу́тниковая систе́ма (ГЛОНА́СС) — российская спутниковая система навигации, одна из двух полностью функционирующих на сегодня систем глобальной спутниковой навигации.
Это статья о методологии анализа химических процессов. О компьютерном вирусе см. статью ПинчПинч-анализ (англ. pinch — сжатие, сужение) представляет собой методологию для минимизации потребления энергии химических процессов путём расчёта термодинамически осуществимой целевой энергии (или минимума потребления энергии) и её достижение путём оптимизации тепла рекуперации системы, методов подвода энергии и условий эксплуатации. Пинч-анализ также известен как процесс интеграции, тепловая интеграция, энергетическая.
Что такое коэффициент технического использования
2.2. Основные показатели долговечности
2.2.1. Средний срок службы (математическое ожидание срока службы)
Для восстанавливаемого объекта, средний срок службы представляет собой среднюю календарную продолжительность эксплуатации объекта от ее начала или ее возобновления после ремонта определенного вида до перехода в предельное состояние.
2.2.2. Средний ресурс (математическое ожидание ресурса)
Средний ресурс представляет собой среднюю наработку объекта от начала эксплуатации или ее возобновления после предупредительного ремонта до наступления предельного состояния. В эксплуатации весьма важно так подобрать параметры объекта по мощности, стратегии технического обслуживания и ремонта, режимов работы, чтобы срок службы и срок срабатывания ресурса совпадали. Опыт эксплуатации объектов массового производства (трансформаторов, выключателей, разъединителей, автоматов и т.п.) показывает, что как наработка на отказ, так и наработка между отказами имеют значительный статистический разброс. Аналогичный разброс имеют также ресурс и срок службы. Этот разброс зависит от технологической культуры и дисциплины, а также достигнутого уровня технологии, как изготовления объектов, так и их эксплуатации (использования по назначению, технического обслуживания, ремонта). Разброс наработки до первого отказа, ресурса и срока службы можно уменьшить при увеличении их значения вышеназванными способами.
Поскольку средний и капитальный ремонты позволяют частично или полностью восстановить ресурс, то отсчет наработки при исчислении ресурса возобновляют по окончании такого ремонта, различая в связи с этим доремонтный, межремонтный, послеремонтный и полный (до списания) ресурс. Встречающийся достаточно часто термин «технический ресурс» представляет собой запас возможной наработки объекта. Полный ресурс отсчитывают от начала эксплуатации объекта до его перехода в предельное состояние, соответствующее окончательному прекращению эксплуатации.
Аналогичным образом выделяют и виды срока службы. Соотношение значений ресурса и срока службы зависит от интенсивности использования объекта. Полный срок службы, как правило, включает продолжительность всех видов ремонта, то есть учитывается календарный срок.
Для невосстанавливаемого объекта ресурс представляет собой среднюю продолжительность работы до отказа или до наступления предельного состояния. Практически эта величина совпадает со средней наработкой до отказа Т1.
Используется также такой показатель долговечности, как гамма-процентный ресурс, представляющий наработку, в течение которой объект не достигает предельного состояния с заданной вероятностью (численно равной заданной величине g в процентах).
2.3. Основные показатели ремонтопригодности
2.3.1. Среднее время восстановления
, (2.17)
Показатель можно определить и на основании статистических данных, полученных для М однотипных восстанавливаемых объектов. Структура расчетной формулы остается той же:
(2.18)
2.3.2. Интенсивность восстановления
Статистическая оценка этого показателя находится как
, (2.19)
В частном случае, когда интенсивность восстановления постоянна, то есть m (t) = m = const, вероятность восстановления за заданное время t подчиняется экспоненциальному закону [3, 13, 21] и определяется по выражению
. (2.20)
Этот частный случай имеет наибольшее практическое значение, поскольку реальный закон распределения времени восстановления большинства электроэнергетических объектов (поток восстановлений) близок к экспоненциальному [10, 14]. Используя свойства этого распределения, запишем очень важную зависимость:
, а также
. (2.21)
В дальнейшем эта взаимосвязь между Тв и m будет часто использоваться при анализе восстанавливаемых систем.
2.4. Комплексные показатели надежности
2.4.1. Коэффициент готовности
Процесс функционирования восстанавливаемого объекта можно представить как последовательность чередующихся интервалов работоспособности и восстановления (простоя).
Этот показатель одновременно оценивает свойства работоспособности и ремонтопригодности объекта.
Для одного ремонтируемого объекта коэффициент готовности
Из выражения 2.23 видно, что коэффициент готовности объекта может быть повышен за счет увеличения наработки на отказ и уменьшения среднего времени восстановления. Для определения коэффициента готовности необходим достаточно длительный календарный срок функционирования объекта.
Зависимость коэффициента готовности от времени восстановления затрудняет оценку надежности объекта, так как по КГ нельзя судить о времени непрерывной работы до отказа. К примеру, для одного и того же численного значения КГ можно иметь малые интервалы и ti (см. рис. 2.4) и значительно большие. Таким образом можно доказать, что на конкретном интервале работоспособности вероятность безотказной работы будет больше там, где больше ti, хотя за этим интервалом может последовать длительный интервал простоя
. Коэффициент готовности является удобной характеристикой для объектов, которые предназначены для длительного функционирования, а решают поставленную задачу в течение короткого промежутка времени (находятся в ждущем режиме), например, релейная защита, контактная сеть (особенно при относительно малых размерах движения), сложная контрольная аппаратура и т.д.
2.4.2. Коэффициент оперативной готовности
Коэффициент оперативной готовности КОГопределяется как вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени (кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается) и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.
Из вероятностного определения следует, что
, (2.23)
Для часто используемого в расчетной практике простейшего потока отказов, когда
.
2.4.3. Коэффициент технического использования
Коэффициент технического использования КТИравен отношению математического ожидания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и простоев, обусловленных техническим обслуживанием и ремонтом за тот же период эксплуатации:
, (2.25)
Как видно из выражения (2.25), коэффициент технического использования характеризует долю времени нахождения объекта в работоспособном состоянии относительно общей (календарной) продолжительности эксплуатации. Следовательно, КТИотличается от КГтем, что при его определении учитывается все время вынужденных простоев, тогда как при определении КГвремя простоя, связанное с проведением профилактических работ, не учитывается.
В условиях эксплуатации на уровень надежности объектов большое влияние оказывают техническое обслуживание и ремонт. Подробно техническое обслуживание и ремонт, стратегии их организации и их решающее влияние на надежность рассматриваются в [1, 16].
ГОСТ 27.002-89 содержит кроме проанализированных в
данном пособии наиболее употребляемых показателей надежности и другие показатели: среднюю трудоемкость восстановления, средний срок сохраняемости, гамма-процентный ресурс, гамма-процентное время восстановления, гамма-процентный срок сохраняемости и др. При необходимости определения указанных показателей используются специальные методики, где процедура расчета основывается на тех же законах математической статистики и теории вероятностей, по которым определяются и более широко используемые показатели надежности.
Что такое коэффициент технического использования
2.3. Основные показатели ремонтопригодности
2.3.1. Среднее время восстановления
, (2.17)
Показатель можно определить и на основании статистических данных, полученных для М однотипных восстанавливаемых объектов. Структура расчетной формулы остается той же:
(2.18)
2.3.2. Интенсивность восстановления
Статистическая оценка этого показателя находится как
, (2.19)
В частном случае, когда интенсивность восстановления постоянна, то есть m (t) = m = const, вероятность восстановления за заданное время t подчиняется экспоненциальному закону [3, 13, 21] и определяется по выражению
. (2.20)
Этот частный случай имеет наибольшее практическое значение, поскольку реальный закон распределения времени восстановления большинства электроэнергетических объектов (поток восстановлений) близок к экспоненциальному [10, 14]. Используя свойства этого распределения, запишем очень важную зависимость:
, а также
. (2.21)
В дальнейшем эта взаимосвязь между Тв и m будет часто использоваться при анализе восстанавливаемых систем.
2.4. Комплексные показатели надежности
2.4.1. Коэффициент готовности
Процесс функционирования восстанавливаемого объекта можно представить как последовательность чередующихся интервалов работоспособности и восстановления (простоя).
Этот показатель одновременно оценивает свойства работоспособности и ремонтопригодности объекта.
Для одного ремонтируемого объекта коэффициент готовности
Из выражения 2.23 видно, что коэффициент готовности объекта может быть повышен за счет увеличения наработки на отказ и уменьшения среднего времени восстановления. Для определения коэффициента готовности необходим достаточно длительный календарный срок функционирования объекта.
Зависимость коэффициента готовности от времени восстановления затрудняет оценку надежности объекта, так как по КГ нельзя судить о времени непрерывной работы до отказа. К примеру, для одного и того же численного значения КГ можно иметь малые интервалы и ti (см. рис. 2.4) и значительно большие. Таким образом можно доказать, что на конкретном интервале работоспособности вероятность безотказной работы будет больше там, где больше ti, хотя за этим интервалом может последовать длительный интервал простоя
. Коэффициент готовности является удобной характеристикой для объектов, которые предназначены для длительного функционирования, а решают поставленную задачу в течение короткого промежутка времени (находятся в ждущем режиме), например, релейная защита, контактная сеть (особенно при относительно малых размерах движения), сложная контрольная аппаратура и т.д.
2.4.2. Коэффициент оперативной готовности
Коэффициент оперативной готовности КОГопределяется как вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени (кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается) и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.
Из вероятностного определения следует, что
, (2.23)
Для часто используемого в расчетной практике простейшего потока отказов, когда
.
2.4.3. Коэффициент технического использования
Коэффициент технического использования КТИравен отношению математического ожидания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и простоев, обусловленных техническим обслуживанием и ремонтом за тот же период эксплуатации:
, (2.25)
Как видно из выражения (2.25), коэффициент технического использования характеризует долю времени нахождения объекта в работоспособном состоянии относительно общей (календарной) продолжительности эксплуатации. Следовательно, КТИотличается от КГтем, что при его определении учитывается все время вынужденных простоев, тогда как при определении КГвремя простоя, связанное с проведением профилактических работ, не учитывается.
В условиях эксплуатации на уровень надежности объектов большое влияние оказывают техническое обслуживание и ремонт. Подробно техническое обслуживание и ремонт, стратегии их организации и их решающее влияние на надежность рассматриваются в [1, 16].
ГОСТ 27.002-89 содержит кроме проанализированных в
данном пособии наиболее употребляемых показателей надежности и другие показатели: среднюю трудоемкость восстановления, средний срок сохраняемости, гамма-процентный ресурс, гамма-процентное время восстановления, гамма-процентный срок сохраняемости и др. При необходимости определения указанных показателей используются специальные методики, где процедура расчета основывается на тех же законах математической статистики и теории вероятностей, по которым определяются и более широко используемые показатели надежности.
3. ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ, НАИБОЛЕЕ ЧАСТО ИСПОЛЬЗУЕМЫЕ В РАСЧЕТАХ НАДЕЖНОСТИ
3.1. Распределение Вейбулла
Опыт эксплуатации очень многих электронных приборов и значительного количества электромеханической аппаратуры показывает, что для них характерны три вида зависимостей интенсивности отказов от времени (рис. 3.1), соответствующих трем периодам жизни этих устройств [3, 8, 10, 19].
Нетрудно увидеть, что этот рисунок аналогичен рис. 2.3, так как график функции l (t) соответствует закону Вейбулла. Указанные три вида зависимостей интенсивности отказов от времени можно получить, используя для вероятностного описания случайной наработки до отказа двухпараметрическое распределение Вейбулла [12, 13, 15]. Согласно этому распределению плотность вероятности момента отказа
, (3.1)
Интенсивность отказов определяется по выражению
(3.2)
Вероятность безотказной работы
, (3.3)
а средняя наработки до отказа
. (3.4)
При d 1 интенсивность отказов монотонно убывает (период приработки), а при монотонно возрастает (период износа), см. рис. 3.1. Следовательно, путем подбора параметра d можно получить, на каждом из трех участков, такую теоретическую кривую l (t), которая достаточно близко совпадает с экспериментальной кривой, и тогда расчет требуемых показателей надежности можно производить на основе известной закономерности.
Распределение Вейбулла достаточно близко подходит для ряда механических объектов (к примеру, шарикоподшипников), оно может быть использовано при ускоренных испытаниях объектов в форсированном режиме [12].
3.2. Экспоненциальное распределение
. (3.5)
Среднее время безотказной работы при экспоненциальном законе распределения интервала безотказной работы выражается формулой:
. (3.6)
Отметим, что вероятность безотказной работы на интервале, превышающем среднее время Т1, при экспоненциальном распределении будет менее 0,368:
Р(Т1) == 0,368 (рис. 3.2).
Длительность периода нормальной эксплуатации до наступления старения может оказаться существенно меньше Т1, то есть интервал времени на котором допустимо пользование экспоненциальной моделью, часто бывает меньшим среднего времени безотказной работы, вычисленного для этой модели. Это легко обосновать, воспользовавшись дисперсией времени безотказной работы. Как известно [4, 13], если для случайной величины t задана плотность вероятности f(t) и определено среднее значение (математическое ожидание) Т1, то дисперсия времени безотказной работы находится по выражению:
(3.8)
и для экспоненциального распределения соответственно равна:
. (3.9)
После некоторых преобразований получим:
. (3.10) Таким образом, наиболее вероятные значения наработки, группирующиеся в окрестности Т1, лежат в диапазоне
, то есть в диапазоне от t = 0 до t = 2Т1. Как видим, объект может отработать и малый отрезок времени и время t = 2Т1, сохранив l = const. Но вероятность безотказной работы на интервале 2Т1 крайне низка:
.
Важно отметить, что если объект отработал предположим, время t без отказа, сохранив l = соnst, то дальнейшее распределение времени безотказной работы будет таким, как в момент первого включения l = соnst.
Таким образом, отключение работоспособного объекта в конце интервала и новое его включение на такой же интервал множество раз приведет к пилообразной кривой
(см. рис. 3.3).
Другие распределения не имеют указанного свойства. Из рассмотренного следует на первый взгляд парадоксальный вывод: поскольку за все время t устройство не стареет (не меняет своих свойств), то нецелесообразно проводить профилактику или замену устройств для предупреждения внезапных отказов, подчиняющихся экспоненциальному закону. Конечно, никакой парадоксальности этот вывод не содержит, так как предположение об экспоненциальном распределении интервала безотказной работы означает, что устройство не стареет. С другой стороны, очевидно, что чем больше время, на которое включается устройство, тем больше всевозможных случайных причин, которые могут вызвать отказ устройства. Это весьма важно для эксплуатации устройств, когда приходится выбирать интервалы, через которые следует производить профилактические работы с тем, чтобы сохранить высокую надежность работы устройства. Этот вопрос подробно рассматривается в работе [1].
Модель экспоненциального распределения часто используется для априорного анализа, так как позволяет не очень сложными расчетами получить простые соотношения для различных вариантов создаваемой системы. На стадии апостериорного анализа (опытных данных) должна проводиться проверка соответствия экспоненциальной модели результатам испытаний. В частности, если при обработке результатов испытаний окажется, что , то это является доказательством экспоненциальности анализируемой зависимости.
На практике часто бывает, что l№ const,однако, и в этом случае его можно применять для ограниченных отрезков времени. Это допущение оправдывается тем, что при ограниченном периоде времени переменную интенсивность отказов без большой ошибки можно заменить [12, 15] средним значением:
3.3. Распределение Рэлея
Плотность вероятности в законе Рэлея (см. рис. 3.4) имеет следующий вид
¦ , (3.11)
Интенсивность отказов равна:
.
Характерным признаком распределения Рэлея является прямая линия графика l (t), начинающаяся с начала координат.
Вероятность безотказной работы объекта в этом случае определится по выражению
. (3.12)
Средняя наработка до отказа
. (3.13)
3.4. Нормальное распределение (распределение Гаусса)
Нормальный закон распределения характеризуется плотностью вероятности вида
, (3.14)
Вероятность безотказной работы определяется по формуле
, (3.15)
.
На рис. 3.5 изображены кривые l (t), Р(t) и ¦ (t) для случая s t mt, характерного для элементов, используемых в системах автоматического управления [3].
В данном пособии показаны только наиболее распространенные законы распределения случайной величины. Известен целый ряд законов, так же используемых в расчетах надежности [4, 9, 11, 13, 15, 21]: гамма-распределение, -распределение, распределение Максвелла, Эрланга и др.
Следует отметить, что если неравенство s t mt не соблюдается, то следует использовать усеченное нормальное распределение [19].
Для обоснованного выбора типа практического распределения наработки до отказа необходимо большое количество отказов с объяснением физических процессов, происходящих в объектах перед отказом.
В высоконадежных элементах электроустановок, во время эксплуатации или испытаний на надежность, отказывает лишь незначительная часть первоначально имеющихся объектов. Поэтому значение числовых характеристик, найденное в результате обработки опытных данных, сильно зависит от типа предполагаемого распределения наработки до отказа. Как показано в [13,15], при различных законах наработки до отказа, значения средней наработки до отказа, вычисленные по одним и тем же исходным данным, могут отличаться в сотни раз. Поэтому вопросу выбора теоретической модели распределения наработки до отказа необходимо уделять особое внимание с соответствующим доказательством приближения теоретического и экспериментального распределений (см. разд. 8).
3.5. Примеры использования законов распределения в расчетах надежности
Определим показатели надежности для наиболее часто используемых законов распределения времени возникновения отказов.
3.5.1. Определение показателей надежности при экспоненциальном законе распределения
Требуется вычислить основные показатели надежности невосстанавливаемого объекта за t = 2000 ч.
3.5.2. Определение показателей надежности при распределении Рэлея
Пример. Параметр распределения d* = 100 ч.
Требуется определить для t = 50 ч величины P(t), Q(t), l (t),Т1.
Воспользовавшись формулами (3.11), (3.12), (3.13), получим
;
;
3.5.3. Определение показателей схемы при распределении Гаусса
Пример. Электрическая схема собрана из трех последовательно включенных типовых резисторов: ;
(в % задано значение отклонения сопротивлений от номинального).
Требуется определить суммарное сопротивление схемы с учетом отклонений параметров резисторов.
Известно, что при массовом производстве однотипных элементов плотность распределения их параметров подчиняется нормальному закону [15]. Используя правило 3 s (трех сигм), определим по исходным данным диапазоны, в которых лежат значения сопротивлений резисторов: ;
Следовательно,
Когда значения параметров элементов имеют нормальное распределение, и элементы при создании схемы выбираются случайным образом, результирующее значение R е является функциональной переменной, распределенной так же по нормальному закону [12, 15], причем дисперсия результирующего значения, в нашем случае , определяется по выражению
.
,
где — номинальные паспортные параметры резисторов.
, или
.
Данный пример показывает, что при увеличении количества последовательно соединенных элементов результирующая погрешность уменьшается. В частности, если суммарная погрешность всех отдельных элементов равна ± 600 Ом, то суммарная результирующая погрешность равна ± 374 Ом. В более сложных схемах, например в колебательных контурах, состоящих из индуктивностей и емкостей, отклонение индуктивности или емкости от заданных параметров сопряжено с изменением резонансной частоты, и возможный диапазон ее изменения можно предусмотреть методом, аналогичным с расчетом резисторов [15].
3.5.4. Пример определения показателей надежности неремонтируемого объекта по опытным данным
Пример. На испытании находилось Nо = 1000 образцов однотипной невосстанавливаемой аппаратуры, отказы фиксировались через каждые 100 часов.
Согласно формуле (2.1) для любого отрезка времени, отсчитываемого от t = 0,
Подставляя исходные данные из табл. 3.1, получим:
Воспользовавшись формулой (2.9), получим значение , 1/ч:
;
;
;
.
Средняя наработка до отказа, при условии отказов всех No объектов, определяется по выражению
Полагаем, что последний отказ зафиксирован в момент окончания эксперимента (tr = 1500).
На основе экспериментальных данных суммарная наработка объектов до отказа равна
,
где — среднее время наработки до отказа объектов, отказавших на интервале
.
ч.
Примечание: обоснование расчетов , по ограниченному объему опытных данных, изложено в разд. 8.
По полученным данным (см. табл. 3.1) построим график l (t).
Из графика видно, что после периода приработки t і 600 ч интенсивность отказов приобретает постоянную величину. Если предположить, что и в дальнейшем l будет постоянной, то период нормальной эксплуатации связан с экспоненциальной моделью наработки до отказа испытанного типа объектов. Тогда средняя наработка до отказа
ч.
Таким образом, из двух оценок средней наработки до отказа
= 3831 ч и T1 = 5208 ч надо выбрать ту, которая более соответствует фактическому распределению отказов. В данном случае можно предполагать, что если бы провести испытания до отказа всех объектов, то есть r = Nо, достроить график рис. 3.6 и выявить время, когда l начнет увеличиваться, то для интервала нормальной эксплуатации ( l = const) следует брать среднюю наработку до отказа T1 = 5208 ч.
В заключение по данному примеру отметим, что определение средней наработки до отказа по формуле (2.7), когда r
ч.
Если вместо Nо поставим количество отказавших объектов
r = 315, то получим
ч.