что такое коэффициент охвата в метрологии
Неопределенность измерений в метрологии
Неопределенность измерений и ее отражение в описании результатов
Понятие «неопределенность», как наименование количественно оцениваемого свойства измерения, является относительно новым в метрологии. Термин «неопределенность» введен «Руководством по предоставлению неопределенности измерений» (далее «Руководство»), поскольку «погрешность» — идеализированное понятие, и не может быть известна точно.
Неопределенность (измерения) — это параметр, связанный с результатом измерения, характеризующий дисперсию значений, которые могли быть обоснованно приписаны измеряемой величине.
Руководство устанавливает общие правила оценивания и выражения неопределенности измерения, которые следует соблюдать при любых уровнях точности в широком спектре измерений, включая:
К оцениванию неопределенности следует приступать только после исключения результатов с грубыми погрешностями и исправления результатов измерений (исключения систематических составляющих погрешностей). Такой подход позволяет обоснованно применять математический аппарат теории вероятностей и математической статистики к «исправленным результатам измерений.
Неопределенность измерения в некоторых информационных источниках трактуется как мера возможной погрешности оцененного значения измеряемой величины, либо как оценка, характеризующая диапазон значений, в пределах которого находится истинное значение измеряемой величины. Под неопределенностью измерений фактически подразумевают то, что результат измерений фиксируется интервалом значений, а не конкретной точкой на числовой оси физической величины, при этом координата истинного значения остается неизвестной (неопределенной). В более широком смысле можно говорить также и о неопределенности «закона распределения» результатов многократных наблюдений при измерении конкретной физической величины. Графическое отображение неопределенности представлено на рис. 2.8.
На рисунке отражены качественная оценка неопределенности (нормальное распределение), а также ее количественные оценки (расширенная неопределенность при выбранной доверительной вероятности
).
В руководстве используются следующие термины и определения:
Стандартная неопределенность — неопределенность результата измерения, выраженная как стандартное отклонение.
Оценка (неопределенности) по типу А — метод оценивания неопределенности путем статистического анализа рядов наблюдений.
Оценка (неопределенности) по типу В — метод оценивания неопределенности иным способом, чем статистический анализ рядов наблюдений.
Суммарная стандартная неопределенность — стандартная неопределенность результата измерения, когда результат получают из значений ряда других величин, равная положительному квадратному корню суммы членов, причем члены являются дисперсиями или ковариациями этих других величин, взвешенными в соответствии с тем, как результат измерения изменяется в зависимости от изменения этих величин.
Расширенная неопределенность — величина, определяющая интервал вокруг результата измерения, в пределах которого можно ожидать, находится большая часть распределения значений, которые с достаточным основанием могли быть приписаны измеряемой величине.
Коэффициент охвата — числовой коэффициент, используемый как множитель суммарной стандартной неопределенности для получения расширенной неопределенности. При нормальном распределении обычно применяют значения коэффициента охвата , называемого также «коэффициент покрытия» в диапазоне от 2 до 3.
Установление связи между выбранным уровнем доверия и интервалом, характеризующим расширенную неопределенность, требует явных и неявных предположений относительно закона распределения вероятностей.
Классификация методов оценивания неопределенности на тип А и тип В представляет два различных способа получения оценки составляющих неопределенности. Оба типа основаны на вероятностном оценивании распределений случайных величин, а составляющие неопределенности при любом типе оценивания количественно представляют как оценки дисперсией или стандартных отклонений. Различия двух типов оценивания заключаются в методе получении оценки: прямое получение оценки путем статистического анализа рядов наблюдений (оценивание неопределенности по типу А) или получение оценки без непосредственного статистического анализа рядов наблюдений (оценивание неопределенности по типу В). Стандартную неопределенность при оценивании по типу В получают из предполагаемой функции плотности вероятностей, причем используют готовые оценки, полученные в ходе разнообразных метрологических мероприятий.
Наиболее распространенным способом формализации неполного знания о распределении величины является постулирование равновероятного распределения возможных значений этой величины в указанных границах.
Расширенную неопределенность получают умножением суммарной стандартной неопределенности
, на коэффициент охвата
. Фактически
представляет собой доверительный интервал, который с выбранной вероятностью накрывает истинное значение измеряемой величины. Коэффициент охвата
зависит от вида приписанного распределения и выбранной доверительной вероятности.
По определению суммарная стандартная неопределенность измерения, представляет собой оценку среднего квадратического отклонения результата косвенных измерений, поскольку результат измерения получают из значений ряда других величин. Суммарную стандартную неопределенность при этом рассчитывают как значение квадратного корня из суммы дисперсий (или ковариаций) этих величин с учетом весовых коэффициентов.
Фактически понятие «суммарная стандартная неопределенность» следует рассматривать в двух вариантах:
Значения составляющих, входящих в суммарную неопределенность, могут быть получены путем оценивания как по типу А, так и по типу В, главное требование — под корнем эти составляющие должны быть представлены оценками соответствующих дисперсий.
Вычисление стандартной неопределенности по типу А
Исходными данными для вычисления являются результаты многократных измерений:
где — число измерений
-й входной величины.
Стандартную неопределенность единичного измерения -й входной величины вычисляют по формуле:
где — среднее арифметическое результатов измерений
-й входной величины.
Стандартную неопределенность измерений -й входной величины, при которых результат определяют как среднее арифметическое, вычисляют по формуле:
Вычисление стандартной неопределенности по типу В
Исходными данными для вычисления является следующая информация:
-данные предшествовавших измерений величин, входящих в уравнение измерения; сведения о виде распределения вероятностей;
Неопределенности этих данных обычно представляют в виде границ отклонения значений величины от ее точечной оценки. При неполном знании о неопределенности некоторой -й входной величины обычно постулируют равновероятное распределение возможных значений этой величины в указанных (нижней и верхней) границах
. При этом стандартную неопределенность, вычисляемую по типу В, определяют по формуле:
а для симметричных границ
В случае других законов распределения формулы для вычисления неопределенности по типу В будут иными.
Для вычисления коэффициента корреляции используют согласованные пары результатов измерений где
— число согласованных результатов измерений:
где — результаты прямых измерений,
— средние значения результатов прямых измерений.
Вычисление суммарной стандартной неопределенности
В случае некоррелированных результатов измерений оценку дисперсии суммарной стандартной неопределенности вычисляют по формуле:
где — весовой коэффициент
-ой стандартной неопределенности,
—
-ая стандартная неопределенность.
В случае коррелированных результатов измерений оценку дисперсии суммарной стандартной неопределенности вычисляют по формуле:
где — коэффициент корреляции;
— стандартная неопределенность входной величины
, вычисленная по типу А или по типу В.
Выбор коэффициента охвата при вычислении расширенной неопределенности
В общем случае коэффициент охвата выбирают в соответствии с формулой:
где — квантиль распределения Стьюдента с эффективным числом степеней свободы
и доверительной вероятностью (уровнем доверия)
.
Число степеней свободы определяют по формуле:
где — число степеней свободы при определении оценки
-й входной величины:
— для вычисления неопределенностей по типу A;
— для вычисления неопределенностей по типу В.
Во многих практических случаях при вычислении неопределенностей измерений делают предположение о нормальном законе распределения возможных значений измеряемой величины и полагают:
При допущении распределения данных по закону равной вероятности полагают:
При представлении результатов измерений Руководство рекомендует приводить достаточное количество информации для возможности проанализировать или повторить весь процесс получения результата измерений и вычисления неопределенностей измерений, а именно:
Эта лекция взята со страницы лекций по нормированию точности:
Возможно эти страницы вам помогут:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Неопределенность измерений в метрологии
Определения погрешности и неопределенности измерений.
История возникновения термина «неопределенность измерений».
Термины используемые при расчете неопределенности.
Соотношение терминов теории неопределенности с терминами классической теории точности (в скобках):
Подробно о типах определённости и их расчётах рассказано в статье «Понятие и типы неопределенностей. ГОСТ 34100.3-2017»
Оценка результата измерений в терминах «погрешность измерений».
Рис.1. Диапазон возможных значений при погрешности
Оценка результата измерений в терминах «неопределенность измерений».
Рис.2. Диапазон возможных значений при неопределенности
Рис.3. Интервал значений при расчете неопределенности
Расчёт неопределённости с применением приборов.
В следующей статье «Расчет неопределенности результатов измерений | пример для люксметра «еЛайт»» мы рассмотрим практический пример как вручную вычислить неопределенность измерений освещенности, используя люксметр-пульсметр-яркомер еЛайт02. В некоторых современных приборах такой расчёт неопределённости уже осуществляется автоматически, как, например, в самом доступном люксметре с поверкой еЛайт-мини.
Рис.4. Профессиональный измеритель освещённости еЛайт01 с функцией автоматического расчёта неопределённости измерений.
Рис.5. Термоанемометр-гигрометр-барометр ЭкоТерма Максима 01 с функцией автоматического расчёта неопределённости измерений.
Выводы.
Отличие понятия «погрешности» от «неопределенности»:
Понравился материал? Поделитесь им в соцсетях:
Что такое коэффициент охвата в метрологии
ГОСТ Р 54500.3-2011/Руководство ИСО/МЭК 98-3:2008
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Руководство по выражению неопределенности измерения
Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement
____________________________________________________________________
Текст Сравнения ГОСТ 34100.3-2017/ISO/IEC Guide 98-3:2008 с
ГОСТ Р 54500.3-2011/Руководство ИСО/МЭК 98-3:2008 см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 2012-10-01
Сведения о стандарте
1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева» (ФГУП «ВНИИМ») и Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 ноября 2011 г. N 555-ст
Аннотация к Руководству ИСО/МЭК 98-3:2008
Руководство устанавливает общие правила оценивания и представления неопределенности измерения применительно к широкому спектру измерений. Основой Руководства является Рекомендация 1 (CI-1981) Международного комитета мер и весов (МКМВ) и Рекомендация INC-1 (1980) Рабочей группы по неопределенности. Рабочая группа по неопределенности была организована Международным бюро мер и весов (МБМВ) по поручению МКМВ. Рекомендация, разработанная Рабочей группой, является единственной рекомендацией в отношении выражения неопределенности измерения, одобренной межправительственной организацией.
Руководство разработано объединенной рабочей группой экспертов, назначенных МБМВ, ИСО, МЭК и МОЗМ.
Следующие семь организаций* поддержали разработку Руководства, которое публикуется от их имени:
* Примечание к изданию 2008 г.: В 2005 г. к указанным семи международным организациям присоединилось Международное сотрудничество по аккредитации лабораторий (ИЛАК).
— Международное бюро мер и весов (МБМВ);
— Международная электротехническая комиссия (МЭК);
— Международная федерация клинической химии (МФКХ)*;
* Примечание к изданию 2008 г.: В 1995 г. наименования трех международных организаций были изменены. Теперь эти организации имеют следующие наименования: Международная федерация клинической химии и лабораторной медицины (МФКХ); Международная организация по теоретической и прикладной химии (ИЮПАК); Международная организация по теоретической и прикладной физике (ИЮПАП).
— Международная организация по стандартизации (ИСО);
— Международный союз теоретической и прикладной химии (ИЮПАК)*;
— Международный союз теоретической и прикладной физики (ИЮПАП)*;
* Примечание к изданию 2008 г.: В 1995 г. наименования трех международных организаций были изменены. Теперь эти организации имеют следующие наименования: Международная федерация клинической химии и лабораторной медицины (МФКХ); Международная организация по теоретической и прикладной химии (ИЮПАК); Международная организация по теоретической и прикладной физике (ИЮПАП).
— Международная организация законодательной метрологии (МОЗМ).
Пользователей Руководства приглашают присылать свои замечания и предложения в любую из семи указанных международных организаций, чьи адреса указаны на обратной странице обложки*.
* Примечание к изданию 2008 г.: В настоящее время ссылка на адреса восьми международных организаций, поддержавших разработку Руководства, приведены на сайте Объединенного комитета по разработке руководств в области метрологии (JCGM) http://www.bipm.org/en/committees/jc/jcgm.
Предисловие к Руководству ИСО/МЭК 98-3:2008
В 1978 г., признавая отсутствие международного единства по вопросу выражения неопределенности измерения, наиболее авторитетная международная организация в области метрологии МКМВ обратилась в МБМВ с просьбой рассмотреть эту проблему совместно с национальными метрологическими лабораториями и подготовить соответствующую рекомендацию.
МБМВ подготовило подробную анкету и разослало ее в 32 национальные метрологические лаборатории, заинтересованные в разрешении данной проблемы, а также, для сведения, в пять международных организаций. К началу 1979 г. были получены ответы из 21 лаборатории [1]. Почти в каждом ответе подчеркивалась важность установления признанной на международном уровне процедуры выражения неопределенности измерения и объединения частных составляющих неопределенности в одну общую неопределенность. Однако в том, какой должна быть эта процедура, единства достигнуто не было. Для решения этого вопроса МБМВ организовало встречу, на которой присутствовали представители 11 национальных метрологических лабораторий. Эта Рабочая группа по неопределенности разработала Рекомендацию INC-1 (1980) «Выражение экспериментальных неопределенностей» [2]. Рекомендация была одобрена МКМВ в 1981 г. [3] и подтверждена в 1986 г. [4].
Задачу разработки подробного Руководства, основанного на подготовленной Рабочей группой Рекомендации (которая является, скорее, краткой формулировкой общих принципов, чем детализированной инструкцией), МКМВ передал Международной организации по стандартизации ИСО, которая могла в большей степени учесть потребности, возникающие из широких интересов промышленности и торговли.
Ответственность за решение указанной задачи была возложена на Техническую консультативную группу по метрологии (ИСО/ТАГ 4), целью которой, в том числе, является координация разработки руководств в области измерений, представляющих общий интерес для ИСО и других шести организаций, которые вместе с ИСО участвуют в работе ИСО/ТАГ 4: МЭК (партнера ИСО в области международной стандартизации); МКМВ и МОЗМ (двух всемирно признанных международных организаций в области метрологии); ИЮПАК и ИЮПАП (двух международных союзов в области физики и химии) и МФКХ.
ИСО/ТАГ 4, в свою очередь, учредила Рабочую группу 3 (ИСО/ТАГ 4/РГ 3), состоящую из экспертов, предложенных МБМВ, МЭК, ИСО и МОЗМ и утвержденных председателем ИСО/ТАГ 4. Перед ней была поставлена следующая задача: разработать руководящий документ, базирующийся на Рекомендации Рабочей группы по неопределенности МБМВ, в котором были бы сформулированы правила выражения неопределенности измерения и который использовался бы организациями и службами в области стандартизации, калибровки, аккредитации лабораторий, а также в метрологии.
Целью данного руководства должно было стать:
— обеспечение предоставления полной информации о том, как получены утверждения о неопределенности измерений;
— создание основы для международного сопоставления результатов измерений.
Настоящее первое издание Руководства ИСО/МЭК 98-3 отменяет и заменяет «Руководство по выражению неопределенности измерений», опубликованное совместно МБМВ, МЭК, МФКХ, ИСО, ИЮПАК, ИЮПАП и МОЗМ в 1993 г. и переизданное с исправлениями в 1995 г.*
* Примечание к изданию 2008 г.: При разработке издания 2008 г. в версию 1995 г. были внесены необходимые исправления, подготовленные JCGM/WG 1. Эти исправления затрагивают пункты 4.2.2, 4.2.4, 5.1.2, В.2.17, С.3.2, С.3.4, Е.4.3, Н.4.3, Н.5.2.5 и Н.6.2.
0.1 Сообщению о результате измерения физической величины должна сопутствовать некоторая количественная характеристика качества результата измерений, чтобы при использовании данного результата возможно было оценить его достоверность. Без такой информации результаты измерений нельзя сопоставить ни друг с другом, ни со значениями, указанными в технических условиях или стандарте. Это требует наличия простой в применении, понятной и общепризнанной процедуры, позволяющей характеризовать качество результата измерений, т.е. оценивать и выражать его неопределенность.
0.2 Понятие неопределенности как количественной характеристики является относительно новым в истории измерений, хотя понятия погрешности и анализа погрешностей давно используются в метрологической практике. В настоящее время общепризнанно, что после того, как найдены оценки всех ожидаемых составляющих погрешности и в результат измерения внесены соответствующие поправки, все еще остается некоторая неопределенность в отношении полученного результата, т.е. сомнение в том, насколько точно он соответствует значению измеряемой величины.
0.3 Подобно тому, как Международная система единиц (СИ), будучи системой практически универсального использования, привнесла согласованность во все научные и технические измерения, международное единство в оценивании и выражении неопределенности измерения обеспечило бы должное понимание и правильное использование широкого спектра результатов измерений в науке, технике, торговле, промышленности и законодательстве. В условиях международного рынка чрезвычайно важно, чтобы метод оценивания и выражения неопределенности был единым во всем мире, а результаты измерений, проведенных в разных странах, были легко сопоставимы между собой.
0.4 Идеальный метод оценивания и выражения неопределенности результата измерения должен быть
— универсальным, т.е. применимым ко всем видам измерений и всем видам входной информации, используемой в измерениях.
Величина, непосредственно используемая для выражения неопределенности, должна быть:
— внутренне согласованной, т.е. непосредственно выводиться из составляющих ее компонентов и не зависеть от того, как эти компоненты группируются и как они делятся на подкомпоненты;
— переносимой, т.е. допускающей непосредственное использование неопределенности, полученной для одного результата измерения, в качестве составляющей неопределенности другого измерения, в котором используется первый результат.
Кроме того, зачастую в промышленности и торговле, а также в здравоохранении и в сфере обеспечения безопасности результат измерения должен быть представлен с указанием охватывающего его интервала, в пределах которого, как можно ожидать, будет находиться большая часть распределения значений, которые обоснованно могут быть приписаны измеряемой величине. Таким образом, идеальный метод оценивания и выражения неопределенности измерения должен предоставлять возможность указать такой интервал, в частности, который был бы действительно близок к доверительному интервалу с заданным уровнем доверия.
0.5 Подход, на котором базируется настоящий руководящий документ, изложен в Рекомендации INC-1 (1980) [2] Рабочей группы по неопределенности, организованной МБМВ по инициативе МКМВ (см. предисловие). Данный подход, обоснованность которого обсуждается в приложении Е, соответствует всем вышеуказанным требованиям. Этого нельзя сказать о большинстве других используемых в настоящее время методах. Рекомендация INC-1 (1980) была одобрена и вновь подтверждена МКМВ его собственными Рекомендацией 1 (CI-1981) [3] и Рекомендацией 1 (CI-1986) [4], перевод которых приведен в приложении А (разделы А.2 и А.3 соответственно). Поскольку основой для настоящего Руководства остается Рекомендация INC-1 (1980), ее перевод также приведен в приложении А (раздел А.1)*.
* В оригинале Рекомендация INC-1 (1980) приведена дважды: на французском языке в А.1 и на английском языке в 0.7. Во избежание дублирования подраздел 0.7 Введения из настоящего стандарта исключен.
1 Область применения
— обеспечения требуемого качества продукции и контроля качества на производстве;
— проверки выполнения требований законов и нормативных документов;
— проведения фундаментальных и прикладных исследований и разработок в науке и технике;
— калибровки эталонов и приборов, а также проведения испытаний в соответствии с национальной схемой обеспечения единства измерений (для обеспечения прослеживаемости к национальным эталонам);
— разработки, поддержания и сличения международных и национальных эталонов единиц физических величин, включая стандартные образцы веществ и материалов.
1.2 Настоящее Руководство, в первую очередь, рассматривает выражение неопределенности измерения хорошо определенной физической величины, характеризуемой единственным значением. Если предмет изучения нельзя охарактеризовать единственным значением, а лишь некоторым распределением значений или если он характеризуется зависимостью от одного или более параметров (например, представляет собой временной процесс), то измеряемыми величинами, требуемыми для его описания, являются параметры распределения или зависимости.
1.3 Настоящее Руководство распространяется также на оценивание и выражение неопределенности результатов теоретических расчетов и испытаний, методов измерений, анализа сложных систем. Поскольку в таких приложениях результат оценивания величины и его неопределенность могут быть умозрительными и полностью основанными на гипотетических данных, то термин «результат измерений», используемый в настоящем Руководстве, следует толковать в этом более широком контексте.
1.4 Настоящее Руководство устанавливает общие правила оценивания и выражения неопределенности измерения и не содержит подробных указаний для конкретных измерений. В нем не рассматривается также вопрос, каким образом полученная оценка неопределенности результата конкретного измерения может быть использована в дальнейшем, например, для вывода о сопоставимости данного результата с результатами аналогичных измерений, для установления допусков в технологическом процессе, для заключения о соблюдении или несоблюдении установленных требований безопасности. Подобные вопросы, связанные со специфическими областями измерений или с конкретным использованием количественных оценок неопределенности, могут рассматриваться в других стандартах, основанных на настоящем Руководстве*. Такие стандарты могут представлять собой упрощенные версии настоящего Руководства, но они должны содержать в себе все необходимые сведения, исходя из требуемого уровня точности и сложности измерений, на которые они распространяются.