что такое коэффициент объемного расширения

Коэффициент объёмного расширения

Коэффициент теплового расширения — величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают:

Содержание

Коэффициент объёмного теплового расширения

Коэффициент линейного теплового расширения

Коэффициент линейного теплового расширения показывает относительное изменение длины тела при нагревании на температуру ΔT:

что такое коэффициент объемного расширения. Смотреть фото что такое коэффициент объемного расширения. Смотреть картинку что такое коэффициент объемного расширения. Картинка про что такое коэффициент объемного расширения. Фото что такое коэффициент объемного расширения что такое коэффициент объемного расширения. Смотреть фото что такое коэффициент объемного расширения. Смотреть картинку что такое коэффициент объемного расширения. Картинка про что такое коэффициент объемного расширения. Фото что такое коэффициент объемного расширения— относительное изменение линейного размера тела при нагревании его на dT градусов при постоянном давлении,

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений: αx, αy, αz. Для изотропных тел αx = αy = αz и αV = 3αL;.

См. также

Ссылки

Полезное

Смотреть что такое «Коэффициент объёмного расширения» в других словарях:

коэффициент объёмного расширения — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN coefficient of cubical expansion … Справочник технического переводчика

коэффициент объёмного расширения — tūrinio plėtimosi koeficientas statusas T sritis fizika atitikmenys: angl. volume expansion coefficient vok. Raumausdehnungskoeffizient, m rus. коэффициент объёмного расширения, m pranc. coefficient de dilatation cubique, m; coefficient de… … Fizikos terminų žodynas

Коэффициент теплового расширения — Размерность Θ−1 Единицы измерения СИ К−1 … Википедия

Коэффициент линейного расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия

Коэффициент термического расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия

Объёмный фактор — Объёмный коэффициент (Formation Volume Factor, коэффициент объёмного расширения) газа/нефти/воды отношение объёма газа/нефти/воды в пластовых условиях (в м³) к объёму газа/нефти/воды, приведённого к атмосферному давлению и температуре 20 °C … Википедия

Тепловое расширение — изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом Т. р.) Т2 > T1, V исходный объём тела (разность температур T2 T1… … Большая советская энциклопедия

Газы (агрегатное состояние вещества) — Газы (французское gaz; название предложено голланским учёным Я. Б. Гельмонтом), агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь предоставленный им… … Большая советская энциклопедия

Газы — I Газы (французское gaz; название предложено голланским учёным Я. Б. Гельмонтом агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь… … Большая советская энциклопедия

Моделирование физическое — вид моделирования, который состоит в замене изучения некоторого объекта или явления экспериментальным исследованием его модели (См. Модель), имеющей ту же физическую природу. В науке любой эксперимент, производимый для выявления… … Большая советская энциклопедия

Источник

Справка по коэффициенту теплового расширения. Виды коэффициентов теплового расширения. Справочные данные по коэффициенту теплового расширения.

Общие сведения.

Коэффициент теплового расширения широко применяется в инженерных расчетах.

Для обозначения коэффициента теплового расширения обычно используют греческие буквы: β (для объемного расширения) и α (для линейного расширения). На сайте в расчетах применяется обозначение — bv и al соответственно.

Коэффициент теплового расширения зависит от температуры.

Виды коэффициентов теплового расширения.

Зависимость объёма тел от температуры

Частицы твёрдого тела занимают друг относительно друга определённые положения, но не остаются в покое, а совершают колебания. При нагревании тела увеличивается средняя скорость движения частиц. Средние расстояния между частицами при этом увеличиваются, поэтому увеличиваются линейные размеры тела, а следовательно, увеличивается и объём тела.

При охлаждении линейные размеры тела сокращаются, и объём его уменьшается.

При нагревании, как известно, тела расширяются, а при охлаждении сжимаются. Качественная сторона этих явлений была уже рассмотрена в начальном курсе физики.

Наша задача теперь — ознакомиться с количественными законами этих явлений.

Линейное расширение твёрдых тел

Твёрдое тело при данной температуре имеет определённую форму и определённые линейные размеры. Увеличение линейных размеров тела при нагревании называется тепловым линейным расширением.

Измерения показывают, что одно и то же тело расширяется при различных температурах по-разному: при высоких температурах обычно сильнее, чем при низких. Но это различие в расширении столь невелико, что при сравнительно небольших изменениях температуры им можно пренебречь и считать, что изменение размеров тела пропорционально изменению температуры.

В начальном курсе физики было установлено, что различные вещества по-разному расширяются при нагревании: одни сильнее, другие слабее; железо, например, расширяется сильнее стекла и слабее меди.

Чтобы количественно характеризовать это важное тепловое свойство тел, введена особая величина, называемая коэффициентом линейного расширения.

Пусть твёрдое тело при температуре 0°С имеет длину а при температуре t° его длина становится Значит, при изменении температуры на t° длина тела увеличивается на Предполагая, что увеличение длины при нагревании на каждый градус идёт равномерно, находим, что при нагревании на 1°С вся длина тела увеличилась на каждая единица длины на

Величина (греч. «бэта»), характеризующая тепловое расширение тела, называется коэффициентом линейного расширения.

Формула (1) показывает, что при t = 1°С и = 1 ед. длины величина равна т. е. коэффициент линейного расширения численно равен удлинению, которое получает при нагревании на 1°С стержень, имевший при 0°С длину, равную единице длины.

Из формулы (1) следует, что наименованием коэффициента является

Формулу (1) можно записать в следующем виде:

Отсюда легко определить длину тела при любой температуре, если известны его начальная длина и коэффициент линейного расширения.

Ниже в таблице приведены коэффициенты линейного расширения некоторых веществ, определённые на опыте.

что такое коэффициент объемного расширения. Смотреть фото что такое коэффициент объемного расширения. Смотреть картинку что такое коэффициент объемного расширения. Картинка про что такое коэффициент объемного расширения. Фото что такое коэффициент объемного расширения

Объёмное расширение твёрдых тел

При тепловом расширении твёрдого тела с увеличением линейных размеров тела увеличивается и его объём. Аналогично коэффициенту линейного расширения для характеристики объёмного расширения можно ввести коэффициент объёмного расширения. Опыт показывает, что так же, как и в случае линейного расширения, можно без большой ошибки принять, что приращение объёма тела пропорционально повышению температуры.

При V0 = 1 ед. объёма и t = 1°С величина а равна Vt— V0, т. е. коэффициент объёмного расширения численно равен приросту объёма тела при нагревании на 1°С, если при 0°С объём был равен единице объёма.

По формуле (2), зная объём тела при температуре 0°С, можно вычислить объём его при любой температуре t°:

Установим соотношение между коэффициентами объёмного и линейного расширения.

Допустим, что имеем кубик, ребро которого при 0° С равно 1 см. При нагревании на 1°С ребро станет равным см, а объём кубика увеличится на см3.

Можно написать следующее равенство:

В этой формуле величины и настолько малы, что ими можно пренебречь и написать:

Коэффициент объёмного расширения твёрдого тела равен утроенному коэффициенту линейного расширения.

Учёт теплового расширения в технике

Из таблицы на странице 124 видно, что коэффициенты расширения твёрдых тел очень малы. Однако самые незначительные, изменения размеров тел при изменении температуры вызывают появление огромных сил.

Опыт показывает, что даже для небольшою удлинения твёрдого тела требуются огромные внешние силы. Так, например, чтобы увеличить длину стального стержня сечением в 1 см2 приблизительно на 0,0005 его первоначальной длины, необходимо приложить силу в 1000 кГ. Но такой же величины расширение этого стержня получается при нагревании его на 50°С. Ясно поэтому, что, расширяясь при нагревании (или сжимаясь при охлаждении) на 50°С, стержень будет оказывать давление около 1000 на те тела, которые будут препятствовать его расширению (сжатию).

Огромные силы, возникающие при расширении и сжатии твёрдых тел, учитываются в технике. Так, например, один из концов моста не закрепляют неподвижно, а устанавливают на катках; железнодорожные рельсы не укладывают вплотную, а оставляют между ними просвет; паропроводы подвешивают на крюках, а между отдельными трубами устанавливают компенсаторы, изгибающиеся при удлинении труб паропровода. По этой же причине котёл паровоза закрепляется только на одном конце, другой же его конец может свободно перемещаться.

Огромное значение имеет расширение от нагревания при точных измерениях. В самом деле, если масштабная линейка или калибр, которыми проверяются размеры изготовленной части машины, значительно изменяют свою величину, то необходимой точности при измерении не получится. Для избежания грубых ошибок при измерении или контроле изготовленные изделия заблаговременно приносят в помещение, где производятся измерения, чтобы они успели принять температуру калибров. Самые калибры и измерительные инструменты делают из материала с очень малым коэффициентом расширения. Таким материалом, например, является особая железо-никелевая сталь — инвар, с коэффициентом расширения 0,0000015.

Рис. 132а. Схема устройства металлического термометра.

Как показывает таблица на странице 124, платина и стекло имеют одинаковый коэффициент расширения; поэтому можно вплавлять платину в стекло, причём после охлаждения не происходит ни ослабления связи обоих веществ, ни растрескивания стекла. В электрических лампочках в стекло вплавляется железо-никелевая проволока, имеющая такой же коэффициент расширения, как и стекло. Заслуживает внимания очень малый коэффициент расширения у кварцевого стекла. Такое стекло выдерживает, не лопаясь и не растрескиваясь, неравномерное нагревание или охлаждение. Так, например, в раскалённую докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается. Указанная особенность кварцевого стекла является следствием малости его коэффициента теплового расширения.

Единицы измерения.

Перевод единиц измерения коэффициента теплового расширения.

Калькулятор коэффициента линейного теплового расширения. Перевод единиц измерения коэффициента линейного теплового расширения (1/°С, 1/K и т.д.)
Введите коэффициент линейного теплового расширения (al)
Результат перевода единиц измерения коэффициента линейного теплового расширения (al)
Результаты работы калькулятора коэффициента линейного теплового расширения при переводе в другие единицы измерения коэффициента линейного теплового расширения:
Примеры результатов работы калькулятора коэффициента линейного теплового расширения:

/ 1 1/K = 1 1/гр.цельсия
//
29 1/гр.цельсия = 29 1/K
//
29 1/гр.цельсия = 29 1/K
//
1 1/K = 1 1/гр.цельсия
//
50 1/K = 50 1/гр.цельсия
//
14.6 1/гр.цельсия = 14.6 1/K
/

Поделится ссылкой на расчет:

Единицы измерения коэффициента теплового расширения.

Расширение, а не сокращение

Почему при нагревании материя расширяется? Все дело в форме типичного потенциала частичек. Если они расположены в твердых объектах и жидкостях, то постоянно ощущают наличие соседних элементов. В математике выражается как потенциальная кривая. На нижнем рисунке видно, что этот межчастичный потенциал выглядит как асимметрия. Отметьте, что на коротких дистанциях она становится более крутой. На диаграмме (b) видно, что с нагревом вещества средняя дистанция частичек увеличивается. Очень редко можно встретить материал, который при нагреве сожмется или сохранит форму. Эффект ограничивается по размеру и осуществляется только в определенных температурных диапазонах.

что такое коэффициент объемного расширения. Смотреть фото что такое коэффициент объемного расширения. Смотреть картинку что такое коэффициент объемного расширения. Картинка про что такое коэффициент объемного расширения. Фото что такое коэффициент объемного расширения

Типичный межчастичный потенциал в конденсированном веществе

Справочные материалы.

Коэффициент линейного расширения сталей (ГОСТ 14249-89 «Сосуды и аппараты. Нормы и методы расчета на прочность»).

Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей (Таблица)

что такое коэффициент объемного расширения. Смотреть фото что такое коэффициент объемного расширения. Смотреть картинку что такое коэффициент объемного расширения. Картинка про что такое коэффициент объемного расширения. Фото что такое коэффициент объемного расширения

В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).

Металл, сплавКоэффициента линейного расширения ɑ, 10-6°С-1
Алюминий2,4
Бронза13-21
Вольфрам (в интервале температур от 0 до 200 °С)4,5
Дуралюмин (при t = 20 °С)23
Золото14
Железо12
Инвар*1,5
Иридий6,5
Константан42339
Латунь17-19
Манганин18
Медь17
Нейзильбер18
Никель14
Нихром (от 20 до 100 °С)14
Олово26
Платина9,1
Платинит** (при t = 20 °С)41920
Платина-иридий*** (от 20 до 100 °С)8,8
Свинец29
Серебро20
Сталь углеродистая43009
Цинк32
Чугун (от 20 до 100 °С).41952
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов.** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.*** Из этого сплава изготовлены прототипы килограмма и метра.

Температурный коэффициент линейного расширения твердых веществ

В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура).

ВеществоКоэффициента линейного расширения ɑ, 10-6°С-1
Алмаз1,2
Бетон (при t = 20 °С)41913
Гранит (при t = 20 °С)8
Графит7,9
Древесина (при t = = 20 °С):
— вдоль волокон5,5-5,5
— поперек волокон34-60
Кварц плавленый (при * = 40 °С)0,4
Кирпич (при t = 20 °С)41885
Лед (в интервале температур от —20 до 0 °С)51
Парафин (от 16 до 48 °С)70*
Дуб (от 2 до 34 °С):
— вдоль волокон4,9
— поперек волокон54,4
Сосна (от 2 до 34 °С):
— вдоль волокон5,4
— поперек волокон34
Стекло лабораторное41885
Стекло оконное (от 20 до 200 °С)10
Фарфор2,5-4,0
Шифер (при t = 20 °С)10
* коэффициент объемного расширения парафина.

Температурный коэффициент обьемного расширения жидкостей

В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре 20 °С (если не указана иная).

Сталь 20 — характеристики, применение, ГОСТ

что такое коэффициент объемного расширения. Смотреть фото что такое коэффициент объемного расширения. Смотреть картинку что такое коэффициент объемного расширения. Картинка про что такое коэффициент объемного расширения. Фото что такое коэффициент объемного расширения

Одна из самых востребованных сталей в производстве — сталь 20. Список ее использования займет не одну страницу. Строительство и машиностроение, гидравлика и станкостроение, металлоконструкции и тракторостроение. Все эти отрасли в той или иной степени используют её. Какие характеристики стали 20 не позволяют терять ей своей актуальности по сей день?

§ 9.2. Тепловое линейное расширение

Глава 9. Тепловое расширение твердых и жидких тел

Применительно к твердым телам, форма которых при изменении температуры (при равномерном нагревании или охлаждении) не меняется, различают изменение линейных размеров (длины, диаметра и т. п.) — линейное расширение и изменение объема — объемное расширение, У жидкостей при нагревании форма может меняться (например, в термометре ртуть входит в капилляр). Поэтому в случае жидкостей имеет смысл говорить только об объемном расширении.

Опыт показывает, что при небольших изменениях температуры изменение линейных размеров твердого тела прямо пропорционально изменению температуры (рис. 9.3). Так как удлинение при нагревании (или укорочение при охлаждении) зависит также от первоначальной длины тела, удобнее рассматривать не само удлинение тела, а относительное удлинение: отношение увеличения длины ωl = l — l0 к первоначальной длине l0. Относительное удлинение пропорционально изменению температуры ωt = t — t0:

Коэффициент пропорциональности α1 называют температурным коэффициентом линейного расширения. Он показывает, на какую долю своего первоначального значения изменяются линейные размеры тела при нагревании его на 1 К. Коэффициент линейного расширения зависит от природы вещества, а также от температуры. Однако, если рассматривать изменения температуры в не слишком широких пределах, зависимостью α1 от температуры можно пренебречь и считать температурный коэффициент линейного расширения величиной постоянной для данного вещества. Для большинства веществ этот коэффициент мал, его значения составляют 10-5—10-6К-1.

Линейные размеры тела, как вытекает из формулы (9.2.1), зависят от изменения температуры следующим образом:

В формулах (9.2.1) и (9.2.2) обычно начальное значение температуры полагают равным нулю (t0 = 0 °С) и соответственно t0 считают длиной тела при этой температуре. На практике же начальная температура тела далеко не всегда бывает равна 0 °С. Тогда расчет длины тела при любой температуре можно выполнить так. Пусть при температуре t1 длина тела равна l1, а при температуре t2 она равна l2. Тогда, считая начальную температуру t0 = 0 °С, имеем

l1 = l0(1 + α1t1), l2 = l0(1 + α1t2).

Однако, учитывая, что значение α1 очень мало, формулу (9.2.3) можно упростить. Умножив числитель и знаменатель на 1 — α1t1, получим

Ввиду малости коэффициента α1 члены, содержащие малы по сравнению с членом, в который входит α1 в первой степени (точнее, ). Поэтому их можно отброс ить. В результате формула для вычисления длины l2 оказывается более простой и достаточно точной для инженерной практики:

Решая задачи с учетом теплового линейного расширения тел, необходимо иметь в виду, что при изменении температуры меняется не только длина, но и все другие линейные размеры тела. Так, у круглого стержня при нагревании увеличивается диаметр, и притом во столько раз, во сколько увеличивается длина стержня. У пластинки в одно и то же число раз увеличиваются длина, ширина и толщина. Если начертить на пластинке какую-нибудь линию, то длина этой линии при нагревании увеличится в такое же число раз. У окружности увеличатся ее длина и диаметр.

При нагревании пластинки, имеющей круглое отверстие, диаметр отверстия тоже увеличится. Дело в том, что при равномерном нагревании в теле не возникают силы упругости. Поэтому расширение происходит так, как если бы пластинка была сплошной. Точно так же увеличивается при нагревании диаметр гайки, размеры раковины в толще металлической отливки и т. д.

В справедливости сказанного можно убедиться на опыте с металлическим шаром, о котором уже шла речь в § 9.1. Шар застревает в кольце, если его нагреть, и проходит с большим зазором, если нагреть кольцо. Наоборот, при охлаждении кольца шар застревает, а охлаждение шара увеличивает зазор между ним и кольцом.

Источник

Коэффициент термического расширения

Коэффициент теплового расширения — величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают:

Содержание

Коэффициент объёмного теплового расширения

Коэффициент линейного теплового расширения

Коэффициент линейного теплового расширения показывает относительное изменение длины тела при нагревании на температуру ΔT:

что такое коэффициент объемного расширения. Смотреть фото что такое коэффициент объемного расширения. Смотреть картинку что такое коэффициент объемного расширения. Картинка про что такое коэффициент объемного расширения. Фото что такое коэффициент объемного расширения что такое коэффициент объемного расширения. Смотреть фото что такое коэффициент объемного расширения. Смотреть картинку что такое коэффициент объемного расширения. Картинка про что такое коэффициент объемного расширения. Фото что такое коэффициент объемного расширения— относительное изменение линейного размера тела при нагревании его на dT градусов при постоянном давлении,

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений: αx, αy, αz. Для изотропных тел αx = αy = αz и αV = 3αL;.

См. также

Ссылки

Полезное

Смотреть что такое «Коэффициент термического расширения» в других словарях:

коэффициент термического расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coefficient of thermal expansionCTE … Справочник технического переводчика

Сотовый поликарбонат — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/7 сентября 2012. Пока процесс обсуждения не завершён, статью можн … Википедия

ситаллы — стеклокристаллические материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределённых в стекловидной фазе. Высокая прочность, твёрдость, химическая и термическая стойкость, низкий температурный коэффициент расширения.… … Энциклопедический словарь

Пластические массы — пластмассы, пластики, материалы, содержащие в своём составе полимер (См. Полимеры), который в период формования изделий находится в вязкотекучем или высокоэластичном состоянии, а при эксплуатации в стеклообразном или кристаллическом… … Большая советская энциклопедия

Гей-Люссака законы — 1) закон теплового расширения газов: объём V данной массы идеального газа при постоянном давлении линейно возрастает с температурой: Vt = V0(1 + αt), где V0 и Vt соответственный первоначальный объём газа и при температуре t, α изобарный… … Энциклопедический словарь

Колебания кристаллической решётки — один из основных видов внутренних движений твёрдого тела, при котором составляющие его частицы (атомы или ионы) колеблются около положений равновесия узлов кристаллической решётки. К. к. р., например, в виде стоячих или бегущих звуковых… … Большая советская энциклопедия

Лазерная нанокерамика — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/17 октября 2012. Пока процесс обсужден … Википедия

Магниевые сплавы — сплавы на основе магния. Наиболее прочные, в том числе и наиболее жаропрочные, М. с. разработаны на основе систем магний металл с ограниченной растворимостью в твёрдом магнии. Вследствие высокой химической активности магния выбор металлов … Большая советская энциклопедия

глазурь — и; ж. [нем. Glasur от Glas стекло]. 1. Стекловидное покрытие на керамических изделиях, закреплённое обжигом. Покрывать кувшины глазурью. 2. Застывший сахарный сироп. Орехи в глазури. // Слой густого сладкого сиропа (из сахара, шоколада и т.п.), в … Энциклопедический словарь

Кирпич — У этого термина существуют и другие значения, см. Кирпич (значения) … Википедия

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *