что такое коэффициент детерминации простыми словами
Коэффициент детерминации
Опубликовано 28.05.2021 · Обновлено 28.05.2021
Что такое коэффициент детерминации?
Коэффициент детерминации – это статистическое измерение, которое исследует, как различия в одной переменной могут быть объяснены разницей во второй переменной при прогнозировании исхода данного события. Другими словами, этот коэффициент, более известный как R-квадрат (или R 2 ), оценивает, насколько сильна линейная связь между двумя переменными, и на него сильно полагаются исследователи при проведении анализа тенденций. Приведем пример его применения: этот коэффициент может включать в себя следующий вопрос: если женщина забеременеет в определенный день, какова вероятность того, что она родит ребенка в определенный день в будущем? В этом сценарии этот показатель предназначен для расчета корреляции между двумя взаимосвязанными событиями: зачатием и рождением.
Ключевые выводы
Понимание коэффициента детерминации
Коэффициент детерминации – это измерение, используемое для объяснения того, насколько изменчивость одного фактора может быть вызвана его взаимосвязью с другим связанным фактором. Эта корреляция, известная как « степень соответствия », представлена как значение от 0,0 до 1,0. Значение 1,0 указывает на идеальное соответствие и, таким образом, является высоконадежной моделью для будущих прогнозов, а значение 0,0 указывает на то, что расчет вообще не может точно смоделировать данные. Но значение 0,20, например, предполагает, что 20% зависимой переменной предсказывается независимой переменной, тогда как значение 0,50 предполагает, что 50% зависимой переменной предсказывается независимой переменной, и так далее.
График коэффициента детерминации
На графике степень соответствия измеряет расстояние между подогнанной линией и всеми точками данных, которые разбросаны по диаграмме. Плотный набор данных будет иметь линию регрессии, которая близка к точкам и будет иметь высокий уровень соответствия, что означает, что расстояние между линией и данными невелико. Хотя хорошее соответствие имеет R 2, близкое к 1,0, само по себе это число не может определить, смещены ли точки данных или прогнозы. Он также не сообщает аналитикам, является ли значение коэффициента детерминации изначально хорошим или плохим. Пользователь по своему усмотрению может оценить значение этой корреляции и то, как ее можно применить в контексте анализа будущих тенденций.
Коэффициент детерминации
Материал из MachineLearning.
Содержание
Определение и формула
Истинный коэффициент детерминации модели зависимости случайной величины от признаков определяется следующим образом:
где — условная (по признакам ) дисперсия зависимой переменной (дисперсия случайной ошибки модели).
В данном определении используются истинные параметры, характеризующие распределение случайных величин. Если использовать выборочную оценку значений соответствующих дисперсий, то получим формулу для выборочного коэффициента детерминации (который обычно и подразумевается под коэффициентом детерминации):
— сумма квадратов регрессионных остатков, — общая дисперсия, — соответственно, фактические и расчетные значения объясняемой переменной, — выборочное вреднее.
Необходимо подчеркнуть, что эта формула справедлива только для модели с константой, в общем случае необходимо использовать предыдущую формулу.
Интерпретация
Недостатки и альтернативные показатели
Основная проблема применения (выборочного) заключается в том, что его значение увеличивается (не уменьшается) от добавления в модель новых переменных, даже если эти переменные никакого отношения к объясняемой переменной не имеют. Поэтому сравнение моделей с разным количеством признаков с помощью коэффициента детерминации, вообще говоря, некорректно. Для этих целей можно использовать альтернативные показатели.
Скорректированный (adjusted)
Для того, чтобы была возможность сравнивать модели с разным числом признаков так, чтобы число регрессоров (признаков) не влияло на статистику обычно используется скорректированный коэффициент детерминации, в котором используются несмещённые оценки дисперсий:
который даёт штраф за дополнительно включённые признаки, где — количество наблюдений, а — количество параметров.
Данный показатель всегда меньше единицы, но теоретически может быть и меньше нуля (только при очень маленьком значении обычного коэффициента детерминации и большом количестве признаков), поэтому интерпретировать его как долю объясняемой дисперсии уже нельзя. Тем не менее, применение показателя в сравнении вполне обоснованно.
Обобщённый (extended)
Для случая регрессии без свободного члена:
При некоторой модификации также подходит для сравнения между собой регрессионных моделей, построенных с помощью: МНК, обобщённого метода наименьших квадратов (ОМНК), условного метода наименьших квадратов (УМНК), обобщённо-условного метода наименьших квадратов (ОУМНК).
Коэффициент детерминации: обзор
Опубликовано 10.06.2020 · Обновлено 11.06.2021
Что такое Коэффициент детерминации: обзор?
Коэффициент детерминации – это статистическое измерение, которое исследует, как различия в одной переменной могут быть объяснены разницей во второй переменной при прогнозировании результата данного события. Другими словами, этот коэффициент, который более известен как R-квадрат (или R 2 ), оценивает, насколько сильна линейная связь между двумя переменными, и на него в значительной степени полагаются исследователи при проведении анализа тенденций. Приведем пример его применения: этот коэффициент может включать следующий вопрос: если женщина забеременеет в определенный день, какова вероятность того, что она родит ребенка в определенный день в будущем? В этом сценарии этот показатель предназначен для расчета корреляции между двумя взаимосвязанными событиями: зачатием и рождением.
Ключевые моменты
Понимание коэффициента детерминации
Коэффициент детерминации – это измерение, используемое для объяснения того, насколько изменчивость одного фактора может быть вызвана его взаимосвязью с другим связанным фактором. Эта корреляция, известная как « степень соответствия », представлена как значение от 0,0 до 1,0. Значение 1,0 указывает на идеальное соответствие и, таким образом, является высоконадежной моделью для будущих прогнозов, а значение 0,0 указывает на то, что расчет вообще не может точно моделировать данные. Но значение 0,20, например, предполагает, что 20% зависимой переменной предсказывается независимой переменной, а значение 0,50 предполагает, что 50% зависимой переменной предсказывается независимой переменной, и так далее.
График коэффициента детерминации
На графике степень соответствия измеряет расстояние между подогнанной линией и всеми точками данных, разбросанными по диаграмме. Плотный набор данных будет иметь линию регрессии, которая близка к точкам и будет иметь высокий уровень соответствия, что означает, что расстояние между линией и данными небольшое. Хотя хорошее соответствие имеет R 2, близкое к 1,0, одно только это число не может определить, смещены ли точки данных или прогнозы. Он также не сообщает аналитикам, является ли значение коэффициента детерминации действительно хорошим или плохим. Пользователь по своему усмотрению может оценить значение этой корреляции и то, как ее можно применить в контексте анализа будущих тенденций.
Коэффициент детерминации что измеряет — формула
Суть состоит в следующем: этот показатель измеряет меру зависимости вариации одной величины от многих других. Он применяется для оценки качества линейной регрессии.
Формула расчета:
Детерминация, что это такое — определение
Коэффициент детерминации – часть дисперсии переменной (зависимой), которая обуславливается конкретной моделью зависимости. Так эта единица поможет вычесть долю необъясненной дисперсии в дисперсии зависимой переменной.
Данный показатель может принимать значения в пределах от 0 до 1. Чем его значение ближе к 1, тем связаннее результативный признак с исследуемыми факторами.
Т.к. преступление является результатом связи поведения и личностных качеств, этот показатель в деятельности заинтересованных органов рассчитывается для оценки качества преступного поведения, дает представление, что послужило вероятностной причиной преступления, что является мотивацией, какие этому были причины и условия.
Коэффициент детерминации, что показывает?
Этот коэффициент показывает варианты результативного признака от влияния факторного признака, он тесно связан с числом корреляции. Если связь отсутствует, то показатель равняется нулю, при ее наличии – единице.
Есть определение детерминизма как принципа устройства мира. Основой этого представления является взаимосвязанность всех явления. Это учение отрицает существование вещей вне взаимосвязи с миром.
Противоположностью является индетерминизм, он связан с отрицанием объективных отношений детерминации, или отрицанием причинности.
Генетический детерминизм – вера в то, что любой организм развивается под генетическим контролем.
Под детерминантами преступности в криминологии понимают социальные явления, действия которых могут вызвать преступность.
С помощью расчетов такого рода можно оценить вероятностное социокультурное влияние различных факторов на развитие личности и предположить, как себя будет вести человек, например, в деловом общении, объективно оценить, подходит ли он для государственного управления, или воинской службы.
Так же коэффициент определяет, правильно ли выбран индекс для подсчета коэффициентов бета и альфа. Если в % цифра ниже 75 к определенному индексу, значения бета и альфа к нему будут некорректны.
Индекс детерминации
Индекс детерминации – это квадрат инд. корреляции нелинейных связей. Этим значением характеризуют, на какое количество процентов моделью регрессии объясняются варианты показателей результативной переменной по отношению к своему среднему уровню.
Формула
Показатель можно рассчитать при помощи теоремы разложения сумм квадратов. Формула следующая:
Коэффициент детерминации скорректированный
Суть данного понятия состоит в следующем: этот индекс показывает долю дисперсии (общей) результативной переменной, объясняющей вариантами факторных переменных, включаемых в модель регрессии: (с увеличением, уменьшением).
Скорректированный показатель детерминации учитывает при оценке модели соотношение кол-ва наблюдений и кол-ва оцениваемых параметров модели.
Данный показатель применим для решения задач двух видов:
Эмпирический коэффициент детерминации
Характеристика. Эмпирический коэффициент объясняет долю в дисперсии, приходящуюся на дисперсию, которая обусловлена влиянием вариаций условия, которое было положенного в основу группировки.
Пример нахождения коэффициента детерминации
Коэффициент детерминации рассчитывается для оценки качества подбора уравнения регрессии. Для приемлемых моделей предполагается, что коэффициент детерминации должен быть хотя бы не меньше 50%. Модели с коэффициентом детерминации выше 80% можно признать достаточно хорошими. Значение коэффициента детерминации R 2 = 1 означает функциональную зависимость между переменными.
В случае нелинейной регрессии коэффициент детерминации рассчитывается через этот калькулятор. При множественной регрессии, коэффициент детемрминации можно найти через сервис Множественная регрессия
Уравнение имеет вид y = ax + b
1. Параметры уравнения регрессии.
Средние значения
Связь между признаком Y фактором X сильная и прямая.
Уравнение регрессии
Анализ точности определения оценок коэффициентов регрессии
S a = 3.3432
Доверительные интервалы для зависимой переменной
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-557.64;913.38)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика
Статистическая значимость коэффициента регрессии a подтверждается (6.95>1.812).
Статистическая значимость коэффициента регрессии b не подтверждается (0.96 Fkp, то коэффициент детерминации статистически значим