что такое класс полупроводникового прибора

Полупроводниковые материалы по своему удельному сопротивлению занимают промежуточное место между проводниками и диэлектриками.

Основными материалами для производства полупроводниковых приборов являются кремний (Si), карбид кремния (SiС), соединения галлия и индия.

Электропроводность полупроводников зависит от наличия примесей и внешних энергетических воздействий (температуры, излучения, давления и т.д.). Протекание тока обуславливают два типа носителей заряда – электроны и дырки. В зависимости от химического состава различают чистые и примесные полупроводники.

Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение.

Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов.

что такое класс полупроводникового прибора. Смотреть фото что такое класс полупроводникового прибора. Смотреть картинку что такое класс полупроводникового прибора. Картинка про что такое класс полупроводникового прибора. Фото что такое класс полупроводникового прибора

Классификация полупроводниковых приборов

На основе беспереходных полупроводников изготавливаются полупроводниковые резисторы :

Основным свойством p-n – перехода является односторонняя проводимость – ток протекает только в одну сторону. Условно-графическое обозначение (УГО) диода имеет форму стрелки, которая и указывает направление протекания тока через прибор.

Конструктивно диод состоит из p-n-перехода, заключенного в корпус (за исключением микромодульных бескорпусных) и двух выводов: от p-области – анод, от n-области – катод.

Т.е. диод – это полупроводниковый прибор, пропускающий ток только в одном направлении – от анода к катоду.

Зависимость тока через прибор от приложенного напряжения называется вольт-амперной характеристикой (ВАХ) прибора I=f(U). Односторонняя проводимость диода видна из его ВАХ (рис. 1).

что такое класс полупроводникового прибора. Смотреть фото что такое класс полупроводникового прибора. Смотреть картинку что такое класс полупроводникового прибора. Картинка про что такое класс полупроводникового прибора. Фото что такое класс полупроводникового прибора

Рисунок 1 – Вольт-амперная характеристика диода

В зависимости от назначения полупроводниковые диоды подразделяют на выпрямительные, универсальные, импульсные, стабилитроны и стабисторы, туннельные и обращенные диоды, светодиоды и фотодиоды.

Односторонняя проводимость определяет выпрямительные свойства диода. При прямом включении («+» на анод и «-» на катод) диод открыт и через него протекает достаточно большой прямой ток. В обратном включении («-» на анод и «+» на катод) диод заперт, но протекает малый обратный ток.

Выпрямительные диоды предназначены для преобразования переменного тока низкой частоты (обычно менее 50 кГц) в постоянны, т.е. для выпрямления. Их основными параметрами являются максимально допустимый прямой ток Iпр mах и максимально допустимое обратное напряжение Uo6p max. Данные параметры называют предельными – их превышение может частично или полностью вывести прибор из строя.

С целью увеличения этих параметров изготавливают диодные столбы, сборки, матрицы, представляющие собой последовательно-параллальное, мостовое или другие соединения p-n-переходов.

Универсальные диоды служат для выпрямления токов в широком диапазоне частот (до нескольких сотен мегагерц). Параметры этих диодов те же, что и у выпрямительных, только вводятся еще дополнительные: максимальная рабочая частота (мГц) и емкость диода (пФ).

Фотодиоды – обратный ток зависит от освещенности p-n-перехода.

Диоды Шоттки – основаны на переходе металл-полупроводник, за счет чего обладают значительно более высоким быстродействием, нежели обычные диоды.

что такое класс полупроводникового прибора. Смотреть фото что такое класс полупроводникового прибора. Смотреть картинку что такое класс полупроводникового прибора. Картинка про что такое класс полупроводникового прибора. Фото что такое класс полупроводникового прибора

Рисунок 2 – Условно-графическое обозначение диоды

Подробнее о диодах смотрите здесь:

С распространением цифровой электроники и импульсных схем основным свойством транзистора является его способность находиться в открытом и закрытом состояниях под действием управляющего сигнала.

Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.

— по принципу действия: полевые (униполярные), биполярные, комбинированные.

— по значению рассеиваемой мощности: малой, средней и большой.

— по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные.

— по значению рабочего напряжения: низко- и высоковольтные.

— по функциональному назначению: универсальные, усилительные, ключевые и др.

— по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.

В зависимости от выполняемых функций транзисторы могут работать в трех режимах:

Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.

В биполярных транзисторах ток обусловлен движением носителей заряда двух типов: электронов и дырок, что и определяет их название.

На схемах транзисторы допускается изображать, как в окружности, так и без неё (рис. 3). Стрелка указывает направление протекания тока в транзисторе.

что такое класс полупроводникового прибора. Смотреть фото что такое класс полупроводникового прибора. Смотреть картинку что такое класс полупроводникового прибора. Картинка про что такое класс полупроводникового прибора. Фото что такое класс полупроводникового прибора

Коллектор (К) – слой, принимающий носители заряда, поступающие от эмиттера;

что такое класс полупроводникового прибора. Смотреть фото что такое класс полупроводникового прибора. Смотреть картинку что такое класс полупроводникового прибора. Картинка про что такое класс полупроводникового прибора. Фото что такое класс полупроводникового прибора

Рисунок 4 – Схемы включения биполярного транзистора с общим эмиттером

К числу предельно допустимых параметров транзисторов в первую очередь относятся: максимально допустимая мощность, рассеиваемая на коллекторе Рк.mах, напряжение между коллектором и эмиттером Uкэ.mах, ток коллектора Iк.mах.

Для повышения предельных параметров выпускаются транзисторные сборки, которые могут насчитывать до нескольких сотен параллельно соединенных транзисторов, заключенных в один корпус.

В полевых транзисторах ток определяется движением носителей только одного знака (электронами или дырками). В отличии от биполярных, ток транзистора управляется электрическим полем, которое изменяет сечение проводящего канала.

Так как нет протекания тока во входной цепи, то и потребляемая мощность из этой цепи практически равна нулю, что несомненно является достоинством полевого транзистора.

Конструктивно транзистор состоит из проводящего канала n- или p-типа, на концах которого находятся области: исток, испускающий носители заряда и сток, принимающий носители. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.

Различают полевые транзисторы с затвором в виде p-n перехода и с изолированным затвором.

МДП-транзистор со встроенным каналом имеет начальную проводимость, которая при отсутствии входного сигнала (Uзи = 0) составляет примерно половине от максимальной. В МДП-транзисторы с индуцированным каналом при напряжении Uзи=0 выходной ток отсутствует, Iс =0, так как проводящего канала изначально нет.

МДП-транзисторы с индуцированным каналом называют также MOSFET транзисторы. Используются в основном в качестве ключевых элементов, например в импульсных источниках питания.

Ключевые элементы на МДП-транзисторах имеют ряд преимуществ: цепь сигнала гальванически не связана с источником управляющего воздействия, цепь управления не потребляет тока, обладают двухсторонней проводимостью. Полевые транзисторы, в отличие от биполярных, не боятся перегрева.

Подробнее о транзисторах смотрите здесь:

что такое класс полупроводникового прибора. Смотреть фото что такое класс полупроводникового прибора. Смотреть картинку что такое класс полупроводникового прибора. Картинка про что такое класс полупроводникового прибора. Фото что такое класс полупроводникового прибора

Кроме анода и катода, в конструкции тиристора предусмотрен третий вывод (электрод), который называется управляющим.

Тиристор предназначен для бесконтактной коммутации (включения и выключения) электрических цепей. Характеризуются высоким быстродействием и способностью коммутировать токи весьма значительной величины (до 1000 А). Постепенно вытесняются коммутационными транзисторами.

что такое класс полупроводникового прибора. Смотреть фото что такое класс полупроводникового прибора. Смотреть картинку что такое класс полупроводникового прибора. Картинка про что такое класс полупроводникового прибора. Фото что такое класс полупроводникового прибора

Для перевода тиристора в закрытое состояние необходимо подать напряжение обратное (- на анод, + на катод) или уменьшить прямой ток ниже значения, называемого током удержания Iудер.

Запираемый тиристор – может быть переведен в закрытое состояние подачей управляющего импульса обратной полярности.

Тиристоры применяются в качестве бесконтактных переключателей и управляемых выпрямителей в устройствах автоматики и преобразователях электрического тока. В цепях переменного и импульсных токов можно изменять время открытого состояния тиристора, а значит и время протекания тока через нагрузку. Это позволяет регулировать мощность, выделяемую в нагрузке.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Тема 2.1. Полупроводниковые приборы

Полупроводниковыми приборами называют электропреобразова-тельные приборы, принцип действия которых основан на явлениях, происходящих в самом полупроводнике или на границе контакта двух полупроводников с различными типами проводимости.

К полупроводниковым приборам можно отнести:

— стабилитроны или опорные диоды

— биполярные и полевые транзисторы и др.

Для изготовления реальных полупроводниковых приборов, как правило, используют германий, кремний и арсенид галлия.

Действие полупроводниковых приборов основано на электронных процессах, протекающих в кристаллах полупроводников. Основным полупроводниковым материалом в настоящее время является кристаллический кремний.

Кристаллы кремния в обычных условиях являются диэлектриками. Однако, если в них ввести небольшое количество пятивалентных элементов (сурьма, мышьяк), в их кристаллической решетке образуются свободные электроны и кристаллы становятся проводниками. Такая проводимость кристаллов называется электронной, или отрицательной, или негативной (negative), или проводимостью n-типа.

Введение в кристалл кремния трехвалентных примесей (индий, бор) приводит к тому, что в кристалле возникает дефицит электронов — так называемые дырки, которые также могут переносить электрические заряды. Такая проводимость называется дырочной, или положительной (positive), или проводимостью р-типа.

Полупроводниковые приборы подразделяются по своей структуре на дискретные и интегральные. К дискретным полупроводниковым приборам относятся диоды, транзисторы, фотоэлементы, а также полупроводниковые приборы, управляемые внешними факторами, — фоторезисторы, фотодиоды, фототранзисторы, терморезисторы, варисторы, варикапы, которые используются в качестве датчиков физических параметров. К интегральным приборам относятся интегральные микросхемы и микропроцессоры.

Диоды. Различают выпрямительные и излучающие диоды, фотодиоды.

Выпрямительные диоды представляют собой полупроводниковые приборы, состоящие из двух слоев полупроводникового материала с электропроводностью типа n и p. Граница между этими слоями обладает способностью пропускать электрический ток только в одном направлении. Такие диоды предназначены для преобразования переменного тока в постоянный.

Излучающие диоды представляют собой диоды, способные излучать свет определенного спектрального состава при прохождении через них тока. Излучающие диоды применяют в качестве индикаторов режимов работы аппаратуры, часов, микрокалькуляторов.

Фотодиоды обладают свойством пропускать или не пропускать электрический ток в зависимости от уровня освещения. Используются для автоматического отключения уличного освещения, для подсчета деталей на конвейере, а также в турникетах.

Транзисторы — это полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

Транзисторы в отличие от диодов состоят из трех кристаллов типа р-n-р или n-р-n и имеют три вывода.

Источник

Что такое класс полупроводникового прибора

Классификация полупроводниковых приборов.

Полупроводниковые приборы – это приборы, работа которых создана на применении свойств полупроводников.
Разделение полупроводниковых приборов показано на рис. 1.
У полупроводниковых резисторов и диодов имеются два вывода и они относятся к двух-электродным приборам, у транзисторов три вывода и поэтому они относятся к трех-электродным приборам. Тиристоры же бывают и дух- и трех-электродными.
Полупроводниковые резисторы изготавливаются из изотропных полупроводниковых веществ. Электрические характеристики таких резисторов складываются электрическими качествами однородного полупроводника. В диодах применяют полупроводники с разными типами проводимости, образующих один p-n-переход. Электрические характеристики у диода зависят от электрических свойств этого p-n-перехода.
Биполярные транзисторы имеют два p-n-перехода. Электрические характеристики таких транзисторов зависят от взаимовлияния данных переходов. В полевых транзисторах применяются полупроводники с разными типами проводимости, которые образуют только один p-n-переход. Но по сравнению с биполярными транзисторами и диодами у полевых транзисторов электрические характеристики определяются взаимовлиянием p-n-перехода с изотропным каналом.
В тиристорах используются полупроводники с разными типами проводимости, образующих от три и более p-n-перехода. Эти характеристики у тиристоров зависят от взаимовлияния таких переходов.
В фотоэлектрических приборах применяется эффект генерации света и перемена электрических характеристик полупроводниковых устройств под влиянием оптического излучения. Комбинированные полупроводниковые приборы состоят из несколько разных полупроводниковых приборов, помещенных в едином корпусе.
Полупроводниковые микросхемы – это изделия микроэлектроники, исполняющие определенную работу преобразования и переработки сигнала, все части и соединения между ними этих изделий произведены внутри и на поверхности полупроводника.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *