что такое кэш функция
Учебное пособие по кэшированию, часть 1
Довольно подробное и интересное изложение материала, касающегося кэша и его использования. Часть 2.
Автор, Mark Nottingham, — признанный эксперт в области HTTP-протокола и веб-кэширования. Является председателем IETF HTTPbis Working Group. Принимал участие в редактировании HTTP/1.1, part. 6: Caching. В настоящий момент участвует в разработке HTTP/2.0.
От переводчика: об опечатках и неточностях просьба сообщать в личку. Спасибо.
Веб-кэш располагается между одним или несколькими веб-серверами и клиентом, или множеством клиентов, и следит за входящими запросами, сохраняя при этом копии ответов — HTML-страниц, изображений и файлов (совокупно известных, как представления (representations); прим. переводчика — позвольте я буду употреблять слово “контент” — оно, на мой взгляд, не так режет слух), для собственных нужд. Затем, если поступает другой запрос с аналогичным url-адресом, кэш может использовать сохраненный прежде ответ, вместо повторного запроса к серверу.
Существует две основные причины, по которым используется веб-кэш:
1. Уменьшение времени ожидания — так как данные по запросу берутся из кэша (который располагается “ближе” к клиенту), требуется меньше времени для получения и отображения контента на стороне клиента. Это делает Веб более отзывчивым (прим. переводчика — “отзывчивым” в контексте быстроты реакции на запрос, а не эмоционально).
2. Снижение сетевого трафика — повторное использование контента снижает объем данных, передаваемых клиенту. Это, в свою очередь, экономит деньги, если клиент платит за трафик, и сохраняет низкими и более гибкими требования к пропускной способности канала.
Виды веб-кэшей
Кэш браузера (Browser cache)
Если вы изучите окно настроек любого современного веб-браузера (например, Internet Explorer, Safari или Mozilla), вы, вероятно, заметите параметр настройки «Кэш». Эта опция позволяет выделить область жесткого диска на вашем компьютере для хранения просмотренного ранее контента. Кэш браузера работает согласно довольно простым правилам. Он просто проверяет являются ли данные “свежими”, обычно один раз за сессию (то есть, один раз в текущем сеансе браузера).
Этот кэш особенно полезен, когда пользователь нажимает кнопку “Назад” или кликает на ссылку, чтобы увидеть страницу, которую только что просматривал. Также, если вы используете одни и те же изображения навигации на вашем сайте, они будут выбираться из браузерного кэша почти мгновенно.
Прокси-кэш (Proxy cache)
Прокси-кэш работает по аналогичному принципу, но в гораздо большем масштабе. Прокси обслуживают сотни или тысячи пользователей; большие корпорации и интернет-провайдеры часто настраивают их на своих файрволах или используют как отдельные устройства (intermediaries).
Поскольку прокси не являются частью клиента или исходного сервера, но при этом обращены в сеть, запросы должны быть к ним как-то переадресованы. Одним из способов является использование настроек браузера для того, чтобы вручную указать ему к какому прокси обращаться; другой способ — использование перехвата (interception proxy). В этом случае прокси обрабатывают веб-запросы, перенаправленные к ним сетью, так, что клиенту нет нужды настраивать их или даже знать об их существовании.
Прокси-кэши являются своего рода общей кэш-памятью (shared cache): вместо обслуживания одного человека, они работают с большим числом пользователей и поэтому очень хороши в сокращении времени ожидания и сетевого трафика. В основном, из-за того, что популярный контент запрашивается много раз.
Кэш-шлюз (Gateway Cache)
Также известные как “реверсивные прокси-кэши” (reverse proxy cache) или “суррогаты” (surrogate cache) шлюзы тоже являются посредниками, но вместо того, чтобы использоваться системными администраторами для сохранения пропускной способности канала, они (шлюзы) обычно используются веб-мастерами для того, чтобы сделать их сайты более масштабируемыми, надежными и эффективными.
Запросы могут быть перенаправлены на шлюзы рядом методов, но обычно используется балансировщик нагрузки в той или иной форме.
Сети доставки контента (content delivery networks, CDN) распространяют шлюзы по всему интернету (или некоторой его части) и отдают кэшированный контент заинтересованным веб-сайтам. Speedera и Akamai являются примерами CDN.
Это учебное пособие преимущественно сфокусировано на браузерных кэшах и прокси, но некоторая информация подходит также и тем, кому интересны шлюзы.
Почему я должен им пользоваться
Кэширование является одной из наиболее неправильно понятых технологий в интернете. Веб-мастера, в частности, боятся потерять контроль над их сайтом, потому что прокси могут “скрыть” их пользователей, сделав сложным наблюдение посещаемости.
К несчастью для них (веб-мастеров), даже если бы веб-кэша не существовало, есть слишком много переменных в интернете, чтобы гарантировать, что владельцы сайтов будут в состоянии получить точную картину того, как пользователи обращаются с сайтом. Если это является для вас большой проблемой, данное руководство научит вас как получить необходимую статистику, не делая ваш сайт “кэшененавистником”.
Другой проблемой является то, что кэш может хранить содержимое, которое устарело или просрочено.
С другой стороны, если вы ответственно подходите к проектированию вашего веб-сайта, кэш может помочь с более быстрой загрузкой и сохранением нагрузки на сервер и интернет-соединение в рамках допустимого. Разница может быть впечатляющей: загрузка сайта, не работающего с кэшем, может потребовать нескольких секунд; в то время как преимущества использования кэширования могут сделать её кажущейся мгновенной. Пользователи по достоинству оценят малое время загрузки сайта и, возможно, будут посещать его чаще.
Подумайте об этом в таком ключе: многие крупные интернет-компании тратят миллионы долларов на настройку ферм серверов по всему миру для репликации контента для того, чтобы ускорить, как только можно, доступ к данным для своих пользователей. Кэш делает то же самое для вас и он гораздо ближе к конечному пользователю.
CDN, с этой точки зрения, являются интересной разработкой, потому что, в отличие от многих прокси-кэшей, их шлюзы приведены в соответствие с интересами кэшируемого веб-сайта. Тем не менее, даже тогда, когда вы используете CDN, вы все равно должны учитывать, что там будет прокси и последующее кэширование в браузере.
Резюмируя, прокси и кэш браузера будут использоваться, нравится вам это или нет. Помните, если вы не настроите ваш сайт для корректного кэширования, он будет использовать настройки кэша по-умолчанию.
Как работает веб-кэш
Все виды кэшей обладают определенным набором правил, которые они используют, чтобы определить, когда брать контент из кэша, если он доступен. Некоторые из эти правил установлены протоколами (HTTP 1.0/HTTP 1.1), некоторые — администраторами кэша (пользователями браузера или администраторами прокси).
Вообще говоря, это самые общие правила (не волнуйтесь, если вы не понимаете детали, они будут объяснены ниже):
Свежесть (freshness) и валидация (validation) являются наиболее важными способами, с помощью которых кэш работает с контентом. Свежий контент будет доступен мгновенно из кэша; валидное же содержимое избежит повторной отправки всех пакетов, если оно не было изменено.
Кэши для «чайников»
Кэш глазами «чайника»:
Кэш – это комплексная система. Соответственно, под разными углами результат может лежать как в действительной, так и в мнимой области. Очень важно понимать разницу между тем, что мы ждем и тем, что есть на самом деле.
Давайте прокрутим полный оборот ситуаций.
Tl;dr: добавляя в архитектуру кэш важно явно осознавать, что кэш может быть средством дестабилизации системы под нагрузкой. Смотрите конец статьи.
Представим, что у нас есть доступ к базе данных, возвращающей курсы валют. Мы спрашиваем rates.example.com/?currency1=XXX¤cy2=XXX и в ответ получаем plain text значение курса. Каждые 1000 запросов к базе данных для нас, допустим, стоят 1 евроцент.
Итак, теперь мы хотим показывать на нашем сайте курс доллара к евро. Для этого нам нужно получить курс, поэтому на нашем сайте мы создаём API-обёртку для удобного использования:
И в шаблонах в нужном месте вставляем что-нибудь вроде:
Наивная имплементация делает самое простое, что можно придумать: на каждый запрос от пользователя спрашивает удалённую систему и использует ответ напрямую. Это означает, что теперь каждые 1000 просмотров пользователями нашей страницы стоят для нас на копейку больше. Казалось бы – гроши. Но вот проект растёт, у нас уже 1000 постоянных пользователей, которые каждый день заходят на сайт и просматривают по 20 страниц, а это уже 6 евро в месяц, что превращает сайт из бесплатного во вполне уже сопоставимый с платой за самые дешевые выделенные виртуальные серверы.
Вот тут на сцену выходит его величество Кэш
Зачем нам спрашивать курс для каждого пользователя на каждое обновление страницы, если для людей эта информация, в общем-то, не нужна так часто? Давайте просто ограничим частоту обновления до, например, раз в 5 секунд. Пользователи, переходя со страницы на страницу, всё равно будут видеть новое число, а мы платить будем в 1000 раз меньше.
Сказано – сделано! Добавляем несколько строчек:
Это самый главный аспект кэша: хранение последнего результата.
И вуаля! Сайт снова становится для нас почти бесплатным… До конца месяца, когда мы обнаруживаем от внешней системы счет на 4 евро. Конечно, не 6, но мы ожидали намного большей экономии!
К счастью, внешняя система позволяет посмотреть начисления, где мы видим всплески по 100 и более запросов каждые ровные 5 секунд в течение пиковой посещаемости.
Так мы познакомились со вторым важным аспектом кэша: дедупликацией запросов. Дело в том, что как только значение устарело, между проверкой наличия результата в кэше и сохранением нового значения, все пришедшие запросы фактически выполняют запрос к внешней системе одновременно.
В случае с memcache это можно реализовать, например, так:
И вот, наконец, потребление сравнялось с ожидаемым — 1 запрос в 5 секунд, расходы сократились до 2 евро в месяц.
Почему 2? Было 6 без кэширования для тысячи человек, мы же всё закэшировали, а сократилось всего в 3 раза? Да, стоило просчитать пораньше… 1 раз в 5 секунд = 12 в минуту = 72 в час = 576 за рабочий день = 17 тысяч в месяц, а ещё не все ходят по расписанию, есть странные личности заглядывающие поздней ночью… Вот и получается, в пике вместо сотни обращений одно, а в тихое время — по-прежнему запрос почти на каждое обращение проходит. Но всё равно, даже в худшем случае счёт должен быть 31×86400÷5 = 5.36 евро.
Так мы познакомились с еще одной гранью: кэш помогает, но не устраняет нагрузку.
Впрочем, в нашем случае люди приходят в проект и уходят и в какой-то момент начинают жаловаться на тормоза: страницы замирают на несколько секунд. А еще бывает под утро сайт не отвечает вообще… Просмотр консоли сайта показывает, что иногда днём запускаются дополнительные инстансы. В это же время скорость выполнения запросов падает до 5-15 секунд на запрос — из-за чего это и происходит.
Упражнение для читателя: посмотреть внимательно предыдущий код и найти причину.
Кстати, это грабли отнюдь не только кэша, это общий аспект распределённых блокировок: важно освобождать блокировки и иметь таймауты, во избежание дедлоков. Если бы мы добавляли «?» вообще без времени жизни, всё б замирало при первой же ошибке связи с внешней системой. К сожалению, memcache не предоставляет хороших способов для создания распределённых блокировок, использование полноценной БД с блокировками на уровне строк лучше, но это было просто лирическое отступление, необходимое просто потому, что на эти грабли наступили.
Итак, мы исправили проблему, вот только ничего не изменилось: всё равно изредка начинались тормоза. Что примечательно, они совпадали по времени с информационным бюллетенем от внешней системы о технических работах…
Ну-ка ну-ка… Давайте сделаем краткую передышку и пересчитаем, что мы насобирали уже сейчас, что должен уметь кэш:
Отсюда: кэш обязан уметь какое-то время хранить отрицательный результат. Наше наивное исходное предположение по сути подразумевает хранение отрицательного результата 0 секунд (но передачу этого самого отрицания всем, кто уже ждёт его). К сожалению, в случае с Memcache реализация нулевого времени ожидания весьма проблематична (оставлю как домашнее задание въедливому читателю; cовет: используйте механизм CAS; и да, в AppEngine можно использовать и Memcache и Memcached).
Мы же просто добавим сохранение отрицательного значения с 1 секундой жизни:
Казалось бы, ну теперь-то уже всё, и можно успокоиться? Как бы не так. Пока мы росли, наш любимый внешний сервис тоже рос, и в какой-то момент начал иногда тормозить и отвечать аж по секунде… И что примечательно – вместе с ним начал тормозить и наш сайт! Причем снова для всех! Но почему? Мы же всё кэшируем, в случае ошибок запоминаем ошибку и тем самым отпускаем всех ожидающих сразу, разве нет?
Что ж, мы можем вместо ожидания, добавить ветку else<> у условия вокруг memcache->add … Правда, стоит, наверное, вернуть последнее известное значение, да? Ведь мы кэшируем ровно затем, что мы согласны получить устаревшие сведения, если нет свежих; итак, еще одно требование к кэшу: пусть подтормаживает не более одного запроса.
Итак, мы снова победили: даже если тормозит внешний сервис, подтормаживает не более одной страницы… То есть как бы среднее время ответа сократилось, но пользователи всё равно немного недовольны.
Примечание: обычный PHP по умолчанию пишет сессии в файлы, блокируя параллельные запросы. Чтобы избежать этого поведения, можно передать в session_start параметр read_and_close либо принудительно закрывать через session_close сессию после совершения всех необходимых изменений, иначе тормозить будет не одна страница, а один пользователь: так как скрипт, обновляющий значение, будет блокировать открытие сессии другим запросом от того же пользователя. При исполнении на AppEngine по умолчанию включено хранение сессий в memcache, то есть без блокировок, поэтому будет проблема не так заметна.
Так вот, пользователи всё равно недовольны (ох уж эти пользователи!). Те, кто проводят времени больше всех на сайте, всё равно замечают эти короткие зависания. И их нисколько не радует осознание факта того, что так случается редко, и им просто не везёт. Придётся для данного случая сделать требование еще более жестким: никакие запросы не должны ждать ответа.
Что же мы можем сделать в такой постановке вопроса? Мы можем:
Итак, наш поставщик данных растёт, но не все его клиенты читают хабр, а потому они не используют правильного кэширования (если используют его вообще) и в какой-то момент начинают выдавать огромное количество запросов, из-за чего сервису становится плохо, и эпизодически он начинает отвечать не просто медленно, а очень медленно. До десятков секунд и более. Пользователи, конечно, быстро обнаружили, что можно нажать F5 или иначе перезагрузить страницу, и она появляется моментально – вот только страница снова начала упираться в бесплатные пределы, так как постоянно начали висеть процессы, просто ожидающие внешний ответ, но потребляющие наши ресурсы.
В числе прочих побочных эффектов участились случаи показа устаревшего курса. [Мда… в общем, представьте, что мы сейчас говорим не про наш случай, а про что-нибудь более сложное, где устаревание видно невооруженным глазом 🙂 на самом деле, даже в простом случае обязательно найдётся пользователь, который заметит такие совершенно неочевидные косяки].
Смотрите, что получается:
Итак, давайте подведём промежуточный итог. В бытовом понимании кэш:
Рассмотрим простейший случай:
3600. Что означает, что если отравление наступило на 5000 запросах в минуту, до тех пор, пока нагрузка не упадёт с 5000 до 3000 система нестабильна. То есть любой (даже пиковый!) всплеск трафика потенциально может вызвать длительную нестабильность системы.
Особенно прекрасно это смотрится, когда после новостной рассылки с какими-либо новыми функциями практически одновременно приходит волна пользователей. Эдакий маркетологический хабраэффект на регулярной основе.
Всё это не означает, что кэш нельзя или вредно использовать! О том, как правильно применять кэш для улучшения стабильности системы и как восстанавливаться от вышеупомянутой петли гистерезиса, мы поговорим в следующей статье, не переключайтесь.
Кэширование и производительность веб-приложений
Кэширование позволяет увеличивать производительность веб-приложений за счёт использования сохранённых ранее данных, вроде ответов на сетевые запросы или результатов вычислений. Благодаря кэшу, при очередном обращении клиента за одними и теми же данными, сервер может обслуживать запросы быстрее. Кэширование — эффективный архитектурный паттерн, так как большинство программ часто обращаются к одним и тем же данным и инструкциям. Эта технология присутствует на всех уровнях вычислительных систем. Кэши есть у процессоров, жёстких дисков, серверов, браузеров.
Ник Карник, автор материала, перевод которого мы сегодня публикуем, предлагает поговорить о роли кэширования в производительности веб-приложений, рассмотрев средства кэширования разных уровней, начиная с самого низкого. Он обращает особое внимание на то, где именно могут быть кэшированы данные, а не на то, как это происходит.
Мы полагаем, что понимание особенностей систем кэширования, каждая из которых вносит определённый вклад в скорость реакции приложений на внешние воздействия, расширит кругозор веб-разработчика и поможет ему в деле создания быстрых и надёжных систем.
Процессорный кэш
Начнём наш разговор о кэшах с самого низкого уровня — с процессора. Кэш-память процессора — это очень быстрая память, которая играет роль буфера между процессором (CPU) и оперативной памятью (RAM). Кэш-память хранит данные и инструкции, к которым обращаются чаще всего, благодаря чему процессор может получать ко всему этому доступ практически мгновенно.
В процессорах имеется особая память, представленная регистрами процессора, которая обычно представляет собой небольшое хранилище информации, обеспечивающее крайне высокую скорость обмена данными. Регистры — это самая быстрая память, с которой может работать процессор, которая расположена максимально близко к остальным его механизмам и имеет небольшой объём. Иногда регистры называют кэшем нулевого уровня (L0 Cache, L — это сокращение от Layer).
У процессоров, кроме того, имеется доступ к ещё нескольким уровням кэш-памяти. Это — до четырёх уровней кэша, которые, соответственно, называются кэшами первого, второго, третьего, и четвёртого уровня (L0 — L4 Cache). То, к какому именно уровню относятся регистры процессора, в частности, будет ли это кэш нулевого или первого уровня, определяется архитектурой процессора и материнской платы. Кроме того, от архитектуры системы зависит то, где именно — на процессоре, или на материнской плате, физически расположена кэш-память разных уровней.
Структура памяти в некоторых новейших CPU
Кэш жёсткого диска
Жёсткие диски (HDD, Hard Disk Drive), применяемые для постоянного хранения данных — это, в сравнении с оперативной памятью, предназначенной для кратковременного хранения информации, устройства довольно медленные. Однако надо отметить, что скорость постоянных хранилищ информации увеличивается благодаря распространению твердотельных накопителей (SSD, Solid State Drive).
В системах долговременного хранения информации кэш диска (его ещё называют буфером диска или кэширующим буфером) — это встроенная в жёсткий диск память, которая играет роль буфера между процессором и физическим жёстким диском.
Кэш жёсткого диска
Дисковые кэши работают, исходя из предположения, что когда на диск что-то пишут, или с него что-то читают, есть вероятность того, что в ближайшем будущем к этим данным будут обращаться снова.
О быстродействии жёстких дисков и оперативной памяти
Разница между временным хранением данных в оперативной памяти и постоянным хранением на жёстком диске проявляется в скорости работы с информацией, в стоимости носителей и в близости их к процессору.
Время отклика оперативной памяти составляет десятки наносекунд, в то время как жёсткому диску нужны десятки миллисекунд. Разница в быстродействии дисков и памяти составляет шесть порядков!
Одна миллисекунда равна миллиону наносекунд
Простой веб-сервер
Теперь, когда мы обсудили роль кэширования в базовых механизмах компьютерных систем, рассмотрим пример, иллюстрирующий применение концепций кэширования при взаимодействии клиента, представленного веб-браузером, и сервера, который, реагируя на запросы клиента, отправляет ему некие данные. В самом начале у нас имеется простой веб-сервер, который, отвечая на запрос клиента, считывает данные с жёсткого диска. При этом представим, что между клиентом и сервером нет никаких особых систем кэширования. Вот как это выглядит.
При работе вышеописанной системы, когда клиент обращается напрямую к серверу, а тот, самостоятельно обрабатывая запрос, читает данные с жёсткого диска и отправляет клиенту, без кэша всё-таки не обходится, так как при работе с диском будет задействован его буфер.
При первом запросе жёсткий диск проверит кэш, в котором, в данном случае, ничего не будет, что приведёт к так называемому «промаху кэша». Затем данные считаются с самого диска и попадут в его кэш, что соответствует предположению, касающемуся того, что эти данные могут понадобиться снова.
При последующих запросах, направленных на получение тех же данных, поиск в кэше окажется успешным, это — так называемое «попадание кэша». Данные в ответ на запрос будут поступать из дискового буфера до тех пор, пока они не будут перезаписаны, что, при повторном обращении к тем же данным, приведёт к промаху кэша.
Кэширование баз данных
Усложним наш пример, добавим сюда базу данных. Запросы к базам данных могут быть медленными и требовать серьёзных системных ресурсов, так как серверу баз данных, для формирования ответа, нужно выполнять некие вычисления. Если запросы повторяются, кэширование их средствами базы данных поможет уменьшить время её отклика. Кроме того, кэширование полезно в ситуациях, когда несколько компьютеров работают с базой данных, выполняя одинаковые запросы.
Простой веб-сервер с базой данных
Большинство серверов баз данных по умолчанию настроены с учётом оптимальных параметров кэширования. Однако, существует множество настроек, которые могут быть модифицированы для того, чтобы подсистема баз данных лучше соответствовала особенностям конкретного приложения.
Кэширование ответов веб-сервера
Продолжим развивать наш пример. Теперь веб-сервер, раньше рассматриваемый как единая сущность, разбит на две части. Одна из них, собственно веб-сервер, теперь занимается взаимодействием с клиентами и с серверным приложением, которое уже работает с системами хранения данных. Веб-сервер можно настроить так, чтобы он кэшировал ответы, в результате ему не придётся постоянно отправлять серверному приложению похожие запросы. Похожим образом, основное приложение может кэшировать некоторые части собственных ответов на ресурсоёмкие запросы к базе данных или на часто встречающиеся запросы файлов.
Кэш ответов и кэш приложения
Ответы веб-сервера кэшируются в оперативной памяти. Кэш приложения может храниться либо локально, в памяти, либо на специальном кэширующем сервере, который использует базу данных, вроде Redis, которая хранит данные в оперативной памяти.
Мемоизация функций
Сейчас поговорим об оптимизации производительности серверного приложения за счёт мемоизации. Это — разновидность кэширования, применяемая для оптимизации работы с ресурсоёмкими функциями. Данная техника позволяет выполнять полный цикл вычислений для определённого набора входных данных лишь один раз, а при следующих обращениях к функции с теми же входными данными сразу выдавать найденный ранее результат. Мемоизация реализуется посредством так называемых «таблиц поиска» (lookup table), хранящих ключи и значения. Ключи соответствуют входным данным функции, значения — результатам, которые возвращает функция при передаче ей этих входных данных.
Мемоизация функции с помощью таблицы поиска
Мемоизация — это обычный приём, используемый для повышения производительности программ. Однако он может быть не особенно полезным при работе с ресурсоёмкими функциями, которые вызываются редко, или с функциями, которые, и без мемоизации, работают достаточно быстро.
Кэширование в браузере
Теперь перейдём на сторону клиента и поговорим о кэшировании в браузерах. В каждом браузере имеется реализация HTTP-кэша (его ещё называют веб-кэшем), который предназначен для временного хранения материалов, полученных из интернета, таких, как HTML-страницы, JavaScript-файлы и изображения.
Этот кэш используется, когда в ответе сервера содержатся правильно настроенные HTTP-заголовки, указывающие браузеру на то, когда и на какое время он может кэшировать ответ сервера.
Перед нами весьма полезная технология, которая даёт следующие преимущества всем участникам обмена данными:
Кэширование в браузере
Кэширование и прокси-серверы
В компьютерных сетях прокси-серверы могут быть представлены специальным аппаратным обеспечением или соответствующими приложениями. Они играют роль посредников между клиентами и серверами, хранящими данные, которые этим клиентам требуются. Кэширование — это одна из задач, которую они решают. Рассмотрим различные виды прокси-серверов.
▍Шлюзы
Шлюз (gateway) — это прокси-сервер, который перенаправляет входящие запросы или исходящие ответы, не модифицируя их. Такие прокси-серверы ещё называют туннелирующими прокси (tunneling proxy), веб-прокси (web proxy), прокси (proxy), или прокси уровня приложения (application level proxy). Эти прокси-серверы обычно совместно используются, например, всеми клиентами, находящимися за одним и тем же файрволом, что делает их хорошо подходящими для кэширования запросов.
▍Прямые прокси-серверы
Прямой прокси-сервер (forward proxy, часто такие серверы называют просто proxy server) обычно устанавливается на стороне клиента. Веб-браузер, который настроен на использование прямого прокси-сервера, будет отправлять исходящие запросы этому серверу. Затем эти запросы будут перенаправлены на целевой сервер, расположенный в интернете. Одно из преимуществ прямых прокси заключаются в том, что они защищают данные клиента (однако, если говорить об обеспечении анонимности в интернете, безопаснее будет пользоваться VPN).
▍Веб-ускорители
Веб-ускоритель (web accelerator) — это прокси-сервер, который уменьшает время доступа к сайту. Он делает это, заранее запрашивая у сервера документы, которые, вероятнее всего, понадобятся клиентам в ближайшем будущем. Подобные серверы, кроме того, могут сжимать документы, ускорять выполнение операций шифрования, уменьшать качество и размер изображений, и так далее.
▍Обратные прокси-серверы
Обратный прокси-сервер (reverse proxy) — это обычно сервер, расположенный там же, где и веб-сервер, с которым он взаимодействует. Обратные прокси-серверы предназначены для предотвращения прямого доступа к серверам, расположенным в частных сетях. Обратные прокси используются для балансировки нагрузки между несколькими внутренними серверами, предоставляют возможности SSL-аутентификации или кэширования запросов. Такие прокси выполняют кэширование на стороне сервера, они помогают основным серверам в обработке большого количества запросов.
▍Пограничное кэширование
Обратные прокси-серверы расположены близко к серверам. Существует и технология, при использовании которой кэширующие серверы располагаются как можно ближе к потребителям данных. Это — так называемое пограничное кэширование (edge caching), представленное сетями доставки контента (CDN, Content Delivery Network). Например, если вы посещаете популярный веб-сайт и загружаете какие-нибудь статические данные, они попадают в кэш. Каждый следующий пользователь, запросивший те же данные, получит их, до истечения срока их кэширования, с кэширующего сервера. Эти серверы, определяя актуальность информации, ориентируются на серверы, хранящие исходные данные.
Прокси-серверы в инфраструктуре обмена данными между клиентом и сервером
Итоги
В этом материале мы рассмотрели различные уровни кэширования данных, применяющиеся в процессе обмена информацией между клиентом и сервером. Веб-приложения не могут мгновенно реагировать на воздействия пользователя, что, в частности, связано, для действий, требующих обмена данными с серверами этих приложений, с необходимостью выполнения неких вычислений перед отправкой ответа. Во время, необходимое для передачи данных от сервера клиенту, входит и время, необходимое для поиска необходимых данных на диске, и сетевые задержки, и обработка очередей запросов, и механизмы регулирования полосы пропускания сетей, и многое другое. Если учесть, что всё это может происходить на множестве компьютеров, находящихся между клиентом и сервером, то можно говорить о том, что все эти задержки способны серьёзно увеличить время, необходимое для прихода запроса на сервер и получения клиентом ответа.
Правильно настроенная система кэширования способна значительно улучшить общую производительность сервера. Кэши сокращают задержки, неизбежно возникающие при передаче данных по сети, помогают экономить сетевой трафик, и, в результате, уменьшают время, необходимое для того, чтобы браузер вывел запрошенную у сервера веб-страницу.
Уважаемые читатели! Какие технологии кэширования вы используете в своих проектах?