что такое кавитационные явления
Явление кавитации
В мире имеется большое количество физических процессов, с которыми мы сталкиваемся ежедневно. Кавитация ее является исключением. Она в переводе с латинского обозначает пустоту.
Процесс кавитации
Кавитация происходит в жидких субстанциях, когда в них происходят местные изменения давления. Данное физическое явление представляет собой процесс образования пара в жидкости с последующим образованием конденсата из него в потоке жидкости. Для данного процесса характерно появление шума и гидравлических ударов. При понижении давления в жидкости образуются пузырьки, наполненные паром от нее. Уменьшение уровня давления в жидкой субстанции может случить в результате:
Это далеко не все причины, которые приводят к появлению кавитации. Одной из таких причин является прохождение потока жидкости через поток с высоким давлением. В результате пузырек с паром лопается и появляется ударная волна, которая влияет на остальные пузырьки жидкости.
Данное явление не происходит повсеместно. Для него необходимо создать определенные условия.
По своим физическим проявлениям кавитацию можно сравнить с процессом кипения. Они отличаются лишь тем, что в процессе кипения в жидкости давление внутри образующихся пузырьков равно давлению жидкости. При кавитации давление жидкости заметно меньше, чем в пузырьках с паром. При кавитации понижение давление происходит только в определенном месте.
Вред кавитации
Сегодня кавитацию активно используют во многих сферах человеческой жизнедеятельности. Однако не всегда ее применение является полезным и обоснованным. При кавитации в пузырьках жидкости образуются скопления газов. Они могут вызывать появление эрозии металлов. Агрессивное действие газов и высокая температура способны за короткое время разъесть металлы разных видов. В результате такого вредного воздействия уничтожаются винты судов, приходят в негодность насосы и гидротурбины. К тому при наличии кавитации образуются неприятные шумы, которые приводят к тому. что работа водных приборов начинает становиться менее эффективной.
Лопающиеся пузырьки жидкости приводят к тому, что в определенной области начинает повышаться давление и температура. В результате происходит ударная волна, которая провоцирует появление неприятного шума. В итоге всего этого процесса металл полностью разъедается.
При кавитации появляется высокий уровень шума, что приводит к невозможности наиболее эффективно использовать подводные лодки, которые должны быть малозаметными или вообще незаметными.
Польза кавитации
Несмотря на то, что в некоторых случаях не рекомендуется использовать кавитацию, все же есть ситуации, когда она просто необходима. В современном мире производится больше количество сверхкавитационных торпед, которые активно применяются в военных целях. Такие торпеды обладают высокой скоростью передвижения по воде. Одна из самых известных кавитационных торпед способна развить скорость до пятисот километров в час.
Кавитацию полезно использовать для проведения ультразвуковой очистки различных видов поверхностей. Звуковые волны в жидкости, которые образуются после того, как пузырьки лопаются, способны очистить поверхность любого предмета от загрязнений.
Польза кавитации заключается в том, что она подходит для очищения различных жидких субстанций. В частности этот физический процесс незаменим при очищении топлива. Благодаря кавитации в любом виде топлива значительно сокращается количество смол.
Применение кавитации
В современном мире кавитация нашла широкое применение в различных областях. Большую роль она играет в биомедицине. Она помогает бороться с проблемами с почками. Она используется для удаления камней в этой области. Уничтожение камней осуществляется при помощи ударной волны. Для процедуры используется такой вид оборудования, как литотриптор. Он работает по принципу кавитации. Он помогает разрушать камни даже без хирургической процедуры.
Кавитацию также используют стоматологи. Благодаря этому стало возможным ультразвуковое очищение зубов.
В судостроении не редко встречается использование кавитации. В насосах и винтах судов используется это явление. Оно применяется в местах, где при соприкосновении с водой вращающиеся твердые детали понижаю ее давление. В результате она начинает нагреваться и образуются пузырьки, после лопания которых появляется характерный шум.
В военной промышленности кавитация тоже нашла свое применение. Она позволяет создавать уникальные острые виды пуль и сверхбыстрые торпеды.
Статьи по теме
Антикоррозионные средства
Антикоррозионные пигменты классифицируются на: цинковые крона, алюминий три-полифосфаты и слюдянистую окись железа.
Вещества ускоряющие высыхание красок
Сиккативы — соединения свинца, кобальта, марганца и цинка, которые, будучи добавлены в высыхающие масла, ускоряют их высыхание.
Защита трубопроводов от коррозии
Сегодня без разных видов трубопроводов невозможно представить себе жизнью Они находятся практически в каждом населенном пункте и обеспечивают коммуникации. Производств труб для прокладки под землей осуществляется из металлов самых разных типов.
Ингибитор коррозии
Ингибитор не является каким-то конкретным веществом. Так называют целуют группу веществ, которые направлены на остановку или задержку протеканий каких-либо физических или физико-химических процессов.
КАВИТАЦИЯ
Полезное
Смотреть что такое «КАВИТАЦИЯ» в других словарях:
КАВИТАЦИЯ — (от лат. cavitas пустота) образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных газом, паром или их смесью. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при… … Большой Энциклопедический словарь
КАВИТАЦИЯ — (от лат. cavitas пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (т. н. кавитац. пузырьков или каверн). Кавитац. пузырьки образуются в тех местах, где давление в жидкости становится ниже нек рого критич … Физическая энциклопедия
Кавитация — – физическое явление, наблюдающееся в зонах разрыва сплошности жидкости и характеризующееся образованием и последующим захлопыванием парогазовых пузырьков. Примечание. Кавитация сопровождается шумом, люминесценцией, вибрацией, при этом… … Энциклопедия терминов, определений и пояснений строительных материалов
КАВИТАЦИЯ — (Cavitation) явление образования движущимся телом незаполненного водой пространства в виде борозды; может иметь место при значительных скоростях хода судна, когда вода не будет успевать заполнять образующееся за кормой воздушное пространство.… … Морской словарь
кавитация — Физическое явление, наблюдающееся в зонах разрыва сплошности жидкости и характеризующееся образованием и последующим захлопыванием парогазовых пузырьков. Примечание Кавитация сопровождается шумом, люминесценцией, вибрацией, при этом могут… … Справочник технического переводчика
кавитация — сущ., кол во синонимов: 2 • суперкавитация (1) • фотокавитация (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
кавитация — Формирование пузырьков в воде, происходящее в случаях резкого увеличения скорости текущего потока на водопадах, перекатах и пр., что вызывает повышенную эрозию горных пород … Словарь по географии
КАВИТАЦИЯ — явление образования множества полостей («кавитационных пузырьков»), заполненных газом, паром или их смесью, внутри быстро движущейся жидкости в результате её холодного кипения в местах пониженного давления (напр. в вихревой зоне за гребным винтом … Большая политехническая энциклопедия
Кавитация — Моделирование кавитации Кавитация (от лат. cavitas пустота) процесс парообразования и последующей конденсации пузырьков воздуха в потоке жидкости, сопровождающийся шумом и ги … Википедия
кавитация — и; ж. [от лат. cavitas пустота]. Спец. Образование в жидкости, вследствие резкого уменьшения давления, пузырьков, полостей, заполненных газом или паром. ◁ Кавитационный, ая, ое. К ые пузырьки. * * * кавитация (от лат. cavitas пустота),… … Энциклопедический словарь
Кавитация
Кавита́ция (от лат. cavitas — пустота) — процесс парообразования и последующей конденсации пузырьков воздуха в потоке жидкости, сопровождающийся шумом и гидравлическими ударами, образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных паром. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении её скорости (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупериода разрежения (акустическая кавитация), существуют и другие причины возникновения эффекта. Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырёк захлопывается, излучая при этом ударную волну.
Кавитация разрушает поверхность гребных винтов, гидротурбин, акустических излучателей и др.
Содержание
Обзор
Согласно определению Кристофера Бреннена: «Когда жидкость подвергается давлению ниже порогового (напряжению растяжения), тогда целостность ее потока нарушается, и образуются парообразные полости. Это явление называется кавитацией. Когда местное давление жидкости в некоторой точке падает ниже величины, соответствующей давлению насыщения при данной окружающей температуре, тогда жидкость переходит в другое состояние, образуя, в основном, фазовые пустоты, которые называются кавитационными пузырями. Возможно и другое образование кавитационных пузырей путем местной подачи энергии. Это может быть достигнуто фокусировкой интенсивного лазерного импульса (оптическая кавитация) или искрой электрического разряда».
Во многих источниках физика этого явления объясняется следующим образом. Физический процесс кавитации близок процессу закипания жидкости. Основное различие между ними заключено в том, что при закипании изменение фазового состояния жидкости происходит при среднем по объёму жидкости давлении равном давлению насыщенного пара, тогда как при кавитации среднее давление жидкости выше давления насыщенного пара, а падение давления носит локальный характер.
Однако более поздние исследования показали, что ведущую роль в образовании пузырьков при кавитации играют газы, выделяющиеся внутрь образовывающихся пузырьков. Эти газы всегда содержатся в жидкости, и при местном снижении давления начинают интенсивно выделяться внутрь указанных пузырьков.
Вредные последствия
Химическая агрессивность газов в пузырьках, имеющих к тому же высокую температуру, вызывает эрозию материалов, с которыми соприкасается жидкость, в которой развивается кавитация. Эта эрозия и составляет один из факторов вредного воздействия кавитации. Второй фактор обусловлен большими забросами давления, возникающими при схлопывании пузырьков и воздействующими на поверхности указанных материалов.
Поэтому кавитация во многих случаях нежелательна. Например, она вызывает разрушение гребных винтов судов, рабочих органов насосов, гидротурбин и т. п., кавитация вызывает шум, вибрации и снижение эффективности работы.
Когда схлопываются кавитационные пузыри, энергия жидкости сосредотачивается в очень небольших объемах. Тем самым, образуются места повышенной температуры и возникают ударные волны, которые являются источниками шума. Шум, создаваемый кавитацией, является особой проблемой на подводных лодках (субмаринах), так как из-за шума их могут обнаружить. При разрушении каверн освобождается много энергии, что может вызвать повреждения. Эксперименты показали, что вредному, разрушительному воздействию кавитации подвергаются даже химически инертные к кислороду вещества (золото, стекло и др.), хотя и намного более медленному. Это доказывает, что помимо фактора химической агрессивности газов, находящихся в пузырьках, важным является также фактор забросов давления, возникающих при схлопывании пузырьков. Кавитация ведёт к большому износу рабочих органов и может значительно сократить срок службы винта и насоса. В метрологии, при использовании ультразвуковых расходомеров, кавитационные пузыри модулируют волны, излучаемые расходомером, что приводит к искажению его показаний.
Полезное применение кавитации
Хотя кавитация нежелательна во многих случаях, есть исключения. Например, сверхкавитационные торпеды, используемые военными, обволакиваются в большие кавитационные пузыри. Существенно уменьшая контакт с водой, эти торпеды могут передвигаться значительно быстрее, чем обыкновенные торпеды. Так сверхкавитационная торпеда «Шквал», в зависимости от плотности водной среды, развивает скорость до 500 км/ч. Такие исследования проводились, например, в Институте гидромеханики НАН Украины. [2]
Кавитация используется при ультразвуковой очистке поверхностей твёрдых тел. Специальные устройства создают кавитацию, используя звуковые волны в жидкости. Кавитационные пузыри, схлопываясь, порождают ударные волны, которые разрушают частицы загрязнений или отделяют их от поверхности. Таким образом, снижается потребность в опасных и вредных для здоровья чистящих веществах во многих промышленных и коммерческих процессах, где требуется очистка как этап производства.
В промышленности кавитация часто используется для гомогенизации (смешивания) и отсадки взвешенных частиц в коллоидном жидкостном составе, например, смеси красок или молоке. Многие промышленные смесители основаны на этом принципе. Обычно это достигается благодаря конструкции гидротурбин или путём пропускания смеси через кольцевидное отверстие, которое имеет узкий вход и значительно больший по размеру выход: вынужденное уменьшение давления приводит к кавитации, поскольку жидкость стремится в сторону большего объёма. Этот метод может управляться гидравлическими устройствами, которые контролируют размер входного отверстия, что позволяет регулировать процесс работы в различных средах. Внешняя сторона смесительных клапанов, по которой кавитационные пузыри перемещаются в противоположную сторону, чтобы вызвать имплозию (внутренний взрыв), подвергается огромному давлению и часто выполняется из сверхпрочных или жестких материалов, например, из нержавеющей стали, стеллита или даже поликристаллического алмаза (PCD).
Также были разработаны кавитационные водные устройства очистки, в которых граничные условия кавитации могут уничтожить загрязняющие вещества и органические молекулы. Спектральный анализ света, испускаемого в результате сонохимической реакции, показывает химические и плазменные базовые механизмы энергетической передачи. Свет, испускаемый кавитационными пузырями, называется сонолюминесценцией.
Кавитационные процессы имеют высокую разрушительную силу, которую используют для дробления твердых веществ, которые находятся в жидкости. Одним из применений таких процессов является измельчение твердых включений в тяжёлые топлива, что используется для обработки котельного топлива с целью увеличения калорийности его горения.
Кавитационные устройства снижают вязкость углеводородного топлива, что позволяет снизить необходимый нагрев и увеличить дисперсность распыления топлива.
Кавитационные устройства используются для создания водно-мазутных и водно-топливных эмульсий и смесей, которые часто используются для повышения эффективности горения или утилизации обводнённых видов топлива.
Применение в биомедицине
Кавитация играет важную роль для уничтожения камней в почках и мочеточнике посредством ударной волны литотрипсии. Литотриптор — прибор, предназначенный для разрушения камней в мочеполовом тракте без открытого хирургического вмешательства.
В настоящее время исследованиями показано, что кавитация также может быть использована для перемещения макромолекул внутрь биологических клеток (сонопорация).
Кавитация, создаваемая прохождением ультразвука в жидкостной среде, используется в работе хирургических инструментов для бескровного иссечения тканей плотных органов (см. CUSA).
Кавитация также применяется в стоматологии при ультразвуковой чистке зубов, разрушая зубной камень и пигментированный налет («налет курильщика»), а также косметологии.
Лопастные насосы и винты судов
В местах контакта жидкости с быстро движущимися твердыми объектами (рабочие органы насосов, турбин, гребные винты судов, подводные крылья и т. д.) происходит локальное изменение давления. Если давление в какой-то точке падает ниже давления насыщенного пара, происходит нарушение целостности среды. Или, проще говоря, жидкость закипает. Затем, когда жидкость попадает в область с более высоким давлением, происходит «схлопывание» пузырьков пара, что сопровождается шумом, а также появлением микроскопических областей с очень высоким давлением (при соударении стенок пузырьков). Это приводит к разрушению поверхности твердых объектов. Их как бы «разъедает». Если зона пониженного давления оказывается достаточно обширной, возникает кавитационная каверна — полость, заполненная паром. В результате нормальная работа лопастей нарушается и возможен даже полный срыв работы насоса. Любопытно, но есть примеры, когда кавитационная каверна специально закладывается при расчете насоса. В тех случаях, когда избежать кавитации невозможно, такое решение позволяет избежать разрушительного влияния кавитации на рабочие органы насоса. Режим, при котором наблюдается устойчивая кавитационная каверна, называют «режимом суперкавитации».
Лопастные насосы. Кавитация на стороне всасывания
Как правило, зона кавитации наблюдается вблизи зоны всасывания, где жидкость встречается с лопастями насоса. Вероятность возникновения кавитации тем выше,
Центробежные насосы. Кавитация в уплотнении рабочего колеса
У классических центробежных насосов часть жидкости из области высокого давления проходит через щель между рабочим колесом и корпусом насоса в зону низкого давления. Когда насос работает с существенным отклонением от расчетного режима в сторону повышения давления нагнетания, расход утечек через уплотнение между рабочим колесом и корпусом возрастает (из-за увеличения перепада давления между полостями всасывания и нагнетания). Из-за высокой скорости жидкости в уплотнении возможно появление кавитационных явлений, что может привести к разрушению рабочего колеса и корпуса насоса. Как правило, в бытовых и промышленных случаях режим кавитации в рабочем колесе насоса возможен при резком падении давления в системе отопления или водоснабжения: например, при разрыве трубопровода, калорифера или радиатора. При резком падении давления в зоне рабочего колеса насоса образуется вакуум, вода при низком давлении начинает вскипать. При этом напор резко падает. Режим кавитации приводит к эрозии рабочего колеса насоса, и насос выходит из строя.
Кавитация в двигателях
Некоторые большие по размеру дизельные двигатели страдают от кавитации из-за высокого сжатия и малогабаритных стенок цилиндра. В результате в стенках цилиндра образовываются отверстия, которые приводят к тому, что охлаждающая жидкость начинает попадать в цилиндры двигателя. Предотвратить нежелательные явления возможно при помощи химических добавок в охлаждающую жидкость, которые образуют защитный слой на стенках цилиндра. Этот слой будет подвержен той же кавитации, но он может самостоятельно восстанавливаться.
Сосудистые растения
Кавитация происходит в ксилемных сосудистых растениях, когда водный потенциал становится таким большим, что растворившийся в воде воздух расширяется, чтобы заполнить клетки растения, или элементы сосудов, капилляры. Обычно растения способны исправить кавитационную ксилему, например, при помощи корневого давления, но для других растений, таких как виноградники, кавитация часто приводит к гибели. В некоторых деревьях ясно слышен кавитационный шум. Осенью температурное понижение увеличивает образование воздушных пузырей в капиллярах некоторых видов растений, что вызывает опадание листьев.
Предотвращение последствий
Наилучшим методом предотвращения вредных последствий кавитации для деталей машин считается изменение их конструкции таким образом, чтобы предотвратить образование полостей либо предотвратить разрушение этих полостей возле поверхности детали. При невозможности изменения конструкции могут применяться защитные покрытия, например, газотермическое напыление сплавов на основе кобальта.
В системах гидропривода часто используют системы подпитки. Они, упрощённо говоря, представляют собой дополнительный насос, жидкость от которого начинает поступать через специальный клапан в гидросистему, когда в последней давление падает ниже допустимого значения. Если давление в гидросистеме не опускается ниже допустимого, жидкость от дополнительного насоса идёт на слив в бак. Системы подпитки установлены, например, во многих экскаваторах.
Другие области применения
Кавитация применяется для стабилизации игольчатых пуль подводных боеприпасов (например, боеприпасы автомата АПС или патроны 5.45×39 ПСП для автомата АДС), для увеличения скорости торпед (Шквал и Барракуда).
Число кавитации
Кавитационное течение характеризуют безразмерным параметром (числом кавитации):
, где
— гидростатическое давление набегающего потока, Па;
— давление насыщенных паров жидкости при определенной температуре окружающей среды, Па;
— плотность среды, кг/м³;
— скорость потока на входе в систему, м/с.
Известно, что кавитация возникает при достижении потоком граничной скорости , когда давление в потоке становится равным давлению парообразования (насыщенных паров). Этой скорости соответствует граничное значение критерия кавитации.
В зависимости от величины можно различать четыре вида потоков:
Измерение
Кавитационные проблемы насосов в нефтепереработке
Швиндин А.И., заместитель директора по научной работе, к.т.н.,
Берестовский В.А., ведущий инженер-конструктор,
ООО «Сумский машиностроительный завод» (ООО «СМЗ»)
Рис. 1. Процесс схлопывания пузырьков
В результате многих экспериментальных исследований появились объяснения многих кавитационных явлений и процессов, выработаны некоторые рекомендации для практических расчетов и эксплуатации гидромашин. В частности, оценку кавитационных качеств рабочих колес центробежных насосов в 30-х годах ХХ века проф. Руднев С. С. (НПО «ВНИИГидромаш», г. Москва) предложил критерием кавитации, названным кавитационным коэффициентом быстроходности Скр, который для практических расчетов приведен к виду:
где: n – частота вращения, об/мин;
Qp = Qн + qразгр – расчетная подача рабочего колеса, м3/ч;
qразгр – утечка через разгрузочное устройство насоса;
Δhкр – критический (3-процентный срывной) кавитационный запас рабочего колеса по ГОСТ 6134, м;
Трактовка кавитационного запаса в действующих нормативных документах различная. Например, в соответствии с п. 3.1.24 ГОСТ 6134 это «…полный абсолютный напор на всасывании за вычетом потерь напора, соответствующему давлению пара перекачиваемой жидкости, отнесенной к базовой плоскости NPSH». В соответствии с п. 3.28 международного стандарта ISO 13709, это «…полное абсолютное давление всасывания, характеризующее превышение значения давления на всасывании над значением давления насыщенных паров перекачиваемой жидкости. Выражается в метрах столба жидкости».
Примечание: полный абсолютный напор (давление) на всасывании берется без учета технологического давления в приемной емкости.
Для обеспечения бескавитационной работы насоса значение допускаемого кавитационного запаса Δhдоп (требуемого NPSHr по ISO 13709) принимается в пределах (1,05-1,25)Δhкр. Кроме того, кавитационный запас системы Δhс (имеющийся NPSHа по ISO 13709) должен быть Δhс ³ Δhкр + 0,5 м.
· обеспечение полной герметичности вала и разъемов корпусных деталей;
· обеспечение необходимой прочности и жесткости применяемых конструкционных материалов в условиях высоких температур и давлений, а также их коррозионной и эрозионной стойкости, т.к. тяжелые остатки богаты сернистыми соединениями и мелкодисперсными примесями абразивного характера;
· обеспечение температурных расширений роторных и статорных деталей без расцентровки и заедания ротора в корпусе насоса;
· обеспечение высокой ремонтопригодности, т.к. для демонтажа, ремонта и последующего монтажа насоса в установке отводится от 2-х до 4-х суток;
· обеспечение требуемых нормативными документами наработок на отказ и 2–3-летнего межремонтного пробега.
Обеспечение последнего требования трудновыполнимо, т.к. насосы, отбирающие тяжелые остатки с низа колонны, работают в предкавитационном или уже в кавитационном режимах. Причиной этому является то, что эти кипящие остатки находятся под давлением собственных паров, т.е., в состоянии равновесия с давлением паров. Таким образом на входе в насос будет только геодезический подпор жидкости в колонне. Учитывая возможные потери во входном трубопроводе и для исключения возможного газообразования в насосе при этих условиях значение геодезического подпора рекомендуется держать в пределах 2,0 – 2,5 м. Другими словами, эти значения являются кавитационным запасом системы для насоса. В этом случае требуемые значения допускаемого кавитационного запаса насоса при подачах более 300 м 3 /ч трудно обеспечить центробежными насосами без специальных мероприятий, и кавитационные явления в какой-то мере всегда присутствуют.
Пути и методы устранение вредного воздействия кавитации в центробежных насосах определились давно. Их можно разграничить как мероприятия по системе, в которой работает насос, и конструкторские решения в самом насосе. К первым можно отнести увеличение геодезического подпора в колонне и уменьшение гидравлических потерь во входном трубопроводе. Известными конструкторскими решениями в насосе являются:
· уменьшение частоты вращения;
· специальное проектирование рабочего колеса и профилирование лопасти;
· установка предвлюченного колеса (шнека) перед рабочим колесом;
· в многоступенчатых насосах – применение двухпоточного рабочего колеса первой ступени.
Все перечисленные решения имеют свои преимущества и недостатки. Например, применение шнеков существенно снижает значения критического кавитационного коэффициента быстроходности. Если для рабочего колеса с коэффициентом быстроходности ns = 80 – 120 коэффициент Скр = 800 – 1000, то для шнекоцентробежного колеса такой же быстроходности этот коэффициент будет в пределах Скр = 2000 – 2200, что почти в 4 раза уменьшает значение Δhкр. Но шнек по своей гидродинамической природе – это осевое рабочее колесо, которое рассчитывается на очень узкий диапазон подач, и поэтому нормальная работа насоса со шнекоцентробежной ступенью во всем рабочем диапазоне подач не обеспечивается. Применение шнекоценробежных ступеней оправдано, например, в энергетических насосах – конденсатных и крупных питательных, которые практически весь ресурс работают на расчетных режимах. Применение шнеков позволило сумским насосостроителям создать в 60–80-х годах большую группу питательных и конденсатных насосов с улучшенными кавитационными характеристиками. Всего насчитывается более 50-ти типоразмеров, в т. ч. конденсатных (n = 1500 об/мин) с подачей от 30 до 2200 м 3 /ч, питательных (n = 3000 об/мин) с подачами 580, 850 и 1650 м 3 /ч и потребляемой мощностью до 8000 кВт, нефтяных магистральных (n = 3000 об/мин) с подачами от 125 до 710 м 3 /ч. Насосы всех перечисленных типоразмеров успешно эксплуатируются уже более 30 лет.
В нефтепереработке применяемые насосы подбираются на режим максимально возможной проектной нагрузке установки (гипотетической) и поэтому во многих случаях они длительное время работают на недогрузочных режимах – частичных подачах. При работе шнекоцентробежной ступени на частичных подачах в каналах шнека возникают, так называемые, обратные токи – противотоки, которые существенно изменяют картину течения в шнеке вплоть до образования локальных зон с пониженным давлением и, как следствием, местной кавитации в каналах шнека.
Исследованию кавитационных явлений в шнекоцентробежной ступени на недогрузочных режимах уделялось большое внимание при создании специальных топливных насосов для авиации и космической техники. Практически все исследования основывались на физическом эксперименте – визуализации потока в модельном насосе в стробоскопическом освещении при различных режимах работы. Обработка фото- и видеосъёмок течения в шнеке при различных режимах работы по подаче, измерение полей скоростей и давлений перед шнеком дали возможность представить физическую картину течения в шнеке и разработать математическую модель этого течения на частичных подачах. Результаты теоретических расчетов, выполненные по этой модели, показали достаточно хорошую сходимость с экспериментальными данными. В дальнейшем созданная математическая модель широко использовалась в работах других авторов при определении геометрических размеров шнека и его кавитационных качеств.
В конечном итоге, физическая картина течения в шнеке на недогрузочных режимах, представленная на рис. 2, была теоретически обоснована, экспериментально подтверждена, и по ней были сделаны следующие выводы:
· при работе шнекоцентробежного насоса на подачах Q ≤ 0,5Qопт в каналах шнека появляются обратные токи (противотоки); возникают они на периферии входа в лопасть, оттесняют основной поток к оси и закручивают его;
· поток в шнеке существенно неосесимметричен, поэтому на границах между прямым потоком и обратным течением образуются локальные зоны с пониженным давлением.
· образование кавитационной каверны происходит в локальных зонах на периферии входных кромок;
· происходит нагрев перекачиваемой жидкости;
· образуется вихревой шнур во входном патрубке, заполненный газом и паром;
Рис. 2. Структура потока в шнеке при работе с противотоками
1 – профильная каверна;
2 – застойная зона (вихревой след);
3 – течение из вихревого следа вдоль основного потока;
6 – кавитационный вихрь в шнеках переменного хода.
В отличие от классических осевых рабочих колёс, режимы с противотоками для шнеков часто являются рабочими, т. е. эксплуатация шнеков практически всегда ведётся на разных стадиях кавитации и сопровождается дополнительным шумом, пульсациями потока, вибрацией корпуса и эрозионным износом. При снижении давления на входе в насос кавитация, существующая в зоне обратных токов, интенсивно развивается, в прямом потоке в каналах шнека кавитационная зона увеличивается и сопровождается уменьшением интенсивности обратных токов вплоть до их полного исчезновения; после этого происходит полный срыв. Самым опасным следствием кавитации в шнеке может быть возникновение пульсаций потока и автоколебаний, которые «раскачивают» всю систему и этот процесс становится неуправляемым.
ООО «СМЗ» в своих разработках конструкций нового поколения нефтяных насосов – консольных и двухопорных – применяет шнекоцентробежные ступени, но с ограничением рабочего диапазона подач в рамках, рекомендуемых по API 610, а именно: 0,7Qопт ≤ Qр ≤ 1,1Qопт.
Снижение частоты вращения является очень эффективным способом уменьшения воздействия кавитации, но этот способ не всегда оправдан, т. к. для достижения заданного напора необходимо увеличивать как число ступеней, так и наружный диаметр рабочих колес. Такое решение ведет к существенному ухудшению массогабаритных характеристик насоса, поэтому в каждом конкретном случае требует оптимизации вариантов.
Более оптимальным решением в высоконапорных многоступенчатых насосах является применение в качестве первой ступени двухпоточного рабочего колеса. Отечественным представителем такой конструкции является однокорусный нефтяной насос НТ 560/335-300 производства ОАО «Волгограднефтемаш» (рис. 3).
Рис. 3. Насос НТ 560/335-300
А самым оптимальным решением для такого случая является комбинация двух предшествующих – снижение частоты вращение и применение двухпоточной первой ступени. Такое решение реализовано, например, в двухкорпусных многоступенчатых насосах ADSL 8”х4 германской компании «RUHR PUMPEN» (рис. 4) и «Kirloskar 250/200» индийской компании «Kirloskar» (рис. 5).
Рис. 4. Насос ADSL 8”х4
Рис. 5. Насос «Kirloskar 250/200»
Указанные насосы при частоте вращения 1500 об/мин на подачах 350 м 3 /ч имеют значения допускаемого кавитационного запаса (Δhдоп) на уровне 2,0 м, что приемлемо для условий «печных» насосов. Усложнение конструкции оправдано обеспечением надежной и долговечной бескавитационной работы. Следует отметить, что такая конструктивная схема проточной части довольно распространенная у ведущих насосных компаний (рис. 6 – 9).
Рис. 6. Крупный питательный насос типа MBFP компании «FLOUSERWE»
Рис. 7. Насос типа WKTA Рис. 8. Конденсатный насос КсВ 200-130
германской компании «KSB»
Рис. 9. Насос НДМг 360-350
В 70-х годах ХХ века в ОАО «ВНИИАЭН» (г. Сумы) был создан конденсатный насос КсВ 200-130, в котором реализованы вышеописанные решения и дополнительно применены предвключенные рабочие колеса (рис. 9), что позволило получить значения Δhдоп также на уровне 2,0 м.
ООО «СМЗ» для аналогичных условий предложил двухкорпусный, однопоточный, 4-ступенчатый с предвключенным колесом насос НДМг 360-350 по типу ВВ5 API 610 (рис. 10), который при частоте вращения 1500 об/мин на подачах порядка 350 м 3 /ч имеет значения допускаемого кавитационного запаса (Δhдоп) на уровне 2,5 м.
Обобщая вышеприведенную информацию для условий работы высоконапорных «печных» насосов с подачами 300 – 600 м 3 /ч, можно предложить следующие рекомендации:
· конструкция насоса должна соответствовать типам ВВ2 или ВВ5 по ISO 13709;
· более предпочтительной считается конструкция многоступенчатого насоса по типу ВВ5 с двухпоточным рабочим колесом первой ступени, несмотря на усложнение конструкции насоса;
Вышеупомянутый насос НДМг 360-350 У2 и насосный агрегат АНДМг 360-350 У2 на его основе по Техническим условиям ТУ У29.1-34933255-013:2007 относятся к нефтяным насосам нового поколения, разработанным в ООО «СМЗ» по предложению Ассоциации нефтепереработчиков и нефтехимиков (г. Москва). Вся насосная продукция ООО «СМЗ» соответствует требованиями действующих нормативных документов Украины, России, Республики Беларусь, международных стандартов ISO 13709 и ISО 21049. Ниже приведена таблица поставленных насосных агрегатов по типу ВВ2 и ВВ5 на нефтеперерабатывающие объекты Украины, России и Беларуси, а на рис. 11 – насосный агрегат АНДМг 60-350 в установке замедленного коксования № 60 коксобитумного производства ООО «ЛУКОЙЛ-Волгограднефтепереработка».
Перечень насосных агрегатов
типа АНДг, АНДМг по ТУ У 29.1-34933255-013:2007
и АНМсг по ТУ У 29.1-34933255-014:2007,
поставленных на НПЗ и ГПЗ стран СНГ с 2006 по 2017 гг