что такое изотопы водорода

Изотопы водорода

Изото́пы водорода — разновидности атомов (и ядер) химического элемента водорода, имеющие разное содержание нейтронов в ядре. На данный момент известны 7 изотопов водорода.

Таблица изотопов водорода

Примечания

Полезное

Смотреть что такое «Изотопы водорода» в других словарях:

ИЗОТОПЫ ВОДОРОДА В ГЕОЛОГИИ — водород состоит из двух изотопов Н, или протия, и Н2, или дейтерия (Д), отношение которых в нормальном водороде Н/Д = 6000. Различие в массах изотопов водорода велико, и в ходе неорг. и орг. процессов происходит существенное фракционирование его… … Геологическая энциклопедия

изотопы — ов; мн. (ед. изотоп, а; м.). [от греч. isos равный и topos место] Спец. Разновидности одного и того же химического элемента, различающиеся массой атомов. Радиоактивные изотопы. Изотопы урана. ◁ Изотопный, ая, ое. И. индикатор. * * * изотопы (от… … Энциклопедический словарь

Изотопы гелия — разновидности атомов (и ядер) химического элемента гелия, имеющие разное содержание нейтронов в ядре. Всего известно на данный момент времени 8 изотопов, но только два из них стабильны. Природный гелий состоит из двух стабильных изотопов: 4He… … Википедия

ИЗОТОПЫ — ИЗОТОПЫ, хим. элементы, расположенные в одной и той же клетке периодической системы и следовательно обладающие одинаковым атомным номером или порядко вым числом. При этом И. не должны, вообще говоря, обладать одинаковым атомным весом. Различные… … Большая медицинская энциклопедия

ИЗОТОПЫ — разновидности данного хим. элемента, различающиеся по массе ядер. Обладая одинаковыми зарядами ядер Z, но различаясь числом нейтронов, И. имеют одинаковое строение электронных оболочек, т. е. очень близкие хим. св ва, и занимают одно и то же… … Физическая энциклопедия

Изотопы кислорода — В конце жизни массивной звезды, H оболочке и He оболочке Изотопы кислорода разновидности атомов (и ядер) … Википедия

ИЗОТОПЫ — (от изо. и греч. topos место), нуклиды одного хим. элемента, т. е. разновидности атомов определенного элемента, имеющие одинаковый атомный номер, но разные массовые числа. Обладают ядрами с одинаковым числом протонов и разл. числом нейтронов,… … Химическая энциклопедия

ИЗОТОПЫ — (от греч. ísos — одинаковый и tópos — место), разновидности одного химического элемента, занимающие одно и то же место в периодической системе элементов Д. И. Менделеева, то есть имеющие одинаковый заряд ядра, но отличающиеся массами… … Ветеринарный энциклопедический словарь

Атом водорода — Атом водорода физическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра может входить протон или… … Википедия

Источник

Изотопы водорода: свойства, характеристика и применение

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

Любой химический элемент имеет разновидности природного или искусственного происхождения, называемые изотопами. Различие между ними заключается в неодинаковом количестве нейтронов в ядрах и, следовательно, в атомном весе, а также в степени стабильности. Что касается количества протонов, то оно одинаково, благодаря чему элемент, собственно, и остается самим собой. В этой статье мы обратимся к изотопам водорода – самого легкого и распространенного элемента во Вселенной. Нам предстоит рассмотреть их свойства, роль в природе и область практического применения.

Сколько разновидностей имеет водород

Ответ на этот вопрос зависит от того, какие изотопы водорода имеются в виду.

Для этого элемента установлено три природных изотопных формы: протий – легкий водород, тяжелый дейтерий и сверхтяжелый тритий. Все они обнаружены в естественном виде.

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

Таким образом, всего на сегодняшний день у водорода известно семь изотопных разновидностей. На трех из них, имеющих практическое значение, мы и сосредоточим свое внимание.

Легкий водород

Это наиболее просто устроенный атом. Изотоп водорода протий с атомной массой 1,0078 а. е. м. обладает ядром, в состав которого входит только одна частица – протон. Поскольку он стабилен (теоретически время жизни протона оценивается не менее чем в 2,9×10 29 лет), то стабилен и атом протия. При записи ядерных реакций он обозначается как 1 H1 (нижний индекс – это атомный номер, то есть число протонов, верхний – общее число нуклонов в ядре), иногда просто p – «протон».

Легкий изотоп – это почти 99,99 % всего водорода; лишь чуть более одной сотой процента приходится на остальные формы. Именно протий вносит решающий вклад в распространенность водорода в природе: во Вселенной в целом – около 75 % массы барионного вещества и приблизительно 90 % атомов; на Земле – 1 % массы и целых 17 % атомов всех элементов, входящих в состав нашей планеты. Вообще, протий (точнее сказать, протон как один из главных компонентов Вселенной) смело можно назвать важнейшим элементом. Он обеспечивает возможность термоядерного синтеза в недрах звезд, в том числе и Солнца, и за счет него образуются прочие элементы. Кроме того, легкий водород играет важную роль в построении и функционировании живого вещества.

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

В молекулярной форме водород вступает в химические взаимодействия при высоких температурах, поскольку для расщепления его достаточно прочной молекулы нужно много энергии. Атомарный водород характеризуется очень высокой химической активностью.

Дейтерий

Тяжелый изотоп водорода имеет более сложно устроенное ядро, состоящее из протона и нейтрона. Соответственно атомная масса дейтерия вдвое больше – 2,0141. Принятое обозначение – 2 H1 или D. Эта изотопная форма также стабильна, так как в процессах сильного взаимодействия в ядре протон и нейтрон постоянно превращаются друг в друга, и последний не успевает претерпеть распад.

На Земле водород содержит от 0,011% до 0,016% дейтерия. Концентрация его различна в зависимости от среды: в морской воде этого изотопа больше, а в составе, например, природного газа – существенно меньше. На других телах Солнечной системы отношение дейтерия к легкому водороду может быть иным: так, лед некоторых комет содержит большее количество тяжелого изотопа.

Дейтерий плавится при 18,6 К (легкий водород – при 14 К), а кипит при 23,6 К (соответствующая точка протия – 20,3 К). Тяжелый водород проявляет, в общем, те же химические свойства, что и протий, образуя все характерные для этого элемента типы соединений, однако ему присущи и некоторые особенности, связанные с серьезной разницей в атомной массе – ведь дейтерий тяжелее в 2 раза. Следует заметить, что по этой причине изотопным формам водорода свойственны наибольшие химические различия из всех элементов. В целом для дейтерия характерны более низкие (в 5 – 10 раз) скорости протекания реакций.

Роль дейтерия в природе

Ядра тяжелого водорода принимают участие в промежуточных стадиях термоядерного цикла. Солнце светит благодаря этому процессу, на одном из этапов которого образующийся изотоп водорода дейтерий, сливаясь с протоном, рождает гелий-3.

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

Вода, в состав которой входит, кроме протия, один атом дейтерия, называется полутяжелой и имеет формулу HDO. В молекуле тяжелой воды D2O дейтерий полностью заменяет легкий водород.

Тяжелая вода характеризуется замедленным течением химических реакций, вследствие чего в больших концентрациях она вредна для живых организмов, особенно высших, таких как млекопитающие и в том числе человек. Если в составе воды четверть водорода замещена дейтерием, длительное употребление ее чревато развитием бесплодия, анемии и других заболеваний. При замещении 50% водорода млекопитающие погибают через неделю употребления такой воды. Что касается кратковременных повышений концентрации тяжелого водорода в воде, она практически безвредна.

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

Как получают тяжелый водород

Удобнее всего получать этот изотоп в составе воды. Есть несколько способов обогащения воды дейтерием:

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

Тритий

Сверхтяжелый изотоп водорода, в ядре которого наличествуют протон и два нейтрона, имеет атомную массу 3,016 – примерно втрое больше, чем у протия. Тритий обозначается символом Т либо 3 H1. Он плавится и кипит при еще более высоких температурах: 20,6 К и 25 К соответственно.

Это радиоактивный нестабильный изотоп с периодом полураспада 12,32 года. Образуется он при бомбардировке ядер атмосферных газов, например, азота, частицами космических лучей. Распад изотопа происходит с испусканием электрона (так называемый бета-распад), при этом один нейтрон в ядре претерпевает превращение в протон, а химический элемент повышает атомный номер на единицу, становясь гелием-3. В природе тритий присутствует в следовых количествах – его очень мало.

Сверхтяжелый водород образуется в тяжеловодных ядерных реакторах при захвате дейтерием медленных (тепловых) нейтронов. Часть его доступна для извлечения и служит источником трития. Кроме того, его получают как продукт распада лития при облучении последнего тепловыми нейтронами.

Тритий характеризуется малой энергией распада и представляет некоторую радиационную опасность только в случаях, когда попадает внутрь организма с воздухом или пищей. Для защиты кожных покровов от бета-излучения достаточно резиновых перчаток.

Применение изотопов водорода

Легкий водород используется во множестве отраслей: в химической промышленности, где с его помощью ведется производство аммиака, метанола, соляной кислоты и других веществ, в нефтепереработке и металлургии, где он необходим для восстановления тугоплавких металлов из оксидов. Также он применяется на некоторых стадиях производственного цикла (в производстве твердых жиров) в пищевой и косметической промышленности. Водород служит одним из видов ракетного топлива и используется в лабораторной практике в науке и на производстве.

Дейтерий незаменим в ядерной энергетике как прекрасный замедлитель нейтронов. Он применяется в этом качестве, а также как теплоноситель в тяжеловодных реакторах, позволяющих использовать природный уран, что снижает затраты на обогащение. Он также, наряду с тритием, является компонентом рабочей смеси в термоядерном оружии.

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

Химические свойства тяжелого водорода позволяют использовать его в производстве медицинских препаратов в целях замедления выведения их из организма. И, наконец, дейтерий (как и тритий) имеет перспективы в качестве топлива в термоядерной энергетике.

Итак, мы видим, что все изотопы водорода так или иначе «находятся при деле» как в традиционных, так и в высокотехнологичных, имеющих прицел на будущее отраслях техники, технологии и научных исследований.

Источник

Изотопы водорода

Известно несколько изотопов водорода: дейтерий ( 2 H) с одним протоном и одним нейтроном в ядре, тритий ( 3 H) с одним протоном и двумя нейтронами в ядре и очень неустойчивые тяжелые изотопы 4 H, 5 H, 6 H и 7 H. Ядра протия и дейтерия стабильны, а ядра трития подвергаются бета-распаду:

Предполагают, что эта реакция является главным источником изотопа гелия-3 в атмосфере.

Время жизни атомов остальных изотопов составляет ничтожные доли секунды.

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

Таблица изотопов водорода:

Содержание изотопов водорода в природе:

Массовая доля (в %) в природной смеси:

1 H – 99,9849 2 H – 0,0139 3 H – 0,0012

Нормальный изотопный состав природных соединений водорода соответствует отношению D : H=1 : 6800

3·10-18 % (мольные доли). Очевидно, он образуется в результате ядерных реакций, вызванных действием космических лучей.

Получение изотопов водорода

В настоящее время дейтерий получают ректификацией жидкого водорода и пот так называемому двухтемпературному сероводородному методу, в основе которого лежит реакция изотопного обмена:

Константа равновесия которой при 30 и 120 °C равна соответственно 2,31 и 1,86.

Тритий синтезируют, действуя на 6 Li3 нейтронами, получаемыми в ядерном реакторе:

Для водорода, как ни для какого другого элемента, относительное различие изотопных масс достигает значительной величины. Поэтому, несмотря на одинаковую электронную структуру, все изотопы заметно различаются не только физическими, но и химическими свойствами. Вследствие резкого преобладания протия влияние тяжелых изотопов сказывается незначительно и может быть зафиксировано лишь в очень точных экспериментах. Поэтому можно считать, что свойства природного водорода соответствуют свойствам чистого протия.

Небольшие различия свойств, называемые изотопным эффектом, обусловлены различием масс изотопных атомов, которое в первую очередь сказывается на частоте колебаний атомов в молекулах и твердых телах. Так, колебательная энергия молекул T2 и D2 меньше, чем H2. А это, в свою очередь, сказывается на термодинамических свойствах: теплоемкости, температуре плавления и кипения, энтальпии плавления и испарения, давлении насыщенного пара и т.д. Так, D2 по сравнению с обычным водородом обладает меньшей теплоемкостью, теплопроводностью и скоростью диффузии. Таким образом, для изотопных соединений характерна термодинамическая неравноценность, а, следовательно, неравноценность активных комплексов при химических реакциях, в результате чего имеет место различие в скоростях протекания реакций, т.е. наблюдается кинетический изотопный эффект. Он выражается отношением констант скоростей химических реакций для различных изотопных соединений. Например, отношение констант скоростей синтеза HBr и DBr равно 5. Такие значительные отличия физических и химических свойств изотопов одного и того же элемента уникальны и не имеют аналогов в периодической системе. Все это в какой-то мере оправдывает применение для каждого изотопа водорода собственного названия (особенно для протия и дейтерия).

Eдис(H2) = 436 кДж/мольdH-H = 0,07414 нм
Eдис(D2) = 439,56 кДж/мольdD-D = 0,07417 нм

пл(D2O) = 3,82 °Cкип(D2O) = 101,42 °Cρ = 1,1050 г/см 3 (20 °C)

Заметно с H2O различаются также энтальпия растворения солей, константы диссоциации кислот и другие характеристики растворов. Реакции в D2O идут медленнее, поэтому она является биологическим ядом.

Источник

Что такое изотопы водорода

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

Наука

что такое изотопы водорода. Смотреть фото что такое изотопы водорода. Смотреть картинку что такое изотопы водорода. Картинка про что такое изотопы водорода. Фото что такое изотопы водорода

Страницы

Изотопы ядер химического элемента водорода

Водород — самый распространённый элемент во Вселенной. На его долю приходится около 88,6 % всех атомов (около 11,3 % составляют атомы гелия, доля всех остальных вместе взятых элементов — порядка 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца

6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Водород — самый лёгкий газ, он легче воздуха в 14,4 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия:

Источник

Что такое изотопы водорода

Кандидат химических наук Александр Семёнов, главный эксперт АО «ВНИИНМ»

Прошло более 85 лет с момента открытия тяжёлых изотопов водорода, тем не менее интерес к ним с каждым годом возрастает.

Прошло более 85 лет с момента открытия тяжёлых изотопов водорода, тем не менее интерес к ним с каждым годом возрастает. Они дают надежду на выход из энергетического кризиса, но вместе с тем могут поставить под угрозу существование всего живого на нашей планете. Эту опасность человечество ощутило ещё полвека назад.

В 1931—1932 годах американский физикохимик Гарольд Юри и его коллеги сумели выделить из обыкновенного, всем известного водорода необычную фракцию. Водород из этой фракции имел большие атомный вес и плотность, давал в эмиссионном спектре ранее незнакомые линии, напоминающие классические линии спектра водорода, но в то же время немного смещённые. Это означало, что в природном водороде присутствуют атомы нескольких сортов, отличные по своим свойствам. Так был открыт первый из тяжёлых изотопов водорода — дейтерий. Вскоре в чистом виде была получена «тяжёлая вода» — оксид дейтерия. Она имела на 10% бóльшую плотность, более высокие температуры плавления и кипения, чем вода обычная, сложнее разлагалась электрическим током, что вскоре легло в основу одного из первых способов её получения. Длительный, многоступенчатый электролиз воды позволял сконцентрировать дейтерий и очистить его от лёгкого изотопа водорода.

Другой тяжёлый изотоп, тритий, открыли двумя годами позже в Кембриджском университете физики Эрнест Резерфорд, Марк Олифант и физикохимик Пауль Хартек при бомбардировке ядрами дейтерия мишеней из дейтерийсодержащих соединений. При этом исследователи впервые столкнулись с ядерным синтезом — искусственным превращением одних ядер в другие. Как оказалось, третий изотоп водорода сильно радиоактивен (период полураспада 12,32 года) и поэтому не может накапливаться в природе в сколько-нибудь значимых количествах.

За открытие дейтерия Г. Юри в 1934 году был награждён Нобелевской премией по химии.

Сколько же тяжёлых изотопов водорода в природе? Дейтерия в природе не так уж и мало. Его концентрация относительно протия составляет около 0,016% ат., но, учитывая широкую распространённость самого водорода, запасы дейтерия можно считать неисчерпаемыми. Наибольшие его количества находятся в Мировом океане; концентрация дейтерия в океанической воде также заметно выше, чем в водах рек, вследствие фракционирования изотопов воды в атмосферном водяном цикле (см. «Наука и жизнь» № 5, 2011 г., статья «Изотопная «дактилоскопия» для Шерлока Холмса»). Дейтерия в водах Мирового океана содержится даже больше, чем таких химических элементов, как фтор и йод. Природные вариации соотношения изотопов дейтерия и протия изменяются в диапазоне от 5500 до 11 000 атомов лёгкого водорода на один атом тяжёлого — это своеобразный рекорд среди природных вариаций всех стабильных изотопов. Наименьшие концентрации дейтерия наблюдаются в ледниках Антарктики, а наибольшие — в закрытых водоёмах пустыни Сахара.

Трития в природе в десятки и сотни триллионов раз меньше, чем дейтерия. Из-за радиоактивного распада тритий практически отсутствует в объектах, изолированных от атмосферы, например в углеводородах нефти и природного газа. Естественная наработка трития на Земле постоянно происходит при воздействии космических лучей на ядра азота и кислорода в верхних слоях атмосферы, поэтому наиболее богаты природным тритием осадки: дождь и снег. Такая естественная наработка трития находится в равновесии с его распадом и составляет не более 7 кг на весь земной шар.

Как разделить изотопы водорода? Известный учёный и публицист академик И. В. Петрянов-Соколов в конце 1960-х годов, проведя несложные математические выкладки, показал, насколько утопичен миф о «накоплении тяжёлой воды» в чайнике при длительном кипячении. Чтобы получить хотя бы литр воды с обогащением по дейтерию всего в 10 раз больше природного, пришлось бы испарить такое её количество, масса которого во много раз превышает массу всей Солнечной системы. Причина — близость физико-химических свойств обычной и дейтериевой воды, малая величина коэффициента разделения этих изотопов при дистилляции. Эффективность разделения может быть значительно повышена, если использовать многоступенчатые противоточные процессы. Наиболее освоены и промышленно реализованы такие методы получения дейтерия, как ректификация жидкого водорода, двухтемпературный сероводородный метод, и метод, основанный на химическом обмене в системе «вода—водород». При получении концентрированного трития приходится считаться с его радиоактивностью. В этом случае могут быть применены лишь те методы, в которых водород присутствует в молекулярном виде, так как и вода и сероводород, содержащие тритий, сильно разлагаются вследствие авторадиолиза. При получении дейтерия в качестве исходного сырья используют природную воду. Тритий может быть получен только в реакторах, при облучении нейтронами одного из изотопов лития.

Приятно отметить, что наше предприятие, АО «ВНИИНМ» им. академика А. А. Бочвара, которое ранее называлось НИИ-9, стоит у истоков создания всех отечественных тритиевых технологий. И реакторная наработка трития, и его очистка от сопутствующих примесей, и проблемы безопасности обращения с ним — все эти вопросы были в своё время успешно решены.

С самого начала Атомного проекта СССР проблема получения трития была по значимости на втором месте после изготовления ядерного заряда. Тритий предстояло нарабатывать реакторным путём из лёгкого изотопа лития — 6Li. Решение этой задачи было поручено коллективу НИИ-9, состоявшему из специалистов разных направлений. С их помощью в Советском Союзе создали тритиевое производство и ныне действующее на ФГУП «ПО «Маяк» (г. Озёрск).

Процессы разделения изотопов водорода в нашей стране большей частью разработаны в МХТИ (ныне — РХТУ им. Д. И. Менделеева). Там же в 1934 году А. И. Бродский получил первую советскую тяжёлую воду на специально разработанной лабораторной установке. Ежегодно кафедра технологии изотопов РХТУ даёт образование десяткам специалистов в этой области.

Наибольшее количество дейтерия в нашей стране, по-видимому, наработано методом низкотемпературной ректификации*, хотя на первом этапе для этого активно использовали очень энергозатратный способ получения тяжёлой воды электролизом. Производства дейтерия были распределены по всей стране, при этом ориентировались на наличие свободной электроэнергии и на возможность использования отходящего водорода, в частности на азотно-туковых заводах**. Одно из наиболее крупных производств дейтерия существовало в городе Чирчик; тяжёлую воду производили также в Днепродзержинске, Сталиногорске, Ленинграде, Норильске, Каменке, Березниках, Горловке и во многих других городах СССР. Меньшее распространение у нас получил двухтемпературный сероводородный метод производства тяжёлой воды, реализованный в городе Алексине, в то время как в мировом масштабе это один из основных методов её получения.

В нашей стране тяжёлую воду и дейтерий в настоящее время производит единственное предприятие — ПИЯФ им. Б. П. Константинова в Гатчине. В качестве исходного сырья используют запасы, накопленные в СССР. Из природного сырья дейтерий у нас в стране сейчас не выделяют.

Говоря об отечественных тритиевых технологиях, нельзя не упомянуть РФЯЦ-ВНИИЭФ (г. Саров), специалисты которого многие годы занимаются этим вопросом как в рамках оборонных задач, так и для нужд фундаментальной науки. В частности, они разработали тритиевую криомишень для получения сверхтяжёлых изотопов лёгких элементов, используемую в ОИЯИ (г. Дубна) на установке АКУЛИНА***, позволившую получить пятый изотоп водорода и до сих пор востребованную в фундаментальных исследованиях.

Где же применяют тритий и дейтерий? Так уж получилось, что открытые человеком колоссальные источники энергии деления и слияния ядер изначально предполагалось использовать для разрушения, и лишь потом было освоено их мирное использование. Кроме того, есть немало сфер применения этих изотопов, вообще не связанных с реакцией термоядерного синтеза.

Один из основных отечественных потребителей трития и производителей тритиевой продукции — ФГУП «ВНИИА им. Н. Л. Духова». На этом предприятии разрабатывают и производят нейтронные генераторы — ускорительные устройства, в которых ядра дейтерия, ударяясь в мишень, вступают в ядерную реакцию с содержащимся в ней тритием. При этом выделяющиеся нейтроны имеют постоянную энергию 14,1 МэВ, а само устройство очень удобно в эксплуатации. При отсутствии ускоряющего напряжения нейтроны не излучаются (в отличие от радиоизотопных нейтронных источников), а радиоактивный тритий находится внутри нейтронной трубки и в таком виде практически безопасен (его мягкое бета-излучение не способно пробить даже лист бумаги).

Нейтронные генераторы используются везде, где требуются компактные автономные источники нейтронов. Очень востребованы они у геологов, которые используют их при гео-физическом исследовании скважин методом нейтронного каротажа. (Слово «каротаж» происходит от французского слова «carotte» — морковь, что объясняется сходством формы керна, извлекаемого из земли, с морковью.) Метод нейтронной активации при этом позволяет оперативно получить полную информацию о химическом составе всех горных пород по глубине скважины, просто опустив в неё нейтронный зонд с детектором. Нейтронный генератор, изготовленный во ВНИИА, есть даже на марсоходе «Curiosity» («Кьюриосити»; в переводе с английского означает «любопытство»), в составе прибора ДАН (Детектора альбедных нейтронов), созданного в ИКИ РАН. Главная задача этого прибора — поиск воды на Марсе под толщей грунта, и уже имеются первые положительные результаты. ВНИИНМ внёс свой вклад в этот международный проект, поставив для ВНИИА мишени, насыщенные тритием.

То, что тритий является мягким бета-излучателем с высокой радиоактивностью, обусловливает его использование в радиоизотопных источниках света и электроэнергии. Во многих часах и приборах со светящимися стрелками применяют люминофоры, активированные тритием. Тритиевая подсветка на оружейных прицелах существенно повышает точность стрельбы в ночное время.

Сейчас АО «ВНИИНМ» по заказу Роскосмоса и под руководством ООО «Солар-Си» принимает участие в разработке отечественного бета-вольтаического источника питания на основе трития — «тритиевой батарейки». Этот источник питания нужен в тех ответственных узлах, где требуется стабильное бесперебойное электроснабжение в течение многих лет. Его создание решит актуальный вопрос импортозамещения, поскольку аналогичных источников электропитания Россия в настоящее время не производит.

Наибольшие количества дейтерия потребляются атомной энергетикой. Содержащая его тяжёлая вода — один из наилучших замедлителей нейтронов, настолько эффективный, что позволяет «зажечь» реакцию деления ядер даже в уране с природным обогащением по изотопу U-235, тогда как все остальные типы ядерных реакторов требуют обогащённого урана. Использование тяжёлой воды в качестве замедлителя позволяет повысить и степень выгорания ядерного топлива. По этому пути пошла атомная энергетика Канады, которая производит для себя и строит по всему миру на заказ тяжеловодные реакторы CANDU.

И дейтерий и тритий активно применяют при производстве меченых соединений. В этой продукции заинтересованы в первую очередь биологи и медики, которые с помощью изотопной метки определяют механизмы биохимических реакций. У нас меченные тритием соединения традиционно производят в Институте молекулярной генетики РАН.

Самая заманчивая перспектива использования дейтерия и трития — создание управляемой термоядерной реакции. Если это удастся, человечество будет иметь в своём распоряжении неисчерпаемый источник энергии. К сожалению, эта задача оказалась чрезвычайно сложной. Более полувека в мире ведутся разработки в этой области, но всё равно мы очень далеки от создания такого термоядерного реактора, который производил бы энергии больше, чем потреблял. В настоящее время весь мир с надеждой смотрит на международный термоядерный реактор ИТЭР, создаваемый в городе Кадараш на юге Франции. С его помощью физики надеются приблизиться к созданию энергетики, использующей энергию слияния ядер трития и дейтерия, а в перспективе перейти к использованию одного дейтерия, чьи ядра могут взаимодействовать между собой.

В своё время на нашем предприятии пересказывали забавную историю, как один из вновь назначенных чиновников, проходя по территории ВНИИНМ, потребовал, чтобы ему «показали тритий», и был очень возмущён тем, что этого не сделали. Ему объясняли, что тритий — это газ, который прозрачен и потому невидим, тем не менее новый босс сурово резюмировал: «Что-то у вас здесь нечисто!». Давайте попытаемся понять, можно ли изотопы водорода «увидеть»?

Что касается трития, то, несомненно, да — можно, и без всяких дополнительных устройств. В концентрированном виде этот изотоп водорода даёт голубое свечение вследствие самоионизации. Поток бета-излучения трития способен при длительном контакте изменить цвет стекла, он вызывает потемнение эмульсии фотопластинок, на чём основан классический метод авторадиографического анализа, в котором по интенсивности потемнения фотоэмульсии определяют концентрацию радиоактивного изотопа. В последнее время приобретает популярность новый метод анализа трития, позволяющий визуализировать его распределение по поверхности образцов, — радиолюминография. Метод основан на образовании скрытого изображения в некоторых люминофорах под воздействием радиации. Это изображение считывается специальным лазерным сканером, причём интенсивность люминесценции пропорциональна активности образца. Концентрация трития с помощью радиолюминографии может быть представлена довольно наглядно и красочно. Радиоактивность трития даёт возможность определять даже ничтожные его количества методом жидкостной сцинтилляции, в котором определяют интенсивность свечения некоторых жидкостей, пропорциональную содержанию в них радиоактивного изотопа, и газовыми ионизационными методами, использующими свойство газовых смесей менять свои вольт-амперные характеристики при воздействии на них ионизирующего излучения. Кроме того, и дейтерий и тритий, так же как самый лёгкий из изотопов водорода протий, можно без труда «увидеть», используя современные методы атомно-эмиссионной, ИК- и масс-спектрометрии.

Не стоит забывать и об опасности, которую несут тяжёлые изотопы водорода. Самая грозная и зловещая из них скрыта в термоядерном оружии, произведённом за десятилетия «холодной войны». В своё время в прессе звучали сообщения, что мощности накопленного вооружения достаточно, чтобы неоднократно уничтожить всё живое на нашей планете. Даже малая его часть в случае использования способна вызвать глобальную экологическую катастрофу, известную под названием «ядерная зима». Несомненно, важнейшая задача всего человечества — не допустить развития такого сценария в мировой истории.

Но даже тот тритий, который не используется в вооружении, представляет для человека существенную опасность, так как является высокотоксичным радиоактивным изотопом. Риск облучения персонала, контактирующего с тритием, очень высок в связи с тем, что этот изотоп не удерживается современными фильтрующими системами защиты органов дыхания и способен проникать через кожу. При этом в форме тритированной воды тритий в 10 000 раз токсичнее, чем в виде молекулярного водорода, так как пары тритированной воды уже при комнатной температуре практически мгновенно обменивают изотопы водорода, моментально попадая за счёт этого в организм человека. Значительная часть трития при переработке радиоактивных отходов сбрасывается в атмосферу или попадает в Мировой океан. И обращение с отходами, содержащими тритий (особенно с низкоактивными, которых очень много), до сих пор представляет собой серьёзную проблему, ожидающую своего решения.

Кто бы мог предугадать 100 лет назад, что самый первый и самый простой из химических элементов — водород преподнесёт нам столько сюрпризов, столько радости и страхов, надежд и разочарований? Сегодня хочется верить, что все знания, полученные человечеством, будут направлены только на созидание, а не на разрушение, а изотопы водорода со своими удивительными свой-ствами помогут нам ещё не раз заглянуть в сокровенные тайники Природы и сделать немало интересных и полезных открытий.

Автор выражает благодарность Г. М. Тер-Акопьяну (ОИЯИ), А. А. Юхимчуку (РФЯЦ-ВНИИЭФ), Л. А. Ривкису, М. И. Белякову, А. Н. Букину, А. С. Аникину, Н. Е. Забировой, А. В. Лизунову и всему тритиевому отделу АО «ВНИИНМ» им. академика А. А. Бочвара, а также специалистам кафедры технологии изотопов РХТУ им. Д. И. Менделеева, особенно М. Б. Розенкевичу и Ю. С. Паку, которые оказали помощь при подготовке материала.

Не только тяжёлые изотопы водорода имеют собственные красивые имена. Привычный нам самый лёгкий и распространённый изотоп водорода тоже имеет специальное обозначение — протий. Все три названия этих изотопов появились ещё до открытия трития, когда Г. Юри, Д. Мерфи и Ф. Брикведде 5 июня 1933 года предложили их в письме редактору научного журнала «The Journal of Chemical Physics». Названия изотопов водорода происходят от греческих слов «protos» (первый), «deuteros» (второй) и «tritos» (третий). Интересно отметить, что название «протий» менее известно широкой общественности, чем имена тяжёлых и намного более редких его «собратьев». В последнее время в интернете появились такие названия, как «квадий», «пентий», «гексий» и «септий», отнесённые к чрезвычайно короткоживущим изотопам водорода массой от 4 до 7 и с периодами полураспада 10 –22 — 10 –23 с. Однако, по-видимому, эти названия не имеют под собой основы и являются одним из «фейков» интернета. В частности, профессор Г. М. Тер-Акопьян, который с коллективом ОИЯИ (г. Дубна) впервые получил в 2001 году ядра пятого изотопа водорода, названия «пентий» ему не давал и никогда не слышал упоминания такого термина в научных публикациях и на конференциях.

Комментарии к статье

* Ректификация — разделение жидких смесей на практически чистые компоненты, отличающиеся температурами кипения, путём многократных испарений жидкости и конденсации паров. Разделение сжиженных газовых смесей ректификацией проводят при очень низких температурах под избыточным давлением.

** На азотно-туковых заводах из природного газа получают дешёвые азотные удобрения.

*** Название АКУЛИНА происходит от английского «accurate line» — аккуратная (прецизионная) линия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *