что такое измеримое множество
Измеримые множества
Смотреть что такое «Измеримые множества» в других словарях:
Измеримые функции — (в первоначальном понимании) функции f (x), обладающие тем свойством, что для любого t множество Et точек х, для которых f (x) ≤ t, измеримо по Лебегу (см. Мера множества). Это определение И. ф. принадлежит французскому математику А.… … Большая советская энциклопедия
Мера множества — У этого термина существуют и другие значения, см. Мера. Мера множества неотрицательная величина, интуитивно интерпретируемая как размер (объем) множества. Собственно, мера это некоторая числовая функция, ставящая в соответствие каждому… … Википедия
Неизмеримые множества — Мера Лебега на мера, являющаяся продолжением меры Жордана на более широкий класс множеств, была введена Лебегом в 1902 году. Содержание 1 Построение меры на прямой 1.1 Внешняя мера … Википедия
Мера множества — математическое понятие, обобщающее понятия длины отрезка, площади плоской фигуры и объёма тела на множества более общей природы. В качестве примера можно привести определение меры Лебега (введённой А. Лебегом в 1902) для ограниченных… … Большая советская энциклопедия
ЭРГОДИЧЕСКАЯ ТЕОРИЯ — Введение Э. т. (метрическая теория динамических систем) раздел теории динамических систем, изучающий их статистич. свойства. Возникновение Э. т. (1 я треть 20 в.) было стимулировано попытками доказать эргодическую гипотезу (термин введён П. и Т.… … Физическая энциклопедия
Внешняя мера — В математике, в частности в теории меры, внешняя мера это функция, определенная на всех подмножествах данного множества с действительным значением, что удовлетворяет нескольким дополнительным техническим условиям. Общая теория внешней меры… … Википедия
ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… … Энциклопедия Кольера
Мера Лебега — на мера, являющаяся продолжением меры Жордана на более широкий класс множеств, была введена Лебегом в 1902 году. Содержание 1 Построение меры на прямой 1.1 … Википедия
Формула включений-исключений — (или принцип включений исключений) комбинаторная формула, позволяющая определить мощность объединения конечного числа конечных множеств, которые в общем случае могут пересекаться друг с другом … Википедия
ДАРБУ СУММА — сумма специального вида. Пусть действительная функция f(x)определена и ограничена на отрезке [ а, b], его разбиение: Суммы наз. соответственно нижней и верхней интегральной Д. с. Для любых двух разбиений t и t отрезка [ а, b]справедливо… … Математическая энциклопедия
Измеримая функция
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами, в частности измеримыми пространствами.
Содержание
Определение
Пусть и
— два множества с выделенными алгебрами подмножеств. Тогда функция
называется
—измеримой, или просто измеримой, если полный прообраз любого множества из
принадлежит
, то есть
где означает полный прообраз множества
.
Замечания
Вещественнозначные измеримые функции
Пусть дана функция . Тогда данное выше определение измеримости эквивалентно любому из нижеследующих:
где обозначает любой интервал, открытый, полуоткрытый или замкнутый.
Связанные определения
Примеры
История
В 1901 году французский математик Лебег, на основе построенной им теории интеграла Лебега, поставил задачу: найти класс функций, более широкий, чем аналитические, однако при этом допускающий применение к нему многих аналитических методов. К этому времени уже существовала общая теория меры, разработанная Э. Борелем (1898), и первые работы Лебега опирались на борелевскую теорию. Однако в диссертации Лебега (1902) теория меры была существенно обобщена до «меры Лебега». Лебег определил понятия измеримых множеств, ограниченных измеримых функций и интегралов для них, доказал, что все «обычные» ограниченные функции, исследуемые в анализе, измеримы, и что класс измеримых функций замкнут относительно основных аналитических операций, включая операцию предельного перехода. В 1904 году Лебег обобщил свою теорию, сняв условие ограниченности функции.
Исследования Лебега нашли широкий научный отклик, их продолжили и развили многие математики: Э Борель, М. Рисс, Дж. Витали, М. Р. Фреше, Н. Н. Лузин, Д. Ф. Егоров и др. Было введено понятие сходимости по мере (1909), глубоко исследованы топологические свойства класса измеримых функций.
Труды Лебега имели ещё одно важное концептуальное значение: они были полностью основаны на спорной в те годы канторовской теории множеств, и плодотворность лебеговской теории послужила веским аргументом для принятия теории множеств как фундамента математики.
Литература
Полезное
Смотреть что такое «Измеримая функция» в других словарях:
ИЗМЕРИМАЯ ФУНКЦИЯ — 1) В первоначальном понимании И. ф. функция f(x)действительного переменного, обладающая тем свойством, что для любого амножество Е а точек х, для к рых f(x)Математическая энциклопедия
Функция (математ.) — Функция, одно из основных понятий математики, выражающее зависимость одних переменных величин от других. Если величины x и у связаны так, что каждому значению x соответствует определённое значение у, то у называют (однозначной) функцией аргумента … Большая советская энциклопедия
Функция — I Функция (от лат. functio совершение, исполнение) (философская), отношение двух (группы) объектов, в котором изменение одного из них ведёт к изменению другого. Ф. может рассматриваться с точки зрения следствий (благоприятных,… … Большая советская энциклопедия
Суммируемая функция — функция, к которой приложимо введённое А. Лебегом понятие Интеграла, то есть для которой интеграл Лебега, взятый по данному множеству, конечен. Функции эти, называемые также интегрируемыми по Лебегу, необходимо должны быть измеримыми (по… … Большая советская энциклопедия
Статистика (функция выборки) — У этого термина существуют и другие значения, см. Статистика (значения). Статистика (в узком смысле) это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения. В широком смысле термин (математическая)… … Википедия
БОРЕЛЕВСКАЯ ФУНКЦИЯ — В функция, функция, для к рой все подмножества вида ) из области ее определения являются борелевскими множествами. Другие назв. Б. ф.: функции, измеримые по Борелю, В измеримые функции. Операции сложения, умножения и предельного перехода, как и в … Математическая энциклопедия
КРИТИЧЕСКАЯ ФУНКЦИЯ — статистика, значения к рой суть условные вероятности отклонения проверяемой гипотезы при заданном значении результата наблюдения. Пусть X случайная величина, принимающая значения в выборочном пространстве распределение вероятностей к рой… … Математическая энциклопедия
ЭКСЦЕССИВНАЯ ФУНКЦИЯ — для марковского процесса аналог неотрицательной супергармонической функции. Пусть в измеримом пространстве задана однородная марковская цепь с вероятностями перехода за один шаг Измеримая относительно функция наз. эксцессивной функцией для этой… … Математическая энциклопедия
ИЗМЕРИМАЯ ФУНКЦИЯ
2) И. ф. на пространстве Xопределяется относительно выбранной системы измеримых множеств Ав X. Если A есть s-кольцо, то действительная функция f, заданная на пространстве X, наз. измеримой функцией, если
для любого действительного а, где
Лит.:[1] Xалмош П., Теория меры, пер. с англ.,М. 1953; [2] Данфорд Н., Шварц Д ж. Т., Линейные операторы, пер. с англ., т. 1, М., 1962; [3] Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 4 изд., М., 1976.
Полезное
Смотреть что такое «ИЗМЕРИМАЯ ФУНКЦИЯ» в других словарях:
Измеримая функция — Измеримые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами, в частности измеримыми пространствами. Содержание 1 Определение 2 Замечания … Википедия
Функция (математ.) — Функция, одно из основных понятий математики, выражающее зависимость одних переменных величин от других. Если величины x и у связаны так, что каждому значению x соответствует определённое значение у, то у называют (однозначной) функцией аргумента … Большая советская энциклопедия
Функция — I Функция (от лат. functio совершение, исполнение) (философская), отношение двух (группы) объектов, в котором изменение одного из них ведёт к изменению другого. Ф. может рассматриваться с точки зрения следствий (благоприятных,… … Большая советская энциклопедия
Суммируемая функция — функция, к которой приложимо введённое А. Лебегом понятие Интеграла, то есть для которой интеграл Лебега, взятый по данному множеству, конечен. Функции эти, называемые также интегрируемыми по Лебегу, необходимо должны быть измеримыми (по… … Большая советская энциклопедия
Статистика (функция выборки) — У этого термина существуют и другие значения, см. Статистика (значения). Статистика (в узком смысле) это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения. В широком смысле термин (математическая)… … Википедия
БОРЕЛЕВСКАЯ ФУНКЦИЯ — В функция, функция, для к рой все подмножества вида ) из области ее определения являются борелевскими множествами. Другие назв. Б. ф.: функции, измеримые по Борелю, В измеримые функции. Операции сложения, умножения и предельного перехода, как и в … Математическая энциклопедия
КРИТИЧЕСКАЯ ФУНКЦИЯ — статистика, значения к рой суть условные вероятности отклонения проверяемой гипотезы при заданном значении результата наблюдения. Пусть X случайная величина, принимающая значения в выборочном пространстве распределение вероятностей к рой… … Математическая энциклопедия
ЭКСЦЕССИВНАЯ ФУНКЦИЯ — для марковского процесса аналог неотрицательной супергармонической функции. Пусть в измеримом пространстве задана однородная марковская цепь с вероятностями перехода за один шаг Измеримая относительно функция наз. эксцессивной функцией для этой… … Математическая энциклопедия
ИЗМЕРИМОЕ РАЗБИЕНИЕ
Неизмеримые (и неизмеримые по mod 0) разбиения отнюдь не всегда являются «патологическими» объектами, как неизмеримые множества или функции. Напр., разбиение фазового пространства эргодической динамич. системы на ее траектории может иметь вполне «классическое» происхождение; просто его свойства отличны от свойств И. р.
Лит.:[1] Рохлин В. А., «Матем. сб.», 1949, т. 25, № 1, с. 107-50; [2] Гнеденко Б. В., Колмогоров А. Н., Предельные распределения для сумм независимых случайных величин, М.- Л., 1949; [3] Сазонов В. В., «Изв. АН СССР. Сер. матем.», 1962, т. 26, №3, с. 391-414.
Полезное
Смотреть что такое «ИЗМЕРИМОЕ РАЗБИЕНИЕ» в других словарях:
ЭНТРОПИЙНАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ — раздел эргодической теории, тесно связанный с теорией вероятностен и теорией информации. Природа этой связи в общих чертах такова. Пусть динамич. система (обычно измеримый поток или каскад )с фазовым пространством Wи инвариантной мерой Пусть … Математическая энциклопедия
Кратный интеграл — В математическом анализе кратным или многократным интегралом называют множество интегралов, взятых от переменных. Например: Замечание: кратный интеграл − это определенный интеграл, при его вычислении всегда получается число. Содержание 1… … Википедия
МЕРА — множества, обобщение понятия длины отрезка, площади фигуры, объема тела, интуитивно соответствующее массе множества при нек ром распределении массы по пространству. Понятие М. множества возникло в теории функций действительного переменного в… … Математическая энциклопедия
ДАРБУ СУММА — сумма специального вида. Пусть действительная функция f(x)определена и ограничена на отрезке [ а, b], его разбиение: Суммы наз. соответственно нижней и верхней интегральной Д. с. Для любых двух разбиений t и t отрезка [ а, b]справедливо… … Математическая энциклопедия
Мера множества — У этого термина существуют и другие значения, см. Мера. Мера множества неотрицательная величина, интуитивно интерпретируемая как размер (объем) множества. Собственно, мера это некоторая числовая функция, ставящая в соответствие каждому… … Википедия
Двойной интеграл — В математическом анализе кратным или многократным интегралом называют множество интегралов взятых от переменных. Например: Замечание: кратный интеграл − это определенный интеграл, при его вычислении всегда получается число. Содержание 1… … Википедия
КРАТНЫЙ ИНТЕГРАЛ — определенный интеграл от функции нескольких переменных. Имеются различные понятия К. и. (интеграл Римана, интеграл Лебега, интеграл Лебега Стилтьеса и др.). Кратный интеграл Римана вводится на основе Жордана меры Пусть Е измеримое по Жордану… … Математическая энциклопедия
ИЗМЕРИМАЯ ФУНКЦИЯ
2) И. ф. на пространстве Xопределяется относительно выбранной системы измеримых множеств Ав X. Если A есть s-кольцо, то действительная функция f, заданная на пространстве X, наз. измеримой функцией, если
для любого действительного а, где
Лит.:[1] Xалмош П., Теория меры, пер. с англ.,М. 1953; [2] Данфорд Н., Шварц Д ж. Т., Линейные операторы, пер. с англ., т. 1, М., 1962; [3] Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 4 изд., М., 1976.
Полезное
Смотреть что такое «ИЗМЕРИМАЯ ФУНКЦИЯ» в других словарях:
Измеримая функция — Измеримые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами, в частности измеримыми пространствами. Содержание 1 Определение 2 Замечания … Википедия
Функция (математ.) — Функция, одно из основных понятий математики, выражающее зависимость одних переменных величин от других. Если величины x и у связаны так, что каждому значению x соответствует определённое значение у, то у называют (однозначной) функцией аргумента … Большая советская энциклопедия
Функция — I Функция (от лат. functio совершение, исполнение) (философская), отношение двух (группы) объектов, в котором изменение одного из них ведёт к изменению другого. Ф. может рассматриваться с точки зрения следствий (благоприятных,… … Большая советская энциклопедия
Суммируемая функция — функция, к которой приложимо введённое А. Лебегом понятие Интеграла, то есть для которой интеграл Лебега, взятый по данному множеству, конечен. Функции эти, называемые также интегрируемыми по Лебегу, необходимо должны быть измеримыми (по… … Большая советская энциклопедия
Статистика (функция выборки) — У этого термина существуют и другие значения, см. Статистика (значения). Статистика (в узком смысле) это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения. В широком смысле термин (математическая)… … Википедия
БОРЕЛЕВСКАЯ ФУНКЦИЯ — В функция, функция, для к рой все подмножества вида ) из области ее определения являются борелевскими множествами. Другие назв. Б. ф.: функции, измеримые по Борелю, В измеримые функции. Операции сложения, умножения и предельного перехода, как и в … Математическая энциклопедия
КРИТИЧЕСКАЯ ФУНКЦИЯ — статистика, значения к рой суть условные вероятности отклонения проверяемой гипотезы при заданном значении результата наблюдения. Пусть X случайная величина, принимающая значения в выборочном пространстве распределение вероятностей к рой… … Математическая энциклопедия
ЭКСЦЕССИВНАЯ ФУНКЦИЯ — для марковского процесса аналог неотрицательной супергармонической функции. Пусть в измеримом пространстве задана однородная марковская цепь с вероятностями перехода за один шаг Измеримая относительно функция наз. эксцессивной функцией для этой… … Математическая энциклопедия