что такое испытания изоляции повышенным напряжением
Что такое испытания изоляции повышенным напряжением
Испытания изоляции повышенным напряжением позволяют выявить локальные дефекты, не обнаруживаемые иными методами; кроме того, такой метод испытаний является прямым способом контроля способности изоляции выдерживать воздействия перенапряжений и дает определенную уверенность в качестве изоляции. К изоляции прикладывается испытательное напряжение, превышающее рабочее напряжение, и нормальная изоляция выдерживает испытания, а дефектная пробивается.
При испытаниях повышенным напряжением используются три основных вида испытательных напряжений: повышенное напряжение промышленной частоты, выпрямленное постоянное напряжение и импульсное испытательное напряжение (стандартные грозовые импульсы).
Основным видом испытательного напряжения является напряжение промышленной частоты. Время приложения такого напряжения – 1 мин, и изоляция считается выдержавшей испытания, если за это время не наблюдалось пробоя или частичных повреждений изоляции. В некоторых случаях проводят испытания напряжением повышенной частоты (обычно 100 или 250 Гц).
При большой емкости испытуемой изоляции (при испытании кабелей, конденсаторов) требуется применение испытательной аппаратуры большой мощности, поэтому такие объекты чаще всего испытываются повышенным постоянным напряжением. Как правило, при постоянном напряжении диэлектрические потери в изоляции, приводящие к ее нагреву, на несколько порядков ниже, чем при переменном напряжении такого же эффективного значения; кроме того, и интенсивность частичных разрядов намного ниже. При таких испытаниях нагрузка на изоляцию существенно меньше, чем при испытаниях переменным напряжением, поэтому для пробоя дефектной изоляции требуется более высокое постоянное напряжение, чем испытательное переменное напряжение.
При испытаниях постоянным напряжением дополнительно контролируется ток утечки через изоляцию. Время приложения постоянного испытательного напряжения составляет от 5 до 15 мин. Изоляция считается выдержавшей испытания, если она не пробилась, а значение тока утечки к концу испытаний не изменилось или снизилось.
Третьим видом испытательного напряжения являются стандартные грозовые импульсы напряжения с фронтом 1,2 мкс и длительностью до полуспада 50 мкс. Испытания импульсным напряжением производят потому, что изоляция в процессе эксплуатации подвергается воздействию грозовых перенапряжений со схожими характеристиками. Воздействие грозовых импульсов на изоляцию отличается от воздействия напряжения частотой 50 Гц из-за гораздо большей скорости изменения напряжения, приводящей к другому распределению напряжения по сложной изоляции типа изоляции трансформаторов; кроме того, сам процесс пробоя при малых временах отличается от процесса пробоя на частоте 50 Гц, что описывается вольт-секундными характеристиками. По этим причинам испытаний напряжением промышленной частоты в ряде случаев оказывается недостаточно.
Воздействие грозовых перенапряжений на изоляцию часто сопровождается срабатыванием защитных разрядников, срезающих волну перенапряжения через несколько микросекунд после ее начала, поэтому при испытаниях используют импульсы срезанные через 2–3 мкс после начала импульса (срезанные стандартные грозовые импульсы). Амплитуда импульса выбирается исходя из возможностей оборудования, защищающего изоляцию от перенапряжений, с некоторыми запасами и исходя из возможности накопления скрытых дефектов при многократном воздействии импульсных напряжений. Конкретные величины испытательных импульсов определяются по ГОСТ 1516.1-76.
Испытания внутренней изоляции проводят трех ударным методом. На объект подается по три импульса положительной и отрицательной полярности, сначала полные, а затем срезанные. Интервал времени между импульсами – не менее 1 мин. Изоляция считается выдержавшей испытания, если во время испытания не произошло ее пробоев и не обнаружено повреждений. Методика обнаружения повреждений довольно сложна и обычно проводится осциллографическими методами.
Внешняя изоляция оборудования испытывается 15 ударным методом, когда к объекту с интервалом не менее одной минуты прикладывается по пятнадцать импульсов обеих полярностей, как полных, так и срезанных. Изоляция считается выдержавшей испытания, если в каждой серии из пятнадцати импульсов было не более двух полных разрядов (перекрытий).
Все виды испытаний можно разделить на три основные группы, различающиеся по назначению и соответственно по объему и нормам:
· испытания новых изделий на заводе-изготовителе;
· испытания после прокладки или монтажа нового оборудования, испытания после капитального ремонта;
· периодические профилактические испытания.
Испытательные напряжения для нового оборудования на заводах-изготовителях определяются ГОСТ 1516.2-97, а при профилактических испытаниях величины испытательных напряжений принимаются на 10 –15% ниже заводских норм. Этим снижением учитывается старение изоляции и ослабляется опасность накопления дефектов, возникающих при испытаниях.
Контроль изоляции повышенным напряжением в условиях эксплуатации проводится для некоторых видов оборудования (вращающиеся машины, силовые кабели) с номинальным напряжением не выше 35 кВ, поскольку при более высоких напряжениях испытательные установки слишком громоздки.
Кабели. Испытательные напряжения для кабелей устанавливаются в соответствии с ожидаемым уровнем внутренних и грозовых перенапряжений.
На заводах-изготовителях маслонаполненные кабели и кабели с маловязкой пропиткой испытывают повышенным напряжением промышленной частоты (около 2,5 Uном). Кабели с вязкой пропиткой и газовые кабели для предотвращения повреждения изоляции испытывают выпрямленным напряжением порядка (3,5..4) Uном, где Uном – линейное напряжение при рабочих напряжениях 35 кВ и менее.
Кроме того, измеряют сопротивление изоляции, а при рабочих напряжениях 6 кВ и более измеряют сопротивление изоляции и tgδ.
После прокладки кабеля, после капитального ремонта и во время профилактических испытаний изоляцию кабелей испытывают повышенным выпрямленным напряжением. Время испытаний для кабелей напряжением 3–35 кВ составляет 10 мин для кабелей после прокладки и 5 мин после капитального ремонта и во время профилактических испытаний. Периодичность профилактических испытаний составляет от двух раз в год до одного раза в три года для разных кабелей. При испытаниях контролируется ток утечки, значения которого лежат в пределах от 150 до 800 мкА/км для нормальной изоляции. До и после испытаний измеряется сопротивление изоляции.
Если изоляция нейтрали и линейного вывода одинакова, то при испытаниях повышенным переменным напряжением оба конца испытуемой обмотки изолируются и на обмотку подается напряжение от постороннего источника. Если уровень изоляции нейтрали понижен, то испытания проводятся индуктированным напряжением повышенной частоты (до 400 Гц) с тем, чтобы можно было бы подавать напряжение порядка 2 Uном. Нейтраль при этом заземляется или на нее подается постороннее напряжение той же частоты. Поскольку ЭДС самоиндукции в обмотке пропорциональна частоте, то при той же максимальной индукции можно приложить повышенное, по сравнению с рабочим, испытательное напряжение.
При испытаниях изоляции должна быть испытана поочередно каждая электрически независимая цепь или параллельная ветвь (в последнем случае – при наличии полной изоляции между ветвями), а испытательное напряжение прикладывается между выводом и заземленным корпусом, все другие обмотки заземляются. Измерения сопротивления изоляции проводят до и после испытаний повышенным напряжением.
Перед первым включением вновь смонтированного трансформатора измеряют пробивное напряжение трансформаторного масла, сопротивление изоляции и коэффициент абсорбции, отношение C2/C50, tgδ (значение которого сравнивают с результатами заводских испытаний).
Во время периодических профилактических испытаний проводят те же испытания, что и перед первым включением, но допустимые значения tgδ при этом увеличены. Испытания изоляции повышенным напряжением при профилактических испытаниях предполагаются для обмоток напряжением до 35 кВ, значения испытательных напряжений при этом снижаются до 0,85-0,9 значения заводского испытательного напряжения.
Периодичность профилактических испытаний для разных трансформаторов колеблются от одного раза в год до одного раза в четыре года.
5.1. Нормируемые величины [1]
Испытания электрооборудования повышенным напряжением проводятся перед приемкой в эксплуатацию в сроки, предусмотренные графиком планово-предупредительных ремонтов и профилактических испытаний электрооборудования.
Нормы, условия испытаний и порядок их проведения представлены в таблице 1.
Таблица 1. Нормы, условия испытаний повышенным напряжением и указания их проведению
Испытание изоляции повышенным напряжением
Электрическая прочность изоляции определяется ее способностью длительно выдерживать рабочее напряжение. Уменьшение электрической прочности вызывается в большинстве случаев увлажнением и местными дефектами изоляции. Обычно такими дефектами являются газовые (воздушные) включения в твердом или жидком диэлектрике.
За счет того, что электрическая прочность газа во включении ниже, чем у основной изоляции, создаются условия для возникновения пробоя или перекрытия изоляции в месте дефекта — частичного разряда. В свою очередь, частичные разряды вызывают дальнейшее разрушение изоляции. Частичным разрядом называют как скользящий (поверхностный) разряд, так и пробой отдельных зон или элементов изоляции.
Для определения запаса электрической прочности изоляции производится испытание ее повышенным напряжением. Испытательное напряжение, значительно превышающее рабочее, прикладывается в течение времени, достаточного для развития разряда в местном дефекте вплоть до пробоя. Таким образом, приложение повышенного напряжения позволяет не только выявить дефекты, но и гарантировать необходимый уровень электрической прочности изоляции в период ее эксплуатации.
Испытанию изоляции повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами, описанными ранее. Изоляция может быть подвергнута испытанию повышенным напряжением только при положительных результатах предшествующих проверок.
Изоляция считается выдержавшей испытание повышенным напряжением в том случае, если не было пробоев, частичных разрядов, выделений газа или дыма, резкого снижения напряжения и возрастания тока через изоляцию, местного нагрева изоляции.
В зависимости от вида оборудования и характера испытания изоляция может быть испытана приложением повышенного напряжения переменного тока или выпрямленного напряжения. В тех случаях, когда испытание изоляции производится как переменным, так и выпрямленным напряжением, испытание выпрямленным напряжением должно предшествовать испытанию переменным напряжением.
Испытание изоляции повышенным напряжением переменного тока
Испытание повышенным напряжением переменного тока промышленной частоты производится посредством повышающего трансформатора с регулировочным устройством на стороне низшего напряжения. Схема установки должна содержать также выключатель питания с видимым разрывом и максимальную токовую защиту для отключения питания трансформатора при пробое или перекрытии изоляции объекта, например рубильник и предохранитель или автоматический выключатель со снятой крышкой. Уставка срабатывания защиты должна превышать ток, потребляемый из сети при максимальном значении испытательного напряжения на объекте, не более чем в два раза.
В качестве испытательного напряжения используется обычно напряжение промышленной частоты. Время приложения испытательного напряжения принято равным 1 мин для главной изоляции и 5 мин для межвитковой. Такая продолжительность приложения испытательного напряжения не сказывается на состоянии изоляции, не имеющей дефектов, и достаточна для осмотра находящейся под напряжением изоляции.
Скорость повышения напряжения до одной трети испытательного значения может быть произвольной, в дальнейшем испытательное напряжение следует повышать плавно, со скоростью, допускающей визуальный отсчет на измерительных приборах. При испытании изоляции электрических машин время повышения напряжения от половинного до полного значения должно быть не менее 10 с.
После установленной продолжительности испытания напряжение плавно снижается до значения, не превышающего одной трети испытательного, и отключается. Резкое снятие напряжения допускается в тех случаях, когда это необходимо для безопасности людей или сохранности оборудования. Под продолжительностью испытания подразумевается время приложения полного испытательного напряжения.
Для предотвращения недопустимых перенапряжений при испытаниях (из-за высших гармоник в кривой испытательного напряжения) испытательная установка должна быть по возможности включена на линейное напряжение сети. Форму кривой напряжения можно контролировать электронным осциллографом.
Испытательное напряжение, за исключением ответственных испытаний (генераторов, крупных двигателей и т. д.), измеряют на стороне низкого напряжения. При испытании объектов с большой емкостью напряжение на высокой стороне испытательного трансформатора может несколько превышать расчетное по коэффициенту трансформации за счет емкостного тока.
При ответственных испытаниях испытательное напряжение измеряют на высокой стороне испытательного трансформатора с помощью трансформаторов напряжения или электростатических киловольтметров.
В тех случаях, когда одного трансформатора напряжения для измерения испытательного напряжения недостаточно, допускается последовательное соединение двух однотипных трансформаторов напряжения. Применяют также дополнительные сопротивления к вольтметрам.
Схема испытания изоляции электрооборудования повышенным напряжением переменного тока приведена на рис. 1.
Рис. 1. Схема испытания изоляции повышенным напряжением переменного тока.
Перед подачей напряжения на испытываемый объект полностью собранную схему опробуют вхолостую и проверяют напряжение пробоя шаровых разрядников.
В качестве испытательных трансформаторов, кроме специальных, можно использовать силовые трансформаторы и трансформаторы напряжения.
Широко применяются измерительные трансформаторы напряжения типа НОМ. Их максимальная мощность, указываемая в паспортных данных и обусловленная обеспечением соответствующего класса точности, сравнительно невелика. Однако по условиям нагрева они допускают кратковременную перегрузку от 3- до 5-кратной по отношению к значению тока, вычисленному по максимальной паспортной мощности. Кроме того, эти трансформаторы могут быть перевозбуждены по напряжению на 30—50 %, можно включить два трансформатора последовательно.
Рис. 2. Схемы последовательного включения испытательных трансформаторов: ТL1 и TL2 — испытательные трансформаторы; TL3 — изолирующий трансформатор.
Включение двух трансформаторов по схеме рис. 2а применимо в случае, когда оба электрода объекта могут быть изолированы от земли. Испытательное напряжение равно сумме напряжений обоих трансформаторов; номинальные значения этих напряжений могут быть различными. При каскадном соединении трансформаторов (рис. 2а, б) один из них TL2 находится под высоким потенциалом и корпус его должен быть изолирован от земли.
Возбуждение этого трансформатора может производиться с помощью специальной обмотки первого трансформатора TL1 каскада (рис. 2б) или непосредственно от его вторичной обмотки, если максимальное значение напряжения на ней не превысит допустимого для первичной обмотки трансформатора TL2. Если надежно изолировать трансформатор TL2 не представляется возможным, используют вспомогательный изолирующий трансформатор TL3 (рис. 2в).
Силовые трансформаторы применяются с получением фазного или линейного напряжения. В первом случае нейтраль обмотки ВН заземляется, а первичное напряжение подается на нуль и соответствующий фазный вывод обмотки НН.
Мощность трансформатора принимается при этом равной 1/3 номинальной. Линейное напряжение используется при условии, что изоляция нейтрали рассчитана на полное фазное напряжение. В этом случае один или два соединенных между собой вывода ВН заземляются. мощность трансформатора принимается равной 2/3 номинальной. Силовые трансформаторы допускают кратковременную перегрузку по току в 2,5—3 раза.
Регулировочное устройство должно обеспечивать изменение напряжения трансформатора от 25—30 % до полного значения испытательного напряжения. Регулирование должно быть практически плавным, со ступенями, не превышающими 1—1,5 % от испытательного напряжения. Разрывы цепи при регулировании недопустимы.
Напряжение должно быть близко к синусоидальному с содержанием высших гармонических не более 5 %. При использовании регуляторов с малым внутренним сопротивлением, например автотрансформаторов, это требование практически выполняется. Применение дросселей или реостатов для этой цели не рекомендуется.
Испытание изоляции выпрямленным напряжением
Применение выпрямленного испытательного напряжения позволяет значительно уменьшить мощность испытательной установки, делает возможным испытание объектов с большой емкостью (кабелей конденсаторов и др.), позволяет контролировать состояние изоляции по измеряемым токам утечки.
При испытании изоляции выпрямленным напряжением, как правило, применяются схемы однополупериодного выпрямления. На рис. 3 приведена принципиальная схема испытания изоляции выпрямленным напряжением.
Рис. 3. Схема испытания изоляции выпрямленным напряжением
Методика испытания изоляции выпрямленным напряжением аналогична методике при испытаниях переменным напряжением. Дополнительно ведется контроль за током утечки.
Измерение испытательного напряжения, как правило, осуществляется с помощью вольтметра, включенного на стороне низкого напряжения испытательного трансформатора (с пересчетом по коэффициенту трансформации).
При испытаниях объектов с большой емкостью (силовые кабели, конденсаторы, обмотки крупных электрических машин) заряженная до испытательного напряжения емкость объекта имеет большой запас энергии, мгновенный разряд которой может привести к разрушению аппаратуры испытательной установки. Поэтому разряжать испытываемый объект следует так, чтобы разрядный ток не проходил через измерительный прибор.
Заряд емкости даже после кратковременного наложения заземления может сохраняться длительно и представлять опасность для жизни персонала. Поэтому после того как испытываемый объект разряжен с помощью разрядного устройства, он должен быть наглухо заземлен.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Методика испытания повышенным напряжением
Электроустановочные изделия и силовое оборудование относятся к инженерным системам, эксплуатация которых неизменно сопряжена с повышенной опасностью. Перед вводом в эксплуатацию, кабельная проводка с включёнными в неё приборами и распределительными щитками должна подвергаться ряду тестов. Одними из наиболее уязвимых частей электроустановочных изделий являются кабели, которые могут подвергаться воздействию грозовых разрядов. Сечение токопроводящей жилы должно быть подобрано таким образом, чтобы с запасом пропускать планируемый ток с заданным напряжением, а также импульсные скачки. В связи с этим, наиболее эффективным методом контроля корректной подборки сечения является испытание изоляции повышенным напряжением.
Зачем проводится проверка повышенным напряжением
Испытание повышенным напряжением проводится для проверки одновременного выполнения всех перечисленных ниже условий:
На практике, данный метод может применяться только при рабочем напряжении в сети не выше 35 тыс. вольт., так как генерирующая установка имеет свои эксплуатационные ограничения и предельные габариты.
Виды испытаний повышенным напряжением
Существует несколько видов испытаний повышенным напряжением промышленной частоты, каждый из которых имеет свои отличительные особенности и проводится в разных условиях. Ниже каждая из методик описывается подробно.
Метод промышленной частоты с использованием постоянного тока
Является главным видом испытаний кабельной продукции в установках с повышенным уровнем ответственности. Особенности проведения инспекции качества кабельной продукции заключается в соблюдении следующих правил и регламентов:
Повышенное испытательное напряжение показывает не только способность кабельной изоляции сопротивляться непроектным воздействиям, но также не терять свои эксплуатационные свойства после снятия нагрузки. При наличии следов пробоя, кабельная жила считается непригодной для эксплуатации. Методика испытания повышенным напряжением промышленной частоты позволяет максимально точно определить прочностные и функциональные характеристики провода.
Метод грозовых импульсов
Ещё один широко применяемый способ, который заключается в кратковременном воздействии на кабельную жилу повышенным напряжением. В ходе обследования выполняется следующий алгоритм:
Данная методика редко используется самостоятельно, но она помогает получить максимально точный результат в дополнение к испытанию изоляции повышенным напряжением промышленной частоты.
Метод срезанных импульсов
Большинство промышленных электроустановочных изделий снабжается защитным оборудованием, которое разряжает импульсные скачки, предотвращая повреждение обмотки и перегрев кабельной жилы. Чтобы определить порог срабатывания такой защиты, применяется испытание методом срезанных импульсов:
Испытания признаются состоявшимися в тех случаях, когда после всех воздействий обмотка кабеля сохраняет целостность изоляции без пробоев и перегрева.
Особенности подключения оборудования
Испытания проводятся на специальном стенде после сборки цепи, в которую включается необходимое метрологическое оборудование, прошедшее поверку и аккредитованное к применению на территории нашей страны. При подключении установок выдерживается ряд регламентных требований:
По результатам испытаний все зафиксированные показатели переносятся в протокол установленной формы. Документ оформляется для каждого вида обследований, а также для любой модификации электроустановочного изделия. На основе протоколов создаётся заключение с выводами и рекомендациями. Заключение утверждается аттестованными экспертами, а также печатью испытательной лаборатории.
Оборудование
При проведении испытаний повышенным напряжением используются специальные метрологические установки повышенной точности. Для успешного тестирования кабельной продукции и электрооборудования применяются следующие виды лабораторных приборов:
Изначально показания метрологических приборов должны быть на нуле. Оборудование должно быть исправно, поверено и иметь соответствующей документ об аккредитации государственными надворными органами. В соответствии с ПУЭ, без наличия поверочных документов, испытания признаются несостоявшимися.
Периодичность
В соответствии с требованиями нормативной документации, для обеспечения безопасной эксплуатации электроустановочных приборов, испытания должны проводиться со следующей периодичностью:
Если на объекте возникает какая-либо внештатная ситуация – пожар, перепад напряжения, отключение напряжения, как правило, назначаются внеочередные проверки оборудования с испытанием изоляции кабеля методом повышенных напряжений.
Правила безопасности проведения испытаний
Испытания данной категории сопряжены с повышенной опасностью. Это означает, что при их проведении должны выполняться определённые требования по обеспечению техники безопасности персонала и сохранности оборудования:
При проведении лабораторных тестов среди персонала выделяется лицо, состоящее в штате компании, на которое оформляется приказ о возложении ответственности за технику безопасности. При возникновении внештатной ситуации, это лицо должно предпринять все зависящие от него действия по предотвращению поражения электрическим током остальных участников эксперимента.
Документирование результатов проверки
По результатам испытаний силами экспертов проводится камеральная обработка полученных данных. На основе их анализа оформляется официальный протокол. Документ издаётся на бланке установленной формы и включает в себя следующие сведения:
В конце протокола ставится дата его оформления, а также личные подписи всех аттестованных экспертов, принимавших участие в испытаниях. Документ утверждается синей печатью организации, с которой был подписан договор. После утверждения документа ответственность за безопасность эксплуатации электроустановочного оборудования ложится на лабораторию, выдавшую заключение.
Заключение
Методика лабораторных тестов изоляции силовых кабелей повышенным напряжением подразумевает моделирование реальных эксплуатационных условий, которые могут возникнуть при резком импульсном воздействии. Обследования проводятся методом промышленной частоты, а, для достижения повышенной точности результата, дополняются методом грозового импульса. При проведении испытаний используются специальные промышленные установки, обеспечивающие задание предельных параметров. На основе экспертизы оборудования оформляется заключение, в котором указывается возможность его безопасной эксплуатации с рабочими показателями напряжения, в соответствии с проектом.