что такое искусственный заземлитель определение
Заземлитель
Функциональность заземлителя определяется прежде всего сопротивлением заземления, которое должны быть минимально низким. Для этого используются различные методы, в том числе глубинные заземлители.
Глубинный заземлитель
Использование глубинного заземлителя позволяет существенно уменьшить площадь, занимаемую заземлителем на поверхности, а также повысить его эффективность (уменьшить сопротивление заземления), так как электрод(ы) такого заземлителя находится в слоях грунта с меньшим удельным сопротивлением, чем у поверхностных слоев (за счет большей влажности и плотности почвы).
В настоящем, с широким распространением модульного заземления, монтаж глубинных заземлителей стал простым и быстрым без привлечения спецтехники. Простота позволяет производить работы в подвальных помещениях.
Естественный заземлитель
Естественными заземлителями называют металлические сооружения, имеющие контакт с грунтом и которые можно использовать для заземления.
В качестве естественных заземлителей используют например:
Естественные заземлители должны быть связаны с объектом не менее чем двумя заземляющими проводниками, присоединенными к такому заземлителю в разных местах.
В качестве естественных заземлителей нельзя использовать :
В тех случаях, когда естественные заземлители отсутствуют либо имеют слишком высокое сопротивление заземления, используют искусственные заземлители.
Искусственный заземлитель
Искусственными заземлителями называются устанавливаемые в земле металлические конструкции, специально предназначенные для целей заземления.
В качестве искусственных заземлителей применяют:
Для защиты заземлителя от коррозии используются оцинкованные или омедненные (лучше) электроды. Примером искусственного заземлителя на основе омедненных электродов является модульное заземление ZANDZ.
Необходимость электрически соединять контур заземления молниезащиты, установленной непосредственно на здании, с контуром заземления для электрических установок, прописана в действующих нормативных документах (ПУЭ). Цитируем дословно: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими». Как раз 2-я и 3-я категории являются наиболее распространёнными, в 1-ю категорию входят взрывоопасные объекты к молниезащите которых предъявляются повышенные требования. Тем не менее, наличие оборота «как правило» подразумевает возможность наличия исключений.
Современные офисные, а теперь и жилые здания содержат множество инженерных систем жизнеобеспечения. Сложно представить отсутствие систем вентиляции, пожаротушения, видеонаблюдения, контроля доступа и т.д. Естественно, у проектировщиков таких систем есть опасения, что в результате действия молнии “нежная” электроника выйдет из строя. При этом некоторые сомнения у специалистов-практиков вызывает целесообразность соединения контуров двух видов заземлений и возникает желание «в рамках закона» запроектировать электрически не связанные заземления. Возможен ли такой подход и повысит ли он на самом деле безопасность эксплуатации электронных устройств?
Зачем нужно объединение контуров заземления?
При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдёт её сама». Вот почему электрическое объединение заземлений обязательно.
По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путём соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жёсткие шины и т.п.).
Одно общее или отдельные заземляющие устройства?
К заземлителям для электрических установок и молниезащиты предъявляются разные требования, и это обстоятельство может стать источником некоторых проблем. Заземлитель для молниезащиты должен отвести в землю за короткое время большой электрический заряд. При этом согласно «Инструкции по молниезащите РД 34.21.122-87» нормируется конструктив заземлителя. Для молниеотвода, согласно этой инструкции, требуется не менее двух вертикальных, или лучевых горизонтальных, заземлителей, за исключением 1 категории молниезащиты, когда таких штырей нужно три. Вот почему наиболее распространённый вариант заземления для молниеотвода — два или три штыря длиной около 3 м каждый, соединённых металлической полосой, заглублённой не менее чем на 50 см в землю. При использовании деталей производства ZANDZ такой заземлитель получается долговечным и простым в монтаже.
Совсем другое дело — заземление для электрических установок. В обычном случае оно не должно превышать 30 Ом, а для ряда применений, описанных в ведомственных инструкциях, например, для аппаратуры сотовой связи — 4 Ом или ещё меньше. Такие заземлители представляют собой штыри длиной более 10 м или даже металлические пластины, помещённые на большую глубину (до 40 м), где даже зимой нет промерзания грунта. Создать такой молниеотвод с заглублением двух и более элементов на десятки метров слишком затратно.
Если параметры грунта и предъявляемые к сопротивлению требования позволяют выполнить единое заземление в здании для молниеотвода и заземления электрических установок, нет никаких препятствий его сделать. В остальных случаях делают различные контуры заземления для молниеотвода и электрических установок, но обязательно соединяют их электрически, желательно, в земле. Исключением является использование некоторого специального оборудования особенно чувствительного к помехам. Например, звукозаписывающая аппаратура. Такое оборудование требует отдельного, так называемого, технологического заземляющего устройства, что прямым образом указывается в инструкциях. В таком случае выполняется отдельное заземляющее устройство, которое соединяется с системой уравнивания потенциалов здания через главную заземляющую шину. А, если такое соединение не предусматривается руководством по эксплуатации аппаратуры, то применяются специальные меры по исключению одновременного прикосновения людей к указанной аппаратуре и металлическим частям здания.
Электрическое соединение заземлений
Схема с несколькими заземлениями, соединёнными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.
Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.
Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения.
Выводы
Рекомендация ПУЭ об электрическом соединении всех контуров заземлений в здании является обоснованной и при правильной реализации не только не создает опасность для сложной электронной аппаратуры, а, наоборот, защищает её. В том случае, если аппаратура чувствительна к помехам от молний и требует собственного отдельного заземлителя, можно установить отдельное технологическое заземление в соответствии с прилагаемому к аппаратуре руководству. Система уравнивания потенциалов, объединяющая разрозненные контура заземлений, должна обеспечить надёжное электрическое соединение и во многом определяет общий уровень электробезопасности на объекте, поэтому ей должно быть уделено особое внимание.
Виды и назначение искусственных заземлителей
Металлоконструкции, специально выполняемые для заземляющих цепей, характеризуются в качестве искусственного заземлителя. Используется этот вид электродов в таких случаях:
Такой структурный элемент заземления имеет определенную конфигурацию (материал, количество элементов, длина, месторасположение электродов).
Что выступает в роли искусственного заземлителя
Заземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей.
Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.
Важно! Совокупность соединенных искусственных стержней, вмонтированных в землю и объединенных с электрооборудованием при помощи проводника, образует заземляющий контур.
Искусственный заземлитель изготавливается из таких материалов:
Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип).
Чем отличаются вертикальные и горизонтальные заземлители
Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.
Стандартные показатели заглубления:
Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.
Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.
Функции искусственного заземляющего элемента
Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.
Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.
Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.
Как устанавливать искусственный электрод в грунт
Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:
Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.
Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.
Как определить сопротивление
Согласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов.
Факторы, которые оказывают первостепенное влияние на показатель:
Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.
Обратите внимание! Для электроустановки с напряжением в 380 В показатель сопротивления не должен превышать 30 Ом. Системы видеонаблюдения, серверные блоки и медаппаратура выполняется заземлением с сопротивлением заземляющих элементов в 0,5–1 Ом.
Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления.
Основные требования
Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:
Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:
Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.
Как подбираются размеры искусственных электродов
Все параметры основной конфигурации проводников в обязательном порядке должны соответствовать нормативным требованиям профильной документации, в частности ГОСТ Р 50571.5.54-2013.
Правильно подобранные материалы и размеры электродов, применение оптимальной вариации производства такого электромонтажа — основные рабочие моменты заземления, которые влияют на качество работы заземлителя.
Искусственный электрод обладает важным эксплуатационным преимуществом, обусловленным принципом монтажа. Такой вид чаще монтируется глубоко в грунт. За счет грунтовых вод уменьшается показатель удельного сопротивления материала. Итог — реализация оптимальной характеристики и стабильности конечного сопротивления заземлителя.
Назначение и характеристики искусственного заземлителя
Если коротко ответить на вопрос, что является определением понятия искусственного заземлителя, можно сказать, что это проводящий элемент, напрямую контактирующий с землей. Элементов может быть несколько, и контакт может осуществляться посредством промежуточной среды, проводящей электрический ток. От естественного заземления искусственное приспособление отличается тем, что сделано специально с применением расчетов и должной подготовки.
Основные функции
В электротехнике используются такие понятия, как заземление рабочее и защитное. Рабочее заземление применяется с целью обеспечения эффективной и бесперебойной работы установки. Молниеотводы, защищающие электроустановки от небесного электричества и воспламенений, также принадлежат к категории рабочих, поскольку в этом случае заземление никак не ограждает от поражений электрическим током.
Для защиты человека от электротока или удара молнией применяется защитное заземление. Другими словами, защитное заземление выполняется с целью снизить напряжение прикосновения до безопасного уровня. Это особенно важно на электрооборудовании с высоким, опасным для жизни напряжением.
Заземлитель является частью заземляющего устройства (заземления, ЗУ). Он плотно контактирует с грунтом. Один его конец подключен к электроприбору, благодаря чему происходит выравнивание потенциалов прибора и земли, и это защищает от удара током.
Согласно пункту 1.7.28 ПУЭ, заземлением является преднамеренно выполненное электрическое соединение точки электросети, электроустановки или оборудования с заземляющим устройством. Заземление подключают на всех электроустановках.
Расположение в грунте
Искусственное заземление применяется там, где нет возможности воспользоваться естественным заземлением, либо когда токовые нагрузки на естественные заземлители превышают допустимые нормы. Искусственные заземляющие устройства изготавливаются из стальных конструкций, но если в почвах превышена кислотность, или напротив, она подвержена ощелачиванию, применяются ЗУ из меди или оцинкованного металла.
По форме и структуре искусственный заземлитель похож на классический электрод. Чаще, это стержень, выполненный из стальной полосы или круглого прута. По типу расположения существуют 2 основных вида ЗУ. В горизонтальном типе заземлители укладывают по периметру фундамента на дне траншеи.
Вертикальные заземлители делают из стержней диаметром 12-15 мм и длиной до 4-5 метров. Их забивают в грунт на глубину 0,5-0,7 м.
Допускается расположение искусственных заземлителей под некоторым углом, и тогда понятия вертикальный или горизонтальный становится условным.
Наклонное расположение применяют в том случае, если стена строения расположена под углом к вертикали. Наклон не сказывается существенным образом на выполняемых функциях устройства.
В заземлении электроустановок с высоким напряжением используются так называемые сложные заземлители, в которых вертикальные элементы соединены с горизонтальными.
Когда устройство искусственных заземлителей оказывается на пахотной земле, все электроды должны размещаться на глубине не менее 1 метра. Это позволяет увеличить контакт с грунтом.
Какие требования предъявляются к искусственным заземлителям
Искусственные заземлители не подлежат окрашиванию, так как окраска играет роль изолятора и препятствует отведению электротока в землю. Таким образом, цвет заземлителя должен быть естественным, которым обладает применяемый в заземляющих устройствах, металл. Но места соединения проводников (сварочные швы) должны быть окрашены битумной краской, для предотвращения разрушения.
Нельзя размещать искусственные или применять естественные заземлители вблизи источников тепла, которые сушат землю. Для засушливых территорий существует особая железобетонная конструкция. Заземлитель делают в форме емкости, и помещают ниже поверхности земли. Емкость заполняют водой через люк. Таким образом, в заземлении принимает участие водораспределительная система. Стальные электроды соединены с выводом из емкости. Так обеспечивается оптимальное сопротивление.
Для создания искусственных заземлителей используются следующие материалы с указанными параметрами:
Только для временных электроустановок можно применять электроды с минимальными значениями. Чтобы заземляющее устройство служило 40-50 лет в благоприятных грунтовых условиях, достаточно выбрать стержни для него на 2-3 мм больше. Во влажных грунтах толщина и диаметры ЗУ должны быть в 2 раза выше минимального.
Из всех названых материалов наиболее оптимальным признано использование круглой арматуры, поскольку расход металла в этом случае снижается в 1,5 раза, уменьшается соответственно и себестоимость заземляющих устройств.
Коррозионная стойкость у круглой стали выше, чем у линейной, потому что у круглого электрода площадь соприкосновения с землей самая малая в сравнении с другими формами ИЗ. Еще одно преимущество состоит в том, что стержневые круглые электроды легче монтируются, экономится время, затрачиваемое на устройство ЗУ.
При заземлении мощных высоковольтных установок применяются контуры, состоящие из горизонтальных лучей, раскинувшихся на сотни метров и нескольких десятков вертикально установленных стержней. Чтобы искусственные заземлители не экранировали друг на друга, лучи разводят горизонтально в противоположные стороны. Если лучей 3, или 4, их располагают под углом 90 и 120 градусов соответственно.
Сопротивление искусственного заземлителя
Чтобы ЗУ эффективно выполняло свою задачу, оно должно иметь сопротивление растекания, не превышающее определенных значений. Данный параметр показывает, насколько хорошо устройство проводит электрический ток.
Для заземляемой электроустановки с напряжением 380В сопротивление искусственного заземлителя не должно превышать 30 Ом. Работающие под высоким напряжением, медицинская аппаратура, серверные блоки, системы видеонаблюдения заземляются с сопротивлением 0,5-1 Ом.
Расчет для искусственных заземлителей производится с целью определить, какое количество вертикальных и горизонтальных токопроводящих стержней должно быть смонтировано для получения оптимального сопротивления.
Что такое искусственный заземлитель определение
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ЗАЗЕМЛИТЕЛИ И ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА РАЗЛИЧНОГО НАЗНАЧЕНИЯ
Термины и определения
Grounding conductors and grounding devices for different purposes. Terms and definitions
Дата введения 2017-09-01
Предисловие
1 РАЗРАБОТАН Обществом с ограниченной ответственностью «МИНАДАГС», Обществом с ограниченной ответственностью «НПФ ЭЛНАП»
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 336 «Заземлители и заземляющие устройства различного назначения»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 25 октября 2016 г. N 1511-ст
5 ПЕРЕИЗДАНИЕ. Февраль 2020 г.
Введение
Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий данной области знания.
Для каждого понятия установлен один стандартизованный термин.
Нерекомендуемые к применению термины-синонимы приведены в круглых скобках после стандартизованного термина и обозначены пометой «Нрк».
Термины-синонимы без пометы «Нрк» приведены в качестве справочных данных и не являются стандартизованными.
Заключенная в круглые скобки часть термина может быть опущена при использовании термина в документах по стандартизации.
Наличие квадратных скобок в терминологической статье означает, что в нее включены два (три, четыре и т.п.) термина, имеющие общие терминоэлементы.
В алфавитном указателе данные термины приведены отдельно с указанием номера статьи.
Помета, указывающая на область применения многозначного термина, приведена в круглых скобках светлым шрифтом после термина. Помета не является частью термина.
Приведенные определения можно, при необходимости, изменять, вводя в них производные признаки, раскрывая значение используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.
В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не проводится и вместо него ставится прочерк.
В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском (en) языке.
1 Область применения
Настоящий стандарт устанавливает термины и определения (буквенные обозначения) понятий в области заземляющих устройств, предназначенных для обеспечения промышленной и социальной безопасности (электроустановок) электрических цепей (сетей) различного назначения.
Настоящий стандарт не распространяется на термины и определения (буквенные обозначения) понятий в области элементов и конструкций, случайно выполняющих функции заземляющих устройств.
Термины, установленные настоящим стандартом, рекомендуются для применения во всех видах документации и литературы (по данной научно-технической отрасли), входящих в сферу действия работ по стандартизации и (или) использующих результаты этих работ.
Настоящий стандарт пригоден для целей подтверждения соответствия заземляющих устройств различного назначения.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ 12.1.009-76 Система стандартов безопасности труда. Электробезопасность. Термины и определения
ГОСТ 12.1.030-81 Система стандартов безопасности труда. Электробезопасность. Защитное заземление, зануление
ГОСТ 15845-80 Изделия кабельные. Термины и определения
ГОСТ 19431-84 Энергетика и электрификация. Термины и определения
ГОСТ 31384-2008 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования
ГОСТ Р 50571.5.54-2013/МЭК 60364-5-54:2011 Электроустановки низковольтные. Часть 5-54. Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов
ГОСТ Р 51853-2001 Заземления переносные для электроустановок. Общие технические условия
ГОСТ Р МЭК 60050-195-2005 Заземление и защита от поражения электрическим током. Термины и определения
ГОСТ Р МЭК 60050-826-2009 Установки электрические. Термины и определения
ГОСТ Р МЭК 62561.2-2014 Компоненты системы молниезащиты. Часть 2. Требования к проводникам и заземляющим электродам
3 Термины и определения
Раздел 01-10 Основные понятия в области заземлителей и заземляющих устройств
01-10-01 активная цепь: Замкнутая электрическая цепь устройств и/или приборов, в которую включен управляемый действующий источник тока.
01-10-02 грунт: Составная часть земли: любые горные породы, почвы, осадки и техногенные образования, рассматриваемые как многокомпонентные динамичные системы и как часть геологической среды, органически связанные между собой и отличающиеся качественными и количественными характеристиками.
01-10-03 грунт высокоомный: Грунт с удельным электрическим сопротивлением более 100 Ом·м.
01-10-04 грунт многолетнемерзлый: Грунт, находящийся в мерзлом состоянии в течение трех и более лет.
01-10-05 грунт скальный: Грунт, состоящий из кристаллитов одного или нескольких минералов, имеющих жесткие структурные связи кристаллизационного типа. Скальный грунт отличается высоким удельным электрическим сопротивлением (свыше 1000 Ом·м).
01-10-06 грунтовый воздух: Газовая фаза грунта, находящаяся в непрерывном взаимодействии с твердой и жидкой фазами грунта [5].
01-10-07 естественный заземлитель: Сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.
01-10-08 заглубленный в грунт фундаментный заземлитель (soil-embedded foundation earth electrode): Заземляющий электрод, как правило, в виде замкнутого контура, заглубленный в грунт под фундаментом здания [МЭК 60050-826:2004, статья 826-13-08, Изм., ГОСТ Р 50571.5.54-2013/МЭК 60364-5-54:2011], [I].
01-10-09 заземление: Преднамеренное или случайное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.
01-10-10 заземление на землю: Формирование замкнутой цепи для отвода аномально высокого напряжения и опасных блуждающих и иных токов непосредственно в окружающую токопроводящую конструкцию, электролитическую среду.
01-10-11 заземление на корпус: Формирование замкнутой цепи для отвода аномально высокого напряжения и опасных блуждающих и иных токов с наружной поверхности (корпуса) токопроводящих конструкций в окружающую электролитическую среду.
01-10-12 заземленная система: Совокупность токопроводящей конструкции, соединенной электрическим проводником с заземлением, находящимся в окружающей электролитической среде.
01-10-13 заземлитель: Проводящий элемент (устройство) или совокупность соединенных между собой проводящих элементов (устройств), находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
01-10-14 заземлять (earth, verb ground, verb (US)): Выполнять электрическое соединение между данной точкой (системы или установки, или оборудования) и локальной землей [ГОСТ Р МЭК 60050-195-2005, ГОСТ Р МЭК 60050-826-2009].
— непреднамеренным или случайным;
— постоянным или временным.
01-10-15 заземляющий проводник (earthing conductor): Проводник, соединяющий заземляемую часть с заземлителем.
01-10-16 заземляющий проводник в анодном заземлении: Изолированный проводник, обеспечивающий в заземляющем устройстве электрическую связь средства электрохимической защиты от коррозии с токопроводящей конструкцией (на клемме «минус») и рабочим заземлением (на клемме «плюс»).
01-10-17 заземляющее устройство: Совокупность заземляющих электродов (заземлителей), находящихся в непосредственном соприкосновении со средой, и заземляющих проводников, соединяющих подлежащие заземлению части электроустановки с заземлителем, выполняющая рабочие и защитные функции.
01-10-18 заземляющее устройство молниезащиты (earth termination system): Часть внешней системы молниезащиты, предназначенная для проведения тока молнии и рассеяния его в земле [ГОСТ Р МЭК 62561.2-2014].
01-10-19 заземляющее устройство проводящей части: Преднамеренно образованная совокупность электрически связанных между собой заземлителя и заземляющих проводников [4].
01-10-20 заземляющий электрод: Проводящий элемент, находящийся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
01-10-21 замкнутая цепь: Совокупность токопроводящих конструкций и/или устройств, замкнутых между собой электрическими проводниками таким образом, чтобы существовала непрерывная возможность циркуляции тока в образованной цепи.
01-10-22 замоноличенный в бетон фундаментный заземлитель (concrete-embedded foundation earth electrode): Заземляющий электрод, как правило, в виде замкнутого контура, замоноличенный в бетон [МЭК 60050-826:2004 IEC*, статья 826-13-08, Изм., ГОСТ Р 50571.5.54-2013/МЭК 60364-5-54:2011], [I].