что такое искусственный интеллект простыми словами и для чего он нужен
Искусственный интеллект: краткая история, развитие, перспективы
Сейчас технологии развиваются с немыслимой скоростью. Ранее те возможности, что, казалось бы, были доступны только профессиональным ученым, в современной жизни доступны каждому. Один из подобных прорывов – искусственный интеллект, прочно обосновавшийся во многих сферах человеческой жизни.
Сегодня поговорим о том, что такое ИИ, как он возник, где применяется, а также чем он отличается от человеческого разума.
Что представляет собой искусственный интеллект
Искусственный интеллект – это свойство интеллектуальной системы выполнять те функции и задачи, которые обычно характерны для разумных существ. Это может быть проявление каких-то творческих способностей, склонность к рассуждению, обобщение, обучение на основании полученного ранее опыта и так далее.
Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.
История возникновения и развития искусственного интеллекта
Впервые термин artificial intelligence (с английского переводится как «искусственный интеллект») был упомянут в 1956 году Джоном МакКарти, основателем функционального программирования и изобретателем языка Lisp, на конференции в Университете Дартмута.
Однако сама идея подобной системы была сформирована в 1935 году Аланом Тьюрингом. Ученый дал описание абстрактной вычислительной машине, состоящей из безграничной памяти и сканера, перемещающегося вперед и назад по памяти. Однако позднее, в 1950 году, он предложил считать интеллектуальными те системы, которые в общении не будут отличаться от человека.
Тогда же Тьюринг разработал эмпирический тест для оценки машинного интеллекта. Он показывает, насколько искусственная система продвинулась в обучении общению и удастся ли ей выдать себя за человека.
Самая ранняя успешная программа искусственного интеллекта была создана Кристофером Стрейчи в 1951 году. А уже в 1952 году она играла в шашки с человеком и удивляла зрителей своими способностями предсказывать ходы. По этому поводу в 1953 году Тьюринг опубликовал статью о шахматном программировании.
В 1965 году специалист Массачусетского технологического университета Джозеф Вайценбаум разработал программу «Элиза», которая ныне считается прообразом современной Siri. В 1973 году была изобретена «Стэндфордская тележка», первый беспилотный автомобиль, контролируемый компьютером. К концу 1970-х интерес к ИИ начал спадать.
Новое развитие искусственный интеллект получил в середине 1990-х. Самый известный пример – суперкомпьютер IBM Deep Blue, который в 1997 году обыграл в шахматы чемпиона мира Гарри Каспарова. Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой.
Отличие ИИ от нейросетей и машинного обучения
Нейросети представляют собой математическую модель, компьютерный алгоритм, работа которого основана на множестве искусственных нейронов. Суть этой системы в том, что ее не нужно заранее программировать. Она моделирует работу нейронов человеческого мозга, проводит элементарные вычисления и обучается на основании предыдущего опыта, но это не соотносимо с ИИ.
Искусственный интеллект, как мы помним, является свойством сложных систем выполнять задачи, обычно свойственные человеку. К ИИ часто относят узкоспециализированные компьютерные программы, также различные научно-технологические методы и решения. ИИ в своей работе имитирует человеческий мозг, при этом основывается на прочих логических и математических алгоритмах или инструментах, в том числе нейронных сетях.
Под машинным обучением понимают использование различных технологий для самообучающихся программ. Соответственно, это одно из многочисленных направлений ИИ. Системы, основанные на машинном обучении, получают базовые данные, анализируют их, затем на основе полученных выводов находят закономерности в сложных задачах со множеством параметров и дают точные ответы. Один из наиболее распространенных вариантов организации машинного обучения – применение нейросетей.
Если сравнивать с человеком, то ИИ подобен головному мозгу, машинное обучение – это один из многочисленных способов обработки поступающих данных и решения назревающих задач, а нейросети соответствуют объединению более мелких, базовых элементов мозга – нейронов.
Разница между искусственным и естественным интеллектом
Сравнивать искусственный и естественный интеллект можно лишь по некоторым общим параметрам. Например, человеческий мозг и компьютер работают по примерно схожему принципу, включающему четыре этапа – кодирование, хранение данных, анализ и предоставление результатов. И естественный, и искусственный разум склонны к самообучению, они решают те или иные задачи и проблемы, используя специальные алгоритмы.
Помимо общих умственных способностей к рассуждению, обучению и решению проблем, человеческое мышление также имеет эмоциональную окраску и сильно зависит от влияния социума. Искусственный интеллект не имеет никакого эмоционального характера и не ориентирован социально.
Если говорить об IQ – большинство ученых склонны считать, что сей параметр оценки никак не связан с искусственным интеллектом. С одной стороны, это действительно так, ведь стандартные IQ-тесты направлены на измерение «качества» человеческого мышления и связаны с развитием интеллекта на разных возрастных этапах.
С другой стороны, для ИИ создан собственный «IQ-тест», названный в честь Тьюринга. Он помогает определить, насколько хорошо машина обучилась и способна ли она уподобиться в общении человеку. Это своего рода планка для ИИ, установленная людьми. А ведь все больше ученых склоняется к тому, что скоро компьютеры обгонят человечество по всем параметрам… Развитие технологий идет по непредсказуемому сценарию, и вполне допустимо, что так и будет.
Применение ИИ в современной жизни
В зависимости от области и обширности сферы применения, выделяют два вида ИИ – Weak AI, называемый еще «слабым», и Strong AI, «сильный». В первом случае перед системой ставят узкоспециализированные задачи – диагностика в медицине, управление роботами, работа на базе электронных торговых платформ. Во втором же подразумевается решение глобальных задач.
Так, одна из наиболее популярных сфер применения ИИ – это Big Data в коммерции. Крупные торговые площадки используют подобные технологии для исследования потребительского поведения. Компания «Яндекс» вообще создает с их помощью музыку. В некоторые мобильные приложения встроены голосовые помощники вроде Siri, Алисы или Cortana. Они упрощают процесс навигации и совершения покупок в сервисе. И не стоит забывать про программы с нейросетями, обрабатывающими фото и видео.
ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…
Люксовые бренды внедряют ИИ в свои системы для анализа потребностей клиентов. Стремительно развивается использование подобных систем в системах здравоохранения, в основном при диагностике заболеваний, разработке лекарств, создании медицинских страховок, проведении клинических исследований и так далее.
Перечислить разом все области, в которых задействован искусственный интеллект, практически нереально. На данный момент он затрагивает все больше самых разных сфер. И причин на то немало – та же автоматизация производственных процессов, стремительный рост информационного оборота и инвестиций в эту сферу, даже социальное давление.
Влияние на различные области
ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают.
Искусственный интеллект может оказать существенное влияние на рынок труда. Это может привести к массовому увольнению рабочего персонала из-за автоматизации большинства процессов. Ну и росту востребованности разработчиков, конечно.
Перспективы развития искусственного интеллекта
Современные компьютеры приобретают все больше знаний и «умений». Скептики же утверждают, что все возможности ИИ – не более чем компьютерная программа, а не пример самообучения. Однако это не мешает технологии широко распространяться в самых различных сферах и открывать невиданные ранее потенциалы для развития. Со временем компьютеры будут становиться все мощнее, а ИИ еще быстрее совершенствоваться в своем развитии.
Заключение
Не так давно, казалось бы, ученые ввели понятие «искусственный интеллект», а чуть больше полвека спустя технология уже находит широкий спрос в самых различных сферах. Сейчас искусственный разум, можно сказать, находится в шаговой доступности для любого человека – компьютер и ноутбук, смартфон и электронные часы, даже многие простейшие приложения работают именно с его помощью. ИИ в самых разных своих проявлениях проник во многие сферы человеческой жизни и прочно обосновался в них.
Возможно, страхи ученых вполне обоснованы? Как знать 🙂
Почему искусственный интеллект нужно изучать даже гуманитариям
Рассказываем, с чего начать изучение ИИ
Что такое ИИ и почему это так интересно
Искусственный интеллект – это способность машины имитировать человеческое мышление. Так называют современную технологию, с помощью которой электронные устройства, программы и роботы могут решать различные задачи по заданным алгоритмам.
Тема искусственного интеллекта и машинного мышления интересовала учёных ещё до изобретения компьютеров, а после появления ЭВМ вышла на новый уровень. В 1950-60-х годах вопросы, связанные с созданием и использованием искусственного интеллекта, стали широко обсуждаться в обществе.
Ответ на этот вопрос найти сложно ещё и потому, что нет чётких критериев разумности машины. Если это умение делать логические умозаключения, то компьютер давно превзошёл человека. Если же речь идёт о гибкости и оригинальности мышления, тут человек пока ещё превосходит даже самые современные интеллектуальные устройства.
ИИ активно используется в самых разных областях, список которых с каждым годом расширяется, и найти своё место в этой сфере могут не только технари, но и гуманитарии – специалисты по управлению проектами, рекламе и пиару, психологи, экономисты, лингвисты.
Что могут программы с искусственным интеллектом
Современные технологии искусственного интеллекта позволяют создать устройства и программы, которые:
В каких сферах применяется ИИ
Обработка языка
Машинный перевод активно используется в интернете и социальных сетях, совершенствуясь с каждым годом. Компьютер научился распознавать и устную, и письменную, и печатную речь. По прогнозам, переводчик станет одной из первых профессий, которая исчезнет «по вине» ИИ.
Компьютерные игры
Искусственный интеллект используется для создания игровой Вселенной, он управляет ботами – персонажами, за которых не играют люди. С помощью ИИ создаются игровые стратегии.
Управление финансами
Программы и устройства успешно осуществляют бухгалтерские операции, ведут учёт и контроль, могут создавать прогнозы на основе имеющихся данных. Специальные программы ведут учёт расходов.
Анализ окружающей среды
Технологии искусственного интеллекта применяются для создания «умных домов». Контроль над всем, что происходит в доме – электричеством, отоплением, вентиляцией, работой бытовой техники осуществляет специальная программа. Роботы-пылесосы сканируют окружающее пространство, чтобы определить, нужно ли им приступать к работе.
Мобильные приложения
Программы для мобильных телефонов умеют распознавать лица, отслеживать наше месторасположение, следят за режимом сна и питания.
Транспорт
С помощью интеллектуальных устройств можно выстроить маршрут передвижения с учётом пробок, компьютер в современном автомобиле в определённых режимах отслеживает положение машины на дороге, контролирует скорость и мощность двигателя. Технология ИИ используется в автомобилях, способных передвигаться без участия человека.
Медиа
С помощью специальных программ можно планировать и публиковать материалы в интернете и соцсетях. Технологии ИИ подбирают контент в соответствии с интересами пользователя. В недалёком будущем компьютерные программы, вероятно, научатся создавать тексты на основе уже загруженных в интернет материалов.
ИИ может анализировать резюме соискателей, распределять их на группы в зависимости от навыков и квалификации и даже определять, насколько работник подходит для той или иной должности.
Медицина
Искусственный интеллект анализирует данные пациентов и выявляет связь между методами лечения и состоянием больного. В будущем планируется создать роботов, которые будут ставить диагноз на основе имеющихся симптомов, обращаясь к медицинской базе данных.
Тяжёлая промышленность
Роботы активно применяются в областях, где необходима постоянная концентрация на совершении одних и тех же рутинных действий. Самый высокий уровень внедрения машин с элементами искусственного интеллекта в производство на данный момент отмечен в Японии: на 10 000 сотрудников автомобильной промышленности там приходилось в 2014 году около 1500 роботов.
Зачем изучать технологию ИИ
Искусственный интеллект – технология не только настоящего, но и будущего, и у специалистов в этой сфере не будет проблем с трудоустройством в ближайшие несколько десятков лет. В эту область уже сейчас привлекаются огромные инвестиции, а значит, не будет проблем и с оплатой труда работников, занимающихся разработкой, изготовлением и внедрением технологий ИИ.
Вклад в науку и культуру
Искусственный интеллект и создание интеллектуальных программ и устройств – та область, в которой постоянно совершаются новые открытия. Занимаясь искусственным интеллектом, учёные и инженеры находятся на переднем крае мировой науки, продвигают человечество вперёд. Кроме того, развитие искусственного интеллекта и внедрение его в нашу жизнь порождает множество этико-философских вопросов, для разрешения которых нужен уже не машинный, а человеческий разум, способный к творческому мышлению.
В сфере создания ИИ очень востребованы не только разработчики программного обеспечения, но и люди с креативным мышлением, способные придумывать и продвигать новые идеи. Чтобы работать в этой сфере, важно уметь нестандартно мыслить. Отдельное перспективное направление, которым может заняться творческий человек – обучение машины созданию произведений искусства. Уже сегодня компьютеры рисуют картины, пишут музыку и стихи. В недалёком будущем, возможно, они возьмут на себя создание книг, кино и мультфильмов.
Освоение новых навыков
Чтобы работать в области искусственного интеллекта, необходимо хорошее знание математики и основ программирования. Для изучения ИИ наиболее важны два раздела математики – линейная алгебра и теория вероятности. Самый востребованный язык программирования в этой сфере – Python, потом идут R и Lua. Пригодится также знание английского языка – самые современные научные данные, статьи, отчёты о достижениях и экспериментах, как правило, публикуются на английском.
Для успешной работы в области ИИ необходимо критическое мышление, умение тщательно проверять любую гипотезу, сопоставлять все данные, анализировать любую задачу с разных сторон. Понадобятся и хорошие коммуникативные навыки – работа над проектами ИИ происходит в большой команде, в сотрудничестве с коллегами и специалистами из смежных областей.
Приступить к изучению технологию искусственного интеллекта на начальном уровне вполне можно самостоятельно, с изучения соответствующей литературы.
Книги, в доступной форме рассказывающие о машинном обучении и технологиях ИИ:
Познакомиться с основами создания алгоритмов для искусственного интеллекта можно на кружках робототехники в школе или центре детского творчества. Кроме того, можно найти бесплатные онлайн-курсы и открытые лекции в интернете о машинном интеллекте.
Технологии машинного обучения и искусственного интеллекта – одна из самых интересных и перспективных областей, изучение которой полезно школьникам не только с математическим, но и с гуманитарным складом ума. Это поможет им приобрести новые навыки, расширит список возможных профессий и позволит внести вклад в развитие научно-технического прогресса.
Хотите получать новые статьи во «ВКонтакте»? Подпишитесь на рассылку полезных статей
Искусственный интеллект: простыми словами о сложных вещах
Многие люди считают, что искусственный интеллект (ИИ) – это то, что должно быть изобретено в далеком будущем, как в фантастических триллерах, где неотличимые от людей роботы захватывают планету. На самом же деле нет, и ИИ присутствует в нашей жизни уже сейчас, а практически каждый человек на планете использует его для своего удобства. Благодаря когнитивной науке стало возможным создать ИИ на основании биологической нейронной сети.
Давайте разбираться, что такое ИИ, как он работает и где применяется.
Что нужно знать об искусственном интеллекте?
Впервые термин искусственный интеллект появился в 1956 году, тогда же были произведены первые исследования, касающиеся разработки систем символьных вычислений. Министерство обороны США заинтересовали исследования, и к 2003 году было создано несколько индивидуальных личных помощников.
Интеллект – это способность к восприятию, обработке и сохранению информации. Он может быть разных видов и уровней у людей, животных и машин. При этом стоит понимать, что наличие интеллекта не предполагает наличия сознания. Это значит, что сравнивать машину с полноценным человеком еще очень рано.
Интеллект позволяет исчислять то, что возможно измерить, а сознание дает оценку чувствам, которые может испытывать только человек.
Искусственный интеллект и нейронные сети – это мощные технологии, базирующиеся как раз на машинном обучении и создании машин и компьютерных программ, обладающих интеллектом. ИИ пересекается со многими другими областями знаний, среди которых математика, статистика, психология, теория вероятности, физика, обработка сигналов, машинное обучение, компьютерное зрение, лингвистика, наука о мозге и др.
На данный момент программирование алгоритмов для решения сложных задач, имеющих большой объем информации, занимает у разработчиков очень много ресурсов и требует большого количества времени. Даже если удается создать код, позволяющий обрабатывать огромное количество данных и вычислять решения тяжелых задач, этот код будет трудно использовать, т.к. он будет очень объемным, сложно тестируемым, к тому же поддерживаться будет далеко не на всех устройствах. Именно поэтому развитие ИИ сейчас так актуально, ведь современные технологии машинного обучения позволяют научить программировать компьютеры за нас, что ускоряет процесс исчисления сложных задач и облегчает работу.
Где применяется искусственный интеллект и в чем его польза?
Многие люди считают, что ни разу не сталкивались с искусственным интеллектом, однако это ошибочное мнение, ведь многие из нас используют его ежедневно.
В 2011 году, благодаря победе на телевикторине Jeopardy (аналог телепередачи «Своя игра»), известность обрел суперкомпьютер IBM Watson, использующий алгоритм машинного обучения. ИИ компьютера сражался против двух человек: Брэда Раттера, обладателя самого большого денежного приза в программе, и Кени Дженнинга, имеющего самую длительную беспроигрышную серию. С тех пор этот алгоритм изменялся и дорабатывался, а сегодня используется в качестве шаблона у таких компаний как Apple, Amazon и Google.
Как применяется искусственный интеллект в реальной жизни?
Назовем лишь несколько областей, где используется искусственный интеллект:
Почта
Сейчас практически каждый человек имеет электронную почту. При этом, гуляя по просторам Интернета, мы подписываемся на рассылки, даем свой адрес почты и получаем сотни писем в день, в которых нам рекламируют товары или услуги. Искусственный интеллект помогает сортировать эти письма и отправлять ненужные рассылки в папку «Спам».
Кроме того, если вы обращали внимание, при написании сообщения вам предлагается использовать «умные» ответы. Эта функция не только позволяет кратко отвечать по теме письма, но и предлагает формат ответов, исходя из стиля написания владельца почты. Все это делает ИИ.
Социальные сети
Linkedln использует искусственный интеллект, чтобы подбирать потенциально возможных сотрудников и работодателей.
Чат-боты на данный момент довольно популярный инструмент. Некоторые из них настроены таким образом, что довольно неплохо справляются с имитацией реального общения с живым человеком.
Facebook, сканируя сообщения, выявляет подозрительные смс, которые могут свидетельствовать о том, что автор сообщений задумывается о суициде.
Поисковые сети
Когда в Google мы начинаем вводить запрос, поисковая система предлагает нам возможные варианты – это тоже искусственный интеллект.
Google Maps или «Яндекс Карты» также используют ИИ, чтобы присылать оповещения о пробках на дорогах в вашем месте нахождения или авариях.
Рекомендации
Многие интернет-магазины используют искусственный интеллект, чтобы предлагать своим покупателям похожие товары.
Социальные сети и приложения для музыки с помощью ИИ определяют интересы пользователей, и на основании собранных данных предлагают похожие музыкальные композиции
Программы для банков
Банки предлагают специальные приложения и программы, которые при авторизации пользователя напоминают последнему о сроках оплаты счета, подсказывают трансферы и многое другое.
Для предотвращения случаев с мошенничеством ИИ отслеживает и фиксирует все операции, а в случае нестандартных платежей (например, сумм, превышающих обычные расходы, или оплаты услуг из другой страны) банк отправляет клиенту уведомление или требует позвонить лично, чтобы подтвердить платеж.
Кроме того, ИИ используется в больницах для проведения медицинских диагностик, управляет самолетами, машинами и роботами. Это направление не перестает развиваться и совершенствоваться.
Мозг человека
Как образец, для воспроизведения компьютером возможностей интеллекта используется модель человеческого мозга. Соответственно, чтобы понимать базовые принципы работы ИИ, нужно для начала разобраться, как работает мозг, хотя бы в общих чертах.
Наш мозг – это сложный компьютер, выполняющий в секунду 1000 петафлопс (миллиард миллиардов) вычислений. В этот момент он потребляет 20 Ватт энергии. Для сравнения возьмем японский суперкомпьютер «Фугаку». На 2020 год он является самым быстрым компьютером в мире и совершает более 415 квадриллионов вычислений в секунду и потребляет 27 МВт.
Мозг человека содержит приблизительно 86 миллиардов нейронов. Части мозга работают с помощью нейронов и нейронных сетей. Взаимодействуя друг с другом, нейроны передают информацию по определенным каналам, при этом сигналы одних нейронов объединяются с сигналами других, что активирует еще большее их число. Исходя из количества нейронов, можно понять, что комбинаций может быть бесчисленное множество.
Входные сигналы приходят из совершенно разных источников. Роль играет абсолютно все: климат, влажность воздуха, температура и даже то, что ел человек в ближайшее время. Один нейрон, прежде чем принять решение о том, как действовать, получает и обрабатывает тысячи различных сигналов.
Между нейронами разных слоев нейронной сети в результате обработки входных сигналов и информации передаются команды мышцам, органам. Когда человек приобретает новые навыки и опыт алгоритмы работы нейронных сетей могут меняться.
На основании такой модели мозга создают искусственную нейронную сеть.
Искусственные нейронные сети
Искусственные нейронные сети (ИНС), как мы уже выяснили, строятся на основании биологической нейронной сети. ИНС также производит обработку поступающей информации между входными и выходными сигналами. ИНС имеет обучающийся алгоритм, который считывает данные и пытается улучшить результаты обработки. С помощью этого алгоритма происходит адаптивное взвешивание входных и выходных сигналов.
Искусственные нейронные сети постоянно оптимизируются с помощью различных техник, что позволяет им работать быстрее и эффективнее. Если оптимизация проходит успешно, значит, ИНС смогла обработать информацию и выдать решение за определенный срок.
Структура ИНС состоит из трех слоев нейронов: слой ввода, скрытый слой и слой вывода. Количество нейронов в слоях может быть разным, однако обязательным правилом является то, что в каждом слое должен содержаться как минимум один нейрон. Структура ИНС может содержать много слоев, что увеличивает ее потенциал к решению задачи, однако, если потенциал выше, чем требуется для решения задачи, наступает переобучение.
Продуктивность работы модели ИНС зависит от выбранных алгоритмов работы, их настройки и архитектуры самой модели.
Одной из характеристик модели является функция активации, которая используется для преобразования входных данных в выходные данные. И если нейрон решает передавать данные далее, это как раз и называется функцией активации.
ИНС – это прекрасное средство для решения задач, однако важно тщательно подходить к выбору искусственной нейронной сети, т.к. если в структурную модель ИНС добавлять новые составляющие и увеличивать объем модели, будет довольно сложно, в случае надобности, разобрать итоговое решение, проанализировать и понять, как это решение было получено.
Глубокое обучение
Понятие «глубокое обучение» используется для описания нейронной сети и тех алгоритмов, на которых построена работа ИНС. Алгоритмы ИНС глубокого обучения направлены на прием «сырых» данных, из которых необходимо извлечь информацию и, впоследствии обработки, получить выходные данные.
Без данных алгоритмов программисту необходимо самому искать нужную информацию, в то время как ИНС, построенная на модели глубокого обучения, может сама найти нужные данные, обработать их и дать на выходе решение.
Обучение происходит следующим образом: система запускает поиск необходимой информации, получает входные данные, обрабатывает их, извлекает и выдает полезную информацию. Когда обучение пройдено, снижаются требования для поддержания работы модели к вычислительной мощности, памяти и энергии. Таким образом система тренируется выполнять какую-то конкретную задачу. Глубокое обучение может быть применено для решения задач разных направлений. На данный момент это инновация в сфере искусственного интеллекта.
Есть и другие виды обучения, например, обучение с учителем или с частичным привлечением учителя. В таком случае устанавливается контроль реальным человеком на некоторых этапах процесса.
Теневое обучение также предполагает участие человека в ходе обучения, когда перед поиском системой данных человек самостоятельно обрабатывает информацию и вносит необходимые показатели в систему сведений по специфике направления.
Заключение
Искусственный интеллект превосходит традиционные алгоритмы, созданные программистами, т.к. обрабатывает данные и выдает решения гораздо быстрее. Но если люди могут расширить свое внимание, запоминание с помощью мнемотехник и других тренировок мозга, то ИИ работает иначе.
Модели глубокого обучения позволяют решать огромный спектр задач в разных направлениях. Однако существует и недостаток сильно оптимизированных систем, которые не позволяют проконтролировать обработку информации на каждом этапе, а соответственно не дают понимания причин выбора определенного решения. Именно этот факт может привести к проблемам с этической стороны, т.к. информация является непрозрачной.
Но, пожалуй, именно поэтому ИИ продолжает развиваться и идти вперед. Вполне возможно, картины из фантастических фильмов – это будущее, которое наступит уже через несколько десятилетий. А что по этому поводу думаете вы?