что такое ионизированный газ

ИОНИЗАЦИЯ ГАЗОВ

Полезное

Смотреть что такое «ИОНИЗАЦИЯ ГАЗОВ» в других словарях:

Ионизация газов в атмосфере — происходит, например, при грозовых разрядах. Оказывает влияние на физиологическую активность организмов и активность поведения животных (при увеличении количества положительных ионов). Экологический словарь. Алма Ата: «Наука». Б.А. Быков. 1983 … Экологический словарь

ИОНИЗАЦИЯ — ИОНИЗАЦИЯ, ионизации, мн. нет, жен. 1. Образование или возбуждение ионов в какой нибудь среде (физ.). Ионизация газов. 2. Введение в организм лекарственных веществ посредством ионов, возбуждаемых электрическим током в этих веществах (мед.).… … Толковый словарь Ушакова

ИОНИЗАЦИЯ — образование положит. и отрицат. ионов и свободных эл нов из электрически нейтральных атомов и молекул. Термином «И.» обозначают как элементарный акт (И. атома, молекулы), так и совокупность множества таких актов (И. газа, жидкости). Ионизация в… … Физическая энциклопедия

ИОНИЗАЦИЯ — ИОНИЗАЦИЯ, и, жен. (спец.). Образование ионов в какой н. среде. И. газов. | прил. ионизационный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Ионизация — образование положительных и отрицательных ионов (См. Ионы) и свободных электронов из электрически нейтральных атомов и молекул. Термином «И.» обозначают как элементарный акт (И. атома, молекулы), так и совокупность множества таких актов… … Большая советская энциклопедия

Ионизация — Энергия ионизации некоторых чистых химических элементов. На пиках находятся инертные газы. Ионизация эндотермический процесс образования ионов из нейтральных … Википедия

Газов очистка — выделение из промышленных газов содержащихся в них примесей. Очистку газов производят с целью дальнейшего использования самого газа или содержащихся в нём примесей; выбрасываемые в атмосферу промышленные газы очищают с целью охраны… … Большая советская энциклопедия

ИОНИЗАЦИЯ — процесс превращения атомов (молекул) в ионы. И. газов (их превращение в положит. ионы) происходит при поглощении эл. магн. излучения (фотоионизация), нагревании (термич. И.), столкновении частиц с электронами или ускоренными частицами (ударная… … Естествознание. Энциклопедический словарь

Аэродинамика разреженных газов — раздел механики газов, в котором для описания движения газов необходимо учитывать их молекулярное строение. Методы А. р. г. широко применяют при определении аэродинамического нагрева (См. Аэродинамический нагрев) приземляющихся… … Большая советская энциклопедия

Источник

ИОНИЗОВАННЫЙ ГАЗ

— газ, в к-ром атомы (все или значит, часть) потеряли по одному или по несколько принадлежавших им электронов и превратились в положит, ионы. В особых условиях могут образоваться и отрицательные ионы. Подробнее см. Плазма.

Смотреть что такое «ИОНИЗОВАННЫЙ ГАЗ» в других словарях:

ИОНИЗОВАННЫЙ ГАЗ — ИОНИЗОВАННЫЙ ГАЗ, газ, в котором все атомы или молекулы (или значительная их часть) превратились в положительные ионы (см. ИОНЫ) вследствие процессов ионизации … Энциклопедический словарь

Газ — У этого термина существуют и другие значения, см. Газ (значения). Газ NO2 Газ (газообразное состояние) (от нидерл … Википедия

СОЛНЦЕ — звезда, вокруг которой обращаются Земля и другие планеты Солнечной системы. Солнце играет исключительную роль для человечества как первоисточник большинства видов энергии. Жизнь в известной нам форме была бы невозможна, если бы Солнце светило… … Энциклопедия Кольера

ПЛАЗМА — частично или полностью ионизованный газ, в котором плотности положит. и отрицат. зарядов практически одинаковы. При сильном нагревании любое в во испаряется, превращаясь в газ. Если увеличивать темп ру и дальше, резко усилится процесс термич.… … Физическая энциклопедия

плазма — ы; ж. [от греч. plasma вылепленное, оформленное] 1. Биол. Жидкая часть крови. 2. Физ. Ионизированный под воздействием высокой температуры газ с примерно равной концентрацией положительных и отрицательных зарядов. ◁ Плазматический, ая, ое (1 зн.) … Энциклопедический словарь

ДУГОВОЙ РАЗРЯД — самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 10 2 10 4 мм рт. ст., при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Д.… … Физическая энциклопедия

Магнитогидродинамический генератор — (простейшая схема): 1 источник ионизованного газа; 2 ионизованный газ; 3 канал, по которому подается плазма; 4 электромагнит; 5 электроды; 6 нагрузка. МАГНИТОГИДРОДИНАМИЧЕСКИЙ ГЕНЕРАТОР (МГД генератор), энергетическая установка, в которой… … Иллюстрированный энциклопедический словарь

Статистическая физика — раздел физики, задача которого выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.… … Большая советская энциклопедия

Фазовое состояние — Агрегатное состояние состояние вещества, характеризующееся определёнными качественными свойствами способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного… … Википедия

Взрыв — процесс освобождения большого количества энергии в ограниченном объёме за короткий промежуток времени. В результате В. вещество, заполняющее объём, в котором происходит освобождение энергии, превращается в сильно нагретый газ с очень… … Большая советская энциклопедия

Источник

Мифы и факты: что такое ионизация?

ИОНИЗАЦИЯ ВОЗДУХА ОТНОСИТСЯ К ЧИСЛУ МОДНЫХ ТЕРМИНОВ, О НЕЙ МНОГО ГОВОРЯТ, ВСЕ УБЕЖДЕНЫ В ЕЕ ПОЛЬЗЕ, НО, ПО СУТИ, МАЛО КТО ПОНИМАЕТ, ЧТО ЭТО ТАКОЕ НА САМОМ ДЕЛЕ И ЗАЧЕМ НУЖНО ЧЕЛОВЕКУ.

Что такое ионизация?

За последние десять лет мы все чаще слышим это словосочетание: ионизация воздуха. Что это такое на самом деле? Ионизация – это физический процесс отрыва электрона от молекул или атомов газов, в результате чего из одной нейтральной молекулы образуются две с разным зарядом: отрицательная, получившая «бонусный» электрон, и положительная, которая его потеряла.

В природе ионизация воздуха происходит естественным путем, наиболее остро она ощущается в хвойных лесах, горах и на море. Обычно воздух ионизируется с помощью молний и космического излучения, а самому процессу подвергается кислород и озон. Ионизированные молекулы газа называют аэроионами, а их присутствие и делает свежий природный воздух полезным человеку. Ионизация воздуха в квартире естественным образом не происходит, так как нет прямого воздействия ее природных источников, и мы прибегаем к специальным приборам – ионизаторам – или технике с такой функцией. Но для чего нужна ионизация воздуха в квартире и нужна ли она вообще?

Польза и вред ионизации

Итак, функция ионизации воздуха – создание аэроионов в воздухе. В природе количество аэроионов, в среднем, в 10-15 раз больше, чем в городском воздухе, загрязненном выхлопными газами и выбросами промышленных предприятий. В доме на качество воздуха также влияют испарения от техники и электромагнитное излучение телевизоров и компьютеров. Пожалуй, на этом железные факты про ионизацию закончены.

Насыщение воздуха ионами сейчас широко разрекламировано, оговоримся сразу, доказанных как негативных, так и позитивных эффектов от ионизации нет, во всяком случае, в медицине однозначных рекомендаций по ее поводу нет. Информация о пользе и вреде ионизации может быть Вам полезна, если Вы задумываетесь о приобретении такого прибора или уже им владеете, но она не подтверждена авторитетными источниками.

Согласно открытым источникам, у аэроионов, а точнее, у насыщенного ими воздуха, есть свои плюсы. Прежде всего, они активизируют работу эритроцитов, увеличивая газообмен в легких на 10%. Именно этот фактор по большей части обусловливает все другие эффекты ионизации воздуха:

Однако именно эти свойства аэроионов имеют и оборотную сторону. Если есть ионизация воздуха в квартире, полезно или вредно она воздействует на ее жителей, во многом зависит от них и их состояния здоровья. Итак, вредные свойства аэроионов.

Кроме того, вокруг ионизатора могут образовываться круги пыли, помещение с ионизатором нуждается в постоянной влажной уборке, включая стены. Мы можем рекомендовать совмещать ионизатор с качественным очистителем-обеззараживателем воздуха, который защитит Вас от распространения частиц пыли, вирусов и инфекций.

Техника для ионизации

Сегодня существует множество приборов для ионизации воздуха, техника может выполнять только эту функцию, а может и совмещать ее с другими. В любом случае, при использовании ионизатора нужно помнить два условия:

Все ионизаторы можно разделить на униполярные и биполярные. Первые вырабатывают только отрицательно заряженные аэроионы и могут выделять большое количество вредного для человека озона в процессе своей работы. Вторые создают аэроионы обоих зарядов, что позволяет избежать появления электростатического поля и сократить выработку озона. При выборе ионизатора или прибора с такой функцией обязательно обратите внимание на наличие гигиенического сертификата, который подтверждает само наличие ионизации и безопасность прибора для человека. Кроме того, если количество заявленных аэроном превышает 50 000 – прибор должен иметь еще и медицинский сертификат.

Люстра Чижевского

Электроэффлювиальный ионизатор, который крепится к потолку и действительно напоминает люстру. Она ионизирует воздух с помощью электрического тока, конструкция прибора позволяет контролировать напряжение и количество получаемых аэроионов. При этом люстра Чижевского – униполярна, она создает больше озона, чем допустимо, и поэтому редко рекомендуется для домашнего применения и считается устаревшей.

Ионизатор

Прибор, выполняющий только функцию ионизации. Существуют разные модели и производители, однако при выборе такого прибора, помимо его типа, следует обратить внимание на радиус работы, наличие вентилятора, который ускорит процесс распространения аэроионов по комнате, количество вырабатываемых ионов и соотношение отрицательных и положительных, оптимальным считается превышение в пользу отрицательных примерно на треть.

Очиститель воздуха с ионизацией

Ионизация в данном случае выступает отдельной функцией. Особенно важно, чтобы выработка аэроионов регулировалась отдельно, так как очистителю лучше работать в режиме нон-стоп. Обратите внимание на систему фильтрации, учитывая особенности аэроионов, лучше всего, чтобы очиститель имел высокий класс очистки, способный задерживать даже мельчайшие частицы пыли, а также возможность обеззараживания.

Помните, все, что не сможет очистить такой прибор, и все, что скопится на его фильтрах, получит заряд и разнесется по всей комнате, а потом попадет в легкие.

Увлажнитель воздуха с ионизацией

Наиболее спорное, на мой взгляд, решение. В большинстве случаев увлажнитель создает питательную среду для всех микроорганизмов, а ионизатор, в свою очередь, способствует их распространению. В таком случае следует особое внимание уделить обеззараживанию воздуха.

Учитывая всю специфику ионизации и достаточно спорные эффекты ее воздействия, кажется наиболее разумным не смешивать эту функцию с другими, да и использовать ее крайне осторожно, так как однозначно на пользу она пойдет только уже здоровому человеку, а вот больному способна нанести существенный вред. В любом случае, перед использованием ионизатора лучше проконсультироваться с врачом.

Источник

Плазма

что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газ

что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газ

Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») — частично или полностью ионизированный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Плазма иногда называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.

Слово «ионизированный» означает, что от электронных оболочек значительной части атомов или молекул отделён по крайней мере один электрон. Слово «квазинейтральный» означает, что, несмотря на наличие свободных зарядов (электронов и ионов), суммарный электрический заряд плазмы приблизительно равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает её заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями. Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году, возможно из-за ассоциации с плазмой крови. Ленгмюр писал:

Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.

Философы античности, начиная с Эмпедокла, утверждали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Это положение с учётом некоторых допущений укладывается в современное научное представление о четырёх агрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь. [1] Свойства плазмы изучает физика плазмы.

Содержание

Формы плазмы

По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе ок. 99,9 %) во Вселенной является плазма. [2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10 −15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов (см. пылевая плазма).

Свойства и параметры плазмы

Определение плазмы

Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. [4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами: [5] [6] [7]

Классификация

Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

Температура

При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.

Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = ni/(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne= ni, где — среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации

100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества». Примером может служить Солнце.

Плотность

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объёма (строго говоря, здесь, плотностью называют концентрацию — не массу единицы объёма, а число частиц в единице объёма). В квазинейтральной плазме плотность ионов связана с ней посредством среднего зарядового числа ионов что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газ: что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газ. Следующей важной величиной является плотность нейтральных атомов что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газ. В горячей плазме что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газмала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром плотности становится что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газ, который определяется как отношение среднего межчастичного расстояния к радиусу Бора.

Квазинейтральность

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газ). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Отличия от газообразного состояния

Плазму часто называют четвертым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:

Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны.

Тип взаимодействийБинарные
Как правило двухчастичные столкновения, трёхчастичные крайне редки.Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные.

Сложные плазменные явления

Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

Флюидная (жидкостная) модель

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

Кинетическое описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

Particle-In-Cell (частица в ячейке)

Модели Particle-In-Cell являются более подробными, чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности электрического заряда и тока определяются путём суммирования числа частиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число частиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек.

Базовые характеристики плазмы

Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газ; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.

Частоты

Длины

Скорости

что такое ионизированный газ. Смотреть фото что такое ионизированный газ. Смотреть картинку что такое ионизированный газ. Картинка про что такое ионизированный газ. Фото что такое ионизированный газ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *