что такое греческий парадокс
Что такое греческий парадокс
Неожиданным импульсом к этой гипотезе стал парадокс Древней Греции. Греческое «чудо» — необычайный взлет научной мысли в I тысячелетии до нашей эры, занявший всего несколько столетий, поражает воображение одним уже тем, что в нем мы находим истоки почти всех современных наук.
Даже при самом поверхностном взгляде многое из того, что мы считаем сегодня новым, оказывается «хорошо забытым старым», и мы непременно обнаруживаем это, заглянув в античную Элладу.
Современные представления о строении материи на самом глубинном ее уровне очень близки по своей сути к теории Демокрита, датирующейся V веком до н. э.
Сегодняшние взгляды на бесконечность и дискретность пространства и времени были сформулированы Эпикуром в IV веке до н. э. Современник Эпикура Теофраст говорил о химической войне и химической взаимопомощи растений. Мы же поняли это лишь в 30-х годах XX века, после открытия фитонцидов. У Эмпедокла (V в. до н. э.) мы узнаем, что существовал раздельный генезис флоры и фауны, а учение Галена о происхождении человека от человекообразных обезьян на два тысячелетия предвосхитило Дарвина».
В чем же парадокс? В том, что волреки всякой логике самые глубокие и верные с точки зрения сегодняшней науки знания и теории принадлежат не позднеэллиноким мыслителям (Птолемей, Аристотель и др.), а их ранним предшественникам — Фалесу, Солону, Анаксагору, Гераклиту, Пифагору…
По мнению Юрия Каныгина, то, что именно они дали мощный импульс зарождению греческой науки, объясняется их приобщенностью к эзотерическим (тайным) знаниям, полученным ими в Древнем Египте, Персии, Вавилоне — государствах, интеллектуальный потенциал которых по сей день остается во многом загадочным.
Действительно, все свои открытия в астрономии и математике первый корифей греческой науки Фалес Милетский сделал после посещения Египта и Месопотамии. То же самое можно сказать о Демокрите, изучавшем астрономию у египетских жрецов и вавилонян, а медицину у индийских йогов. Гераклит, проведя несколько лет в Персии, первым сформулировал нам диалектическое миропонимание, сказав, что в основе всего — непрерывная борьба противоположностей, образующих высшее единство — гармонию мира. Что же касается загадочной даже для его современников фигуры Пифагора, принесшего грекам учение о числе как о скрытой сути вещей, то он не только объездил многие страны Востока, но, проведя 22 года в Египте, был принят в касту жрецов, пройдя для посвящения невероятные испытания воли.
Посвященные… Они возвращались из своих странствий с готовой доктриной, теорией, системой. Вполне возможно, что многие новые доктрины, мысли, концепции были созданы и развиты под влиянием эзотерических знаний. Глубину мысли древних начали постигать в XIX–XX веках.
3 удивительных древнегреческих парадокса
— Твое несчастье растрогало меня, и я дам тебе шанс получить назад ребёнка. Угадай, отдам я его тебе или нет. Если ответишь правильно, я верну ребёнка. Если не угадаешь, я его не отдам.
Подумав, мать ответила:
— Ты не отдашь мне ребенка.
Если то, что я не отдам ребенка, — правда, я не отдам его, так как иначе сказанное не будет правдой. Если сказанное — неправда, значит, ты не угадала, и я не отдам ребенка по уговору.
Однако матери это рассуждение не показалось убедительным:
— Но ведь если я сказала правду, то ты отдашь мне ребенка, как мы и договорились. Если же я не угадала, что ты не отдашь ребенка, то ты должен мне его отдать, иначе сказанное мною не будет неправдой.
Другая формулировка этого парадокса:
Миссионер очутился у людоедов и попал как раз к обеду. Они разрешают ему выбрать, в каком виде его съедят. Для этого он должен произнести какое-нибудь высказывание с условием, что, если это высказывание окажется истинным, они его сварят, а если оно окажется ложным, его зажарят.
Что следует сказать миссионеру?
Разумеется, он должен сказать: «Вы зажарите меня». Если его действительно зажарят, окажется, что он высказал истину, и значит, его надо сварить. Если же его сварят, его высказывание будет ложным, и его следует как раз зажарить. Выхода у людоедов не будет: из «зажарить» вытекает «сварить», и наоборот.
То есть если правда, что данное высказывание ложь, то данное высказывание ложно. Если же ложно, что данное высказывание ложь, то данное высказывание правда. И цепочка рассуждений возвращается в начало.
Таким образом это высказывание противоречит «закону исключённого третьего» в двоичной логике.
Предложение такого рода принципиально не может быть ни доказано, ни опровергнуто в пределах того языка, на котором оно изложено.
Однако, закончив обучение, Эватл не стал участвовать в судебных тяжбах. Как следствие, он считал себя свободным от уплаты за учебу. Это длилось довольно долго, терпение Протагора иссякло, и он сам подал на своего ученика в суд. Таким образом, должен был состояться первый судебный процесс Эватла.
Протагор привёл следующую аргументацию: «Каким бы ни было решение суда, Эватл должен будет заплатить. Он либо выиграет свой первый процесс, либо проиграет. Если выиграет, то заплатит по договору, если проиграет, заплатит по решению суда».
Эватл возражал: «Ни в том, ни в другом случае я не должен платить. Если я выиграю, то я не должен платить по решению суда, если проиграю, то по договору».
Протагор, по не вполне надёжным сведениям, посвятил этому случаю несохранившееся сочинение «Тяжба о плате».
В свободное от отдыха время древнегреческие философы придумывали логические парадоксы
Многие из этих парадоксов уже давно решили и даже не один раз, но у кого-то подобные вещи могут вызвать приступ задумчивости. Попробуйте как-нибудь на досуге всерьёз поразмыслить хотя бы над одним из них и вы поймёте, как же тяжко было всем этим философам без современных знаний и технологий.
Летящая стрела
«Летящая стрела» или «Стрела Зенона» — одна из самых известных апорий, споры о которой продолжаются вот уже много веков и никакого явного и однозначного ответа на неё пока нет. Сама апория звучит так:
«Летящая стрела неподвижна, так как в каждый момент времени она занимает равное себе положение, то есть покоится; поскольку она покоится в каждый момент времени, то она покоится во все моменты времени, то есть не существует момента времени, в котором стрела совершает движение».
Ахиллес и черепаха
Ещё одна из апорий Зенона, основана на том утверждении, что Быстроногий Ахиллес никогда не догонит медленную черепаху, если в начале движения черепаха находится впереди. Звучит она так:
«Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху».
Дихотомия
Очередная апория Зенона, утверждающая логическую противоречивость математической модели движения. Вот её текст:
«Чтобы преодолеть путь, нужно сначала преодолеть половину пути, а чтобы преодолеть половину пути, нужно сначала преодолеть половину половины, и так до бесконечности».
Парадокс лжеца
В научных кругах это утверждение ещё известно как «апория Евбулида». Её, в том или ином виде, наверняка, слышали практически все:
«То, что я утверждаю сейчас — ложно».
Если это высказывание истинно, получается, исходя из его содержания, верно то, что данное высказывание — ложь; но если оно — ложь, тогда неверно то, что оно утверждает, то есть утверждение о ложности данного высказывания неверно, значит, данное высказывание истинно. Таким образом, цепочка рассуждений возвращается в начало. Неразрывно с этой апорией связан и так называемый парадокс Пиноккио: Что будет, если Пиноккио скажет: «Сейчас у меня удлинится нос»? Если нос не увеличится — значит, Пиноккио соврал, и нос будет обязан тут же вырасти. А если нос вырастет — значит, он сказал правду, но тогда почему вырос нос?
Парадокс кучи
Этот логический парадокс также был сформулировал Евбулидом около IV века до н. э. Формулировка парадокса основана на той предпосылке, что одно зёрнышко ещё не образует кучи. И если мы будем прибавлять к нему каждый раз по одному зёрнышку, то не понятно в какой момент это множество станет кучей. Есть и негативная формулировка: «Если удалять из кучи в 1 млн зёрен по одному зёрнышку, с какого момента она перестаёт быть кучей?»
Лысый
По похожему принципу строится ещё одна апория Евбулида:
«Потеряв один волос, ещё не становишься лысым, потеряв два волоса — тоже; когда же начинается лысина?»
Корабль Тесея
Парадокс, который можно сформулировать так: «Если все составные части исходного объекта были заменены, остаётся ли объект тем же объектом?» Согласно греческому мифу, пересказанному Плутархом, корабль, на котором Тесей вернулся с Крита в Афины, хранился афинянами до эпохи Деметрия Фалерского, и ежегодно отправлялся со священным посольством на Делос. При починке в нём постепенно заменяли доски, до тех пор, пока среди философов не возник спор, тот ли это ещё корабль, или уже другой, новый? Кроме того, возникает вопрос: в случае постройки из старых досок второго корабля какой из них будет настоящим?
Парадокс всемогущества
Наиболее часто этот парадокс формулируют в виде вопроса: «Может ли Бог создать камень, который он сам не сможет поднять?» Парадоксальность заключается в том, что если ему это удастся, значит, его всемогущество утратило силу, а если нет, то он и не был всемогущ.
Софизм Эватла
Интересный логический парадокс древнегреческого происхождения. Этот парадокс иллюстрируется полулегендарным примером.
У древнегреческого софиста Протагора учился софистике и в том числе судебному красноречию некий Эватл. По заключенному между ними договору Эватл должен был заплатить за обучение 10 тысяч драхм только в том случае, если выиграет свой первый судебный процесс. В случае проигрыша первого судебного дела он вообще не был обязан платить.
Однако, закончив обучение, Эватл не стал участвовать в судебных тяжбах. Как следствие, он считал себя свободным от уплаты за учебу. Это длилось довольно долго, терпение Протагора иссякло, и он сам подал на своего ученика в суд. Таким образом, должен был состояться первый судебный процесс Эватла.
Протагор привёл следующую аргументацию: «Каким бы ни было решение суда, Эватл должен будет заплатить. Он либо выиграет свой первый процесс, либо проиграет. Если выиграет, то заплатит по договору, если проиграет, заплатит по решению суда».
Эватл возражал: «Ни в том, ни в другом случае я не должен платить. Если я выиграю, то я не должен платить по решению суда, если проиграю, то по договору».
12 самых знаменитых парадоксов (2 фото)
12. Парадокс Ольберса
В астрофизике и физической космологии парадокс Ольберса – это аргумент, говорящий о том, что темнота ночного неба конфликтует с предположением о бесконечной и вечной статической Вселенной. Это одно из свидетельств нестатической Вселенной, такое, как текущая модель Большого взрыва. Об этом аргументе часто говорят как о “темном парадоксе ночного неба”, который гласит, что под любым углом зрения с Земли линия видимости закончится, достигнув звезды.
Чтобы понять это, мы сравним парадокс с нахождением человека в лесу среди белых деревьев. Если с любой точки зрения линия видимости заканчивается на верхушках деревьев, человек разве продолжает видеть только белый цвет? Это противоречит темноте ночного неба и заставляет многих людей задаться вопросом, почему мы не видим только свет от звезд в ночном небе.
11. Парадокс всемогущества
Парадокс состоит в том, что если существо может выполнять какие-либо действия, то оно может ограничить свою способность выполнять их, следовательно, оно не может выполнять все действия, но, с другой стороны, если оно не может ограничивать свои действия, то это что-то, что оно не может сделать.
Это, судя по всему, подразумевает, что способность всемогущего существа ограничивать себя обязательно означает, что оно действительно ограничивает себя. Этот парадокс часто формулируется в терминологии авраамических религий, хотя это и не является обязательным требованием.
Одна из версий парадокса всемогущества заключается в так называемом парадоксе о камне: может ли всемогущее существо создать настолько тяжелый камень, что даже оно будет не в состоянии поднять его? Если это так, то существо перестает быть всемогущим, а если нет, то существо не было всемогущим с самого начала.
Ответ на парадокс заключается в следующем: наличие слабости, такой, как невозможность поднять тяжелый камень, не попадает под категорию всемогущества, хотя определение всемогущества подразумевает отсутствие слабостей.
10. Парадокс Сорита
Парадокс состоит в следующем: рассмотрим кучу песка, из которого постепенно удаляются песчинки. Можно построить рассуждение, используя утверждения:
— 1000000 песчинок – это куча песка;
— куча песка минус одна песчинка – это по-прежнему куча песка.
Если без остановки продолжать второе действие, то, в конечном счете, это приведет к тому, что куча будет состоять из одной песчинки. На первый взгляд, есть несколько способов избежать этого заключения. Можно возразить первой предпосылке, сказав, что миллион песчинок – это не куча. Но вместо 1000000 может быть сколь угодно другое большое число, а второе утверждение будет верным при любом числе с любым количеством нулей.
Таким образом, ответ должен прямо отрицать существование таких вещей, как куча. Кроме того, кто-то может возразить второй предпосылке, заявив, что она верна не для всех “коллекций зерна” и что удаление одного зерна или песчинки все еще оставляет кучу кучей. Или же может заявить о том, что куча песка может состоять из одной песчинки.
9. Парадокс интересных чисел
Утверждение: нет такого понятия, как неинтересное натуральное число.
Доказательство от противного: предположим, что у вас есть непустое множество натуральных чисел, которые неинтересны. Благодаря свойствам натуральных чисел, в перечне неинтересных чисел обязательно будет наименьшее число.
Будучи наименьшим числом множества его можно было бы определить как интересное в этом наборе неинтересных чисел. Но так как изначально все числа множества были определены как неинтересные, то мы пришли к противоречию, так как наименьшее число не может быть одновременно и интересным, и неинтересным. Поэтому множества неинтересных чисел должны быть пустыми, доказывая, что не существует такого понятия, как неинтересные числа.
8. Парадокс летящей стрелы
Данный парадокс говорит о том, что для того, чтобы произошло движение, объект должен изменить позицию, которую он занимает. В пример приводится движение стрелы. В любой момент времени летящая стрела остается неподвижной, потому как она покоится, а так как она покоится в любой момент времени, значит, она неподвижна всегда.
То есть данный парадокс, выдвинутый Зеноном еще в 6 веке, говорит об отсутствии движения как таковом, основываясь на том, что двигающееся тело должно дойти до половины, прежде чем завершить движение. Но так как оно в каждый момент времени неподвижно, оно не может дойти до половины. Этот парадокс также известен как парадокс Флетчера.
Стоит отметить, что если предыдущие парадоксы говорили о пространстве, то следующий парадокс – о делении времени не на сегменты, а на точки.
7. Парадокс Ахиллеса и черепахи
В данном парадоксе Ахиллес бежит за черепахой, предварительно дав ей фору в 30 метров. Если предположить, что каждый из бегунов начал бежать с определенной постоянной скоростью (один очень быстро, второй очень медленно), то через некоторое время Ахиллес, пробежав 30 метров, достигнет той точки, от которой двинулась черепаха. За это время черепаха “пробежит” гораздо меньше, скажем, 1 метр.
Затем Ахиллесу потребуется еще какое-то время, чтобы преодолеть это расстояние, за которое черепаха продвинется еще дальше. Достигнув третьей точки, в которой побывала черепаха, Ахиллес продвинется дальше, но все равно не нагонит ее. Таким образом, всякий раз, когда Ахиллес будет достигать черепаху, она все равно будет впереди.
Таким образом, поскольку существует бесконечное количество точек, которых Ахиллес должен достигнуть, и в которых черепаха уже побывала, он никогда не сможет догнать черепаху. Конечно, логика говорит нам о том, что Ахиллес может догнать черепаху, потому это и является парадоксом.
Проблема этого парадокса заключается в том, что в физической реальности невозможно бесконечно пересекать поперечно точки – как вы можете попасть из одной точки бесконечности в другую, не пересекая при этом бесконечность точек? Вы не можете, то есть, это невозможно.
Но в математике это не так. Этот парадокс показывает нам, как математика может что-то доказать, но в действительности это не работает. Таким образом, проблема данного парадокса в том, что происходит применение математических правил для нематематических ситуаций, что и делает его неработающим.
6. Парадокс Буриданова осла
Это образное описание человеческой нерешительности. Это относится к парадоксальной ситуации, когда осел, находясь между двумя абсолютно одинаковыми по размеру и качеству стогами сена, будет голодать до смерти, поскольку так и не сможет принять рациональное решение и начать есть.
Парадокс назван в честь французского философа 14 века Жана Буридана (Jean Buridan), однако, он не был автором парадокса. Он был известен еще со времен Аристотеля, который в одном из своих трудов рассказывает о человеке, который был голоден и хотел пить, но так как оба чувства были одинаково сильны, а человек находился между едой и питьем, он так и не смог сделать выбора.
Буридан, в свою очередь, никогда не говорил о данной проблеме, но затрагивал вопросы о моральном детерминизме, который подразумевал, что человек, столкнувшись с проблемой выбора, безусловно, должен выбирать в сторону большего добра, но Буридан допустил возможность замедления выбора с целью оценки всех возможных преимуществ. Позднее другие авторы отнеслись с сатирой к этой точке зрения, говоря об осле, который столкнувшись с двумя одинаковыми стогами сена, будет голодать, принимая решение.
5. Парадокс неожиданной казни
4. Парадокс парикмахера
Предположим, что существует город с одним мужским парикмахером, и что каждый мужчина в городе бреется налысо: некоторые самостоятельно, некоторые с помощью парикмахера. Кажется разумным предположить, что процесс подчиняется следующему правилу: парикмахер бреет всех мужчин и только тех, кто не бреется сам.
Согласно этому сценарию, мы можем задать следующий вопрос: парикмахер бреет себя сам? Однако, спрашивая это, мы понимаем, что ответить на него правильно невозможно:
— если парикмахер не бреется сам, он должен соблюдать правила и брить себя сам;
— если он бреет себя сам, то по тем же правилам он не должен брить себя сам.
3. Парадокс Эпименида
Этот парадокс вытекает из заявления, в котором Эпименид, противореча общему убеждению Крита, предположил, что Зевс был бессмертным, как в следующем стихотворении:
Они создали гробницу для тебя, высший святой
Критяне, вечные лжецы, злые звери, рабы живота!
Но ты не умер: ты жив и будешь жив всегда,
Ибо ты живешь в нас, а мы существуем.
Тем не менее, он не осознавал, что, называя всех критян лжецами, он невольно и самого себя называл обманщиком, хотя он и “подразумевал”, что все критяне, кроме него. Таким образом, если верить его утверждению, и все критяне лжецы на самом деле, он тоже лжец, а если он лжец, то все критяне говорят правду. Итак, если все критяне говорят правду, то и он в том числе, а это означает, исходя из его стиха, что все критяне лжецы. Таким образом, цепочка рассуждений возвращается в начало.
Это очень старая задача в логике, вытекающая из Древней Греции. Говорят, что знаменитый софист Протагор взял к себе на учение Эватла, при этом, он четко понимал, что ученик сможет заплатить учителю только после того, как он выиграет свое первое дело в суде.
Некоторые эксперты утверждают, что Протагор потребовал деньги за обучение сразу же после того, как Эватл закончил свою учебу, другие говорят, что Протагор подождал некоторое время, пока не стало очевидно, что ученик не прикладывает никаких усилий для того, чтобы найти клиентов, третьи же уверены в том, что Эватл очень старался, но клиентов так и не нашел. В любом случае, Протагор решил подать в суд на Эватла, чтобы тот вернул долг.
Протагор утверждал, что если он выиграет дело, то ему будут выплачены его деньги. Если бы дело выиграл Эватл, то Протагор по-прежнему должен был получить свои деньги в соответствии с первоначальным договором, потому что это было бы первое выигрышное дело Эватла.
Эватл, однако, стоял на том, что если он выиграет, то по решению суда ему не придется платить Протагору. Если, с другой стороны, Протагор выиграет, то Эватл проигрывает свое первое дело, поэтому и не должен ничего платить. Так кто же из мужчин прав?
1. Парадокс непреодолимой силы
Парадокс непреодолимой силы представляет собой классический парадокс, сформулированный как “что происходит, когда непреодолимая сила встречает неподвижный объект?” Парадокс следует воспринимать как логическое упражнение, а не как постулирование возможной реальности.
Согласно современным научным пониманиям, никакая сила не является полностью неотразимой, и не существует и быть не может полностью недвижимых объектов, так как даже незначительная сила будет вызывать небольшое ускорение объекта любой массы. Неподвижный предмет должен иметь бесконечную инерцию, а, следовательно, и бесконечную массу. Такой объект будет сжиматься под действием собственной силы тяжести. Непреодолимой силе потребуется бесконечная энергия, которая не существует в конечной Вселенной.
Парадоксальный «парадокс»
Парадокс (от др.-греч. παράδοξος — неожиданный, странный от др.-греч. παρα-δοκέω — кажусь) — ситуация (высказывание, утверждение, суждение или вывод), которая может существовать в реальности, но не имеет логического объяснения.
Парадокс всемогущества — семейство связанных парадоксов, имеющих отношение к вопросу о том, что может сделать всемогущее существо, в особенности может ли существо, которое в состоянии выполнить любое действие, сделать что-либо, что ограничило бы его способность выполнять действия.
Обычно парадокс формулируют в виде вопроса: «Может ли бог создать камень, который он сам не сможет поднять?» Парадоксальность заключается в том, что если ему это удастся, значит, его всемогущество утратило силу, а если нет, то он и не был всемогущ.
В атеистические времена этот вопрос был самым простым способом потроллить верующих в Бога: дескать, видите, не всемогущ этот ваш Бог.
С философской точки зрения, основанной на понимании эволюции как развития Духа и Материи, как эволюции жизни и формы, этот парадокс разрешается очень просто: да, Бог сможет. Более того, он этот «камень» уже создал. Это человек.
Действительно, согласно учению Платона и неоплатоников, все живое в этом мире возникло как божественная эманация и в силу этого несет в себе природу Божества. Но только человек, в отличие от всех прочих творений, имеет свободу выбора и может по своей воле нарушать законы Природы, то есть волю Бога. Согласно Платону, человек — это Бог, который забыл об этом, но может и должен вспомнить. Но в своем теперешнем состоянии он как раз и является тем самым «камнем», который был сотворен Богом, но поднять который под силу теперь лишь самому человеку.
Выходит, всемогущим в этом мире может быть только человек. Но не просто человек, а человек, вспомнивший и реализовавший свою истинную природу.
Парадокс Эпименида — логический парадокс, формулирующийся следующим образом:
Эпименид сказал, что все критяне — лжецы; Эпименид — критянин; следовательно, Эпименид — лжец; следовательно все критяне не лжецы; следовательно, Эпименид не лжец и т. д.
Этот парадокс открыл Эвбулид из Милета. Он является разновидностью парадокса лжеца. Считается, что исторически он является первым вариантом данного парадокса.
Сам парадокс лжеца был известен в Древней Греции IV века до н. э. Евбулид Милетский включил его в список своих семи софизмов в следующей формулировке:
Человек говорит, что он лжёт. То, что он говорит — истина или ложь?
Надпись на могиле Филита на острове Кос гласит:
О странник! Я Филит Косский,
И это лжец привёл к моей смерти,
И бессонные ночи из-за него.
Последователь Аристотеля Теофраст написал о парадоксе три папируса, а ранний стоик Хрисипп — шесть, но до нас они не дошли.