что такое гравиметрическая форма
Осаждаемая и гравиметрическая формы
При осаждении форма осадка может быть различной в зависимости от условий, в которых оно проводится. Важно подобрать такие условия, при которых не происходит потери вещества. Поэтому осаждение считают важнейшей операцией гравиметрического анализа. При его выполнении необходимо правильно выбрать осадитель, рассчитать его количество, соблюсти определенные условия осаждения, убедиться в полноте осаждения иона из раствора.
Осадок в процессе анализа приходится доводить до постоянной массы. Поэтому в гравиметрическом анализе различают две формы: осаждаемую и гравиметрическую.
Осаждаемая форма – тот осадок, который получается в результате химической реакции между осаждаемым ионом и осадителем.
Например: Ba 2+ + SO4 2– → BaSO4
К осаждаемой форме предъявляются следующие требования:
· малая величина растворимости, около 1•10 –6 моль/л,
· осадок должен быть крупнокристаллическим,
· осаждаемая форма должна легко и полно превращаться в гравиметрическую форму.
Гравиметрическая форма – то вещество, которое получается после прокаливания осаждаемой формы.
Требования, предъявляемые к гравиметрической форме:
1. Состав гравиметрической формы должен точно соответствовать определенной стехиометрической формуле.
2. Она не должна менять своей массы на воздухе из-за поглощения паров H2O и CO2 или частичного разложения.
3. Содержание определяемого элемента в гравиметрической форме должно быть как можно меньше, т. к. в таком случае погрешности взвешивания в меньшей степени сказываются на результате.
Перечисленные требования к осадкам в свою очередь определяют требования к осадителям:
1. Осадитель должен образовывать с исследуемым компонентом осадок, обладающий наименьшей растворимостью.
2. Осадитель должен быть летуч, чтобы примеси его можно было удалить при прокаливании.
3. Осадитель должен быть специфичным, т. е. осаждать избирательно.
Требования к промывной жидкости:
· Растворимость осадка в промывной жидкости не должна быть выше его растворимости в маточном растворе. Для уменьшения растворимости в нее добавляют ион–осадитель. Если осадитель в процессе термообработки не удаляется из осадка, после основного промывания осадок промывают минимальным объемом промывной жидкости без осадителя или воды или органических растворителей (ацетон, спирт, эфир).
· При промывании аморфных осадков не должна происходить их пептизация. В случае неорганической природы ОФ необходимо добавлять электролиты–коагуляторы.
· Все компоненты промывной жидкости должны полностью удалятся из осадка в процессе термообработки.
Механизм реакции осаждения(Понятие о теории образования осадков)
В процессе образования осадка различают три основных параллельно протекающих процесса: 1) образование зародышей кристаллов; 2) рост кристаллов; 3) объединение хаотично ориентированных мелких кристаллов.
В начальный момент смешивания реагирующих компонентов раствор, содержащий эти компоненты, пересыщается и образуются мельчайшие частицы осадка – зародыши. Зародыш кристалла – наименьший агрегат атомов, молекул или ионов, который образуется в виде твердой фазы при осаждении и способен к самопроизвольному росту. Образование зародышей в пересыщенном растворе может происходить как самопроизвольно, так и при введении в раствор твердых частиц осадка, которые могут служить центром образования зародышей. Нерастворимые частицы, содержащиеся в реактивах и растворителе, также являются центром образования зародышей. Время с момента смешивания растворов реагирующих веществ до появления зародышей называют индукционным периодом, продолжительность его зависит от концентрации реагирующих веществ, а также от природы осадка. Так, при осаждении творожистого осадка AgCl индукционный период незначителен, а при осаждении кристаллических осадков – достаточно велик.
Рост кристаллов происходит за счет диффузии ионов к поверхности растущего кристалла и осаждения этих ионов на его поверхности и определяется не только диффузионными процессами, но и структурой растущих кристаллов, дефектами кристаллической решетки, внедрением в нее различных ионов и т. д.
Число и размер частиц осадка зависят от соотношения скорости образования зародышей кристаллов и скорости роста кристаллов. Если скорость образования зародышей кристаллов мала по сравнению со скоростью роста кристаллов, образуется небольшое число крупных частиц – осадок крупнокристаллический, при обратном соотношении скоростей получается мелкодисперсный осадок, состоящий из большого числа мелких частиц. Скорости обоих процессов зависят от относительного пересыщения раствора, которое определяется выражением:
где C – концентрация осаждаемого вещества в растворе, получаемая в момент внесения осадителя; S – растворимость.
Гравиметрия. Формы осадка, фактор пересчета, методика
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
ГРАВИМЕТРИЯ
Формы осадка в гравиметрическом анализе
Гравиметрия — химический метод анализа, в ходе которого определяемое вещество выделяют из раствора в виде малорастворимого осадка. Осадок подвергают необходимой обработке и взвешивают. Из полученного значения массы находят содержание определяемого компонента. Необходимо, чтобы осаждение было количественным (99,9 %). Следует избегать загрязнения осадка другими веществами, т. е. не должно быть соосаждения, адсорбции.
В практике химических лабораторий обычно пользуются методиками с уже готовыми формулами для расчета. Существуют две формы осадка в гравиметрическом анализе осаждаемая и весовая.
Осаждаемая форма — соединение, осаждаемое из раствора и содержащее анализируемый элемент.
Весовая (гравиметрическая) форма — соединение, массу которого непосредственно измеряют взвешиванием. Формы могут совпадать или не совпадать по составу (табл. 2.1).
Таблица 2.1 Примеры форм гравиметрического определения элементов
При прокаливании происходит удаление воды. Поэтому осаждаемая и весовая формы не совпадают.
Требования к осаждаемой форме:
Требования к гравиметрической форме:
Для получения осадка в гравиметрическом анализе раствор после действия осадителя фильтруют, осадок промывают, а затем высушивают или прокаливают. Если осадок прокаливают перед взвешиванием (например, Al(OH)3), то используют бумажные фильтры.
Если осадок кристаллический (например, BaSO4), то можно использовать фарфоровые фильтрующие тигли. Если осадок высушивают (например, сульфиды, хелатные комплексы), то используют стеклянный фильтрующий тигель.
Фактор пересчета
Фактор пересчета F — доля определяемого компонента в гравиметрической форме соединения, содержащего этот компонент:
После определения фактора пересчета и массы гравиметрической формы получаем результат анализа Х:
Гравиметрический анализ имеет высокую точность, но является длительным и трудоемким процессом. Он применим для определения почти любого элемента, часто используется для получения стандартов.
Гравиметрический анализ применяют для определения влажности пищевых продуктов (макаронные изделия, сахар, сухофрукты, колбасы, хлеб и т. д.).
Для этого анализа используют следующие методы:
Влажность различных продуктов определяется содержанием в них гигроскопической влаги. Эта вода удерживается веществом за счет физической адсорбции. Нет строгих соотношений содержания молекул воды. Удаление воды происходит при температуре 70−105С при выдерживании в сушильном шкафу.
При кристаллизации многих веществ в состав его может входить кристаллизационная вода. Молекулярная формула вещества включает определенное количество молекул воды:
Удаляется кристаллизационная вода при 105–120 С. Связанная вода входит в состав молекулы вещества (химическая связь). Связанная вода входит в состав гидроксидов металлов Ca(OH)2; Cu(OH)2; Al(OH)3. Удалить эту воду можно прокаливанием в муфельной печи при температуре более 200С.
Методика проведения гравиметрического анализа
Высушивание бюкса до постоянного веса. Чистый сухой бюкс помещают в сушильный шкаф (110–120С), выдерживают 30–40 мин, охлаждают в эксикаторе 20–30 мин (рис. 2.1) и взвешивают на аналитических весах с точностью до 0,0002 г. Операцию повторяют до тех пор, пока масса бюкса будет отличаться от предыдущего взвешивания не более чем на 2 единицы в четвертом знаке после запятой.
Рис. 2.1. Выдерживание бюкса в эксикаторе
Взвешивание пробы. Вещество должно быть измельчено, состав его должен соответствовать среднему составу всей партии. Взвешивают пробу на аналитических весах. В доведенный до постоянного значения массы бюкс переносят навеску пробы 1,5–2,0 г.
Высушивание навески до постоянного веса. Бюкс с навеской помещают в сушильный шкаф. Температура в нем зависит от вещества, которое мы анализируем:
● 110−120С — для неорганического вещества;
● 70–105С — для органического вещества.
Выдерживают при этой температуре вещество в бюксе в сушильном шкафу 1,5−2,0 ч, охлаждают 20−30 мин в эксикаторе, затем взвешивают. Последующие процедуры выдерживания проб в сушильном шкафу проводят уже по 40 мин. Крышку бюкса ставят в сушильном шкафу на ребро.
Прокаливание в муфельной печи проводят в тигле аналогично.
Косвенные методы определения влажности. В товароведении чаще всего пользуются косвенными методами определения влажности и обычно применяют методы, основанные на высушивании. Эти методы являются самыми распространенными при определении влажности в пищевых продуктах. При высокой температуре и нормальном атмосферном давлении из продукта в первую очередь удаляется свободная вода, а в дальнейшем — некоторое количество связанной воды с различной интенсивностью в зависимости от типа связи воды с другими составными веществами продукта. В высушенной навеске всегда остается небольшое количество связанной влаги. Поэтому величина влажности, полученная методом высушивания, точнее характеризует фактическую влажность продукта. Для получения сравнимых данных необходимо строгое соблюдение условий сушки, главным образом времени и температуры.
Определение содержания влаги высушиванием до постоянной массы (арбитражный метод). В стеклянный или металлический бюкс насыпают 12–15 г очищенного кварцевого песка и помещают в него стеклянную палочку. Бюкс высушивают в сушильном шкафу (рис. 2.2) до достижения постоянной массы (расхождение между двумя последовательными взвешиваниями допускается в пределах ±0,001 г). В высушенный и тарированный бюкс помещают от 3 до 10 г тщательно перемешанного измельченного анализируемого продукта, взвешивают на аналитических весах, тщательно перемешивают навеску с песком стеклянной палочкой. Открытый бюкс с навеской помещают в сушильный шкаф (крышку высушивают вместе с бюксом). Высушивание производят при температуре 95−105 °С (в зависимости от вида продукта) до постоянного значении массы (допустимые расхождения 0,005−0,001 г). Перед каждым взвешиванием бюкс с закрытой крышкой охлаждают в эксикаторе.
Рис. 2.2. Определение содержания влаги высушиванием в сушильном шкафу СЭШ-3М
Содержание влаги (X, %) вычисляют по формуле:
Расхождение между двумя измерениями содержания влаги не должно превышать 0,3 %. Анализ применяется в различных зерновых и зерноперерабатывающих лабораториях элеваторов, хлебоприемных, мукомольных, крупяных, комбикормовых, хлебопекарных предприятий и научноисследовательских учреждений агропромышленного комплекса.
Определение содержания влаги разовым высушиванием (ускоренный метод). В доведенный до постоянной массы бюкс (с песком или без песка в зависимости от вида высушиваемого продукта) помещают 3 или 5 г тщательно перемешанного измельченного образца. Взвешивание производят с точностью до 0,01 г.
У большинства продуктов влажность ускоренным методом определяют при температуре 130 °С. Бюкс с навеской выдерживают строго установленное время для каждого вида продукта. Затем бюксы вынимают из сушильного шкафа, закрывают крышками, помещают в эксикатор, охлаждают и взвешивают. Содержание влаги в продукте рассчитывают по вышеуказанной формуле.
Высушивание на приборе ВЧ (влагомер Чижовой, рис. 2.3). Метод основан на обезвоживании навески исследуемого продукта с помощью тепловой энергии инфракрасного излучения.
Рис. 2.3. ВАРЦ-21М — прибор Чижовой для определения влажности теста, пищевого сырья и продуктов, хлебобулочных изделий
Прибор ВЧ состоит из двух шарнирно-соединенных между собой массивных металлических плит 1 и 2, нагреваемых плоскими электронагревателями. Быстрота высушивания обеспечивается прогревом исследуемого продукта, распределенного тонким слоем между плитами, обычно при температуре 160 °С. Высушивание навесок осуществляют в специальных пакетах.
Подготовленные пакеты вкладывают между пластинами нагретого прибора и высушивают в течение 3 мин, затем охлаждают в эксикаторе 5 мин и взвешивают на технохимических весах с точностью до 0,01 г. Во взвешенные пакеты помещают навески измельченного продукта по 4−5 г и распределяют их равномерно по толщине слоя и внутренней поверхности пакета. Пакеты с содержимым быстро взвешивают на технохимических весах, загибают края и помещают в прибор для высушивания.
Два взвешенных пакета с навесками (проводят два параллельных измерения) высушивают определенное время, затем пакеты охлаждают в эксикаторе в течение 5 мин и взвешивают с точностью до 0,01 г. Влажность рассчитывают по вышеуказанной формуле, только вместо массы бюкса указывают массу пакета.
Гравиметрия (химия)
Гравиметрия (весовой анализ) — метод количественного анализа в аналитической химии, который основан на изменении массы определяемого компонента, выделенном в виде веществ определённого состава.
Используется уравнение химической реакции типа: aX + bR = XaRb для получения осадка XaRb
При выполнении весовых определений определяемый компонент смеси, или составную часть (элемент, ион) вещества количественно связывают в такое химическое соединение, в виде которого она может быть выделена и взвешена (так называемая гравиметрическая форма, ранее она именовалась «весовая форма»). Состав этого соединения должен быть строго определённым, то есть точно выражаться химической формулой, и оно не должно содержать каких-либо посторонних примесей.
В гравиметрии используются различные неорганические и органические химические соединения. Так, например, 1,2,3-Бензотриазол применяется для гравиметрического определения металлов: меди, серебра, цинка и др.
Вершины своего развития весовой анализ достиг в 1950-е годы, когда ещё не было широкого применения спектральных и хроматографических методов.
В настоящее время он остаётся своеобразным эталоном, методической базой при разработке и аттестации других методов.
В гравиметрии есть три метода: отгонка, осаждение и выделение.
Гравиметрические методы применяют редко. Основное их достоинство — исключается построение калибровочных графиков (построение графика при анализе многокомпонентных смесей затруднительно, из-за невозможности приготовления стандартной смеси, точно моделирующей пробу, не зная заранее состава пробы). Гравиметрические методы применяют в качестве арбитражных при определении магния, натрия, кремнекислоты, сульфат-ионов, суммарного содержания нефтепродуктов, жиров. [1]
Содержание
Применение гравиметрического анализа
Методы гравиметрии
Метод осаждения
Поскольку осаждённое вещество может не соответствовать тому, что получается после прокаливания, различают осаждаемую и гравиметрическую форму осадка.
где CaC2O3 будет являться осаждаемой формой, так как при прокаливании он изменяет свой состав:
Метод выделения
Основан на выделении определяемого компонента из анализируемого вещества и его точном взвешивании. Например определение золы в твердом топливе.
Метод отгонки
В этом методе определяемый компонент выделяют в виде летучего соединения действием кислоты или высокой температуры. Возможны различные варианты этого метода:
Отбор средней пробы и ее подготовка к анализу
Способы отбора средних проб
Виды средних проб
Дальнейшая подготовка пробы состоит: в измельчении, перемешивании и уменьшении массы. Для этого используют метод квартования, которое повторяют многократно.
Взятие навески
Выбор величины навески
При слишком малой навеске ошибки во взвешивании и других операциях значительно снижают точность определения. Таким образом, выбор величины навески анализируемого вещества определяется массой осадка, наиболее удобной в работе. На бумажном фильтре диаметром 7 см можно легко отфильтровать 0,5 г кристаллического осадка (BaSO4, CaCO3, CaC2O3 и т. д.), но с такой же массой аморфного осадка (H2SiO3*nH2O, Fe(OH)3, Al(OH)3) работать трудно. Аналитической практикой установлено, что наиболее удобны в работе кристаллические осадки массой 0,4-0,5 г и объемистые аморфные осадки массой 0,1-0,3 г.
Учитывая эти нормы осадков и зная относительное содержание определяемого элемента в веществе, выбирают необходимую величину навески.
Иногда, выбирая навеску, учитывают необходимую точность определения и возможные потери из-за растворимости осадка. Выбор величины навески зависит ещё от метода, с помощью которого будет выполнятся анализ (макро, полумикро или микроанализ). При определениях, не связанных с получением осадка (изучение влажности, зольности) допустимы навески в 1-2 г, а иногда и больше.
Так как взвешивание на аналитических весах более длительное, приблизительную навеску берут сначала на техно-химических весах, а затем точно взвешивают на аналитических весах. Навески порошкообразных веществ удобно взвешивать в пробирке с пробкой. На часовом стекле взвешивают только те вещества, которые не выделяют паров и не поглощают вещества из окружающей среды, в противном случае вещество взвешивают в бюксе.
Техника взятия навески
Техника взятия навески может быть различна:
Такой способ более удобен в тех случаях, когда необходимо взять несколько навесок анализируемого вещества.
Растворение
Пробы труднорастворимых органических веществ разлагают двумя способами:
Что такое гравиметрическая форма
Количественный анализ. Классификация методов. Гравиметрический анализ. Осажденная и гравиметрическая формы осадков. Расчеты в гравиметрическом анализе.
Количественный анализ предназначен для установления количественного состава компонентов в анализируемой пробе. Ему предшествует качественный анализ, устанавливающий, какие компоненты (элементы, ионы, молекулы) присутствуют в анализируемой пробе.
Количественный анализ бывает трех видов: полный, частичный, общий. При полном количественном анализе устанавливается полный количественный состав всех компонентов, присутствующих в анализируемой пробе. Например, для полного количественного анализа крови необходимо определить содержание 12 компонентов: натрия, калия, кальция, глюкозы, билирубина и т. д. Полный анализ требует больших затрат времени и труда.
При выполнении частичного анализа определяется содержание лишь за-
данных компонентов. Общий анализ устанавливает содержание каждого элемента в анализируемом образце независимо от того, в состав каких соединений они входят. Такой анализ обычно называют элементным.
КЛАССИФИКАЦИЯ МЕТОДОВ КОЛИЧЕСТВЕННОГО АНАЛИЗА
Методы количественного анализа можно разделить на три большие группы: химические, физические, физико-химические.
Химические методы основаны на использовании количественно протекающих, различных по типу химических реакций: обменных, осадительных, окислительно-восстановительных и реакций комплексообразования. К химическим относятся гравиметрический и титриметрический (объемный) методы анализа.
Гравиметрический метод анализа основан на измерении массы определяeмoгo компонента после его выделения в виде гравиметрической формы. Метод характеризуется высокой точностью, но длителен и трудоемок. В фармацевтическом анализе его применяют в основном для определения влажности и зольности лекарственных препаратов.
Химические методы анализа, хотя и являются в настоящее время основными в химических лабораториях, во многих случаях не отвечают возросшим требованиям к анализу, таким как высокая чувствительность, экспрессность, селективность, автоматизация и др. Этих недостатков лишены инструментальные методы анализа, которые можно разделить на три большие группы: оптические, электрохимические, хроматографические.
В гравиметрическом анализе используют методы осаждения, отгонки (прямой и косвенной), выделения, термогравиметрию, электрогравиметрию.
В методе осаждения определяемый компонент вступает в химическую реакцию с реагентом, образуя малорастворимое соединение. После проведения ряда аналитических операций (схема 1.1) твердый осадок известного состава взвешивают и проводят необходимые вычисления.
Последовательность аналитических операций в гравиметрическом методе осаждения
N этапа Содержание этапа анализа
1Расчет массы навески анализируемого вещества и ее взвешивание
2 Растворение навески
3 Создание условий осаждения
4 Осаждение (получение осажденной формы)
5Отделение осадка фильтрованием
6 Промывание осадка
7 Получение гравиметрической формы (высушивание, прокаливание до постоянной массы)
8 Взвешивание гравиметрической формы
9 Расчет результатов анализа
Электрогравиметрический анализ основан на электролитическом выделении металлов и взвешивании полученного на электроде осадка. Основным физическим условием электpoлитичecкoгo разделения металлов является определенное напряжение, при котором осаждаются одни и не выделяются другие металлы.
В аналитической практике наиболее широкое применение находит грави-
метрический метод осаждения, который и будет рассмотрен более подробно.
МЕХАНИЗМ ОБРАЗОВАНИЯ ОСАДКА И УСЛОВИЯ ОСАЖДЕНИЯ
Образование осадка происходит в том случае, когда произведение концентраций ионов, входящих в его состав, превышает величину произведения растворимости ПР (KA) малорастворимого электролита:
т. е. когда возникает местное (относительное) пересыщение раствора, которое рассчитывают по формуле:
Исходя из понятия относительного пересыщения раствора, следует, что чем ниже растворимость осадка S и чем выше концентрация реагирующих веществ Q, тем больше образуется зародышей и тем больше скорость агрегации. И наоборот: чем меньше разность (Q – S), то есть, чем выше растворимость осадка и ниже концентрация осаждаемого вещества, тем выше скорость ориентации. Следовательно, для получения крупных кристаллов, которые можно легко отфильтровать и промыть, необходимо проводить осаждение из разбавленных растворов медленным прибавлением осадителя и при нагревании (табл. 1.1).
Условия осаждения кристаллических и аморфных осадков
Характер осадка
Концентрация растворов вещества и осадителя
К разбавленному раствору исследуемого вещества прибавляют разбавленный раствор осадителя
К концентрированному раствору исследуемого вещества прибавляют концентрированный раствор осадителя
Скорость осаждения
Раствор осадителя прибавляют по каплям
Раствор осадителя прибавляют быстро
Осаждение производят при непрерывном перемешивании
Присутствие посторонних веществ
Добавляют вещества, повышающие растворимость (обычно сильные кислоты)
Добавляют электролиты-коагулянты
Длительно выдерживают осадок в маточном растворе для «созревания» («старения»)
Фильтруют сразу после осаждения
Чистота кристаллических осадков. Удельная поверхность кристаллических осадков (плошадь осадка, отнесенная к единице массы, см 2 /г) обычно мала, поэтому соосаждение за счет адсорбции незначительно. Однако другие виды соосаждения, связанные с загрязнением внутри кристалла, могут привести к ошибкам.
Известны два вида соосаждения в кристаллических осадках:
Эффективным способом уменьшения окклюзии является «старение» («созревание») осадка, в ходе которого происходит самопроизвольный рост более крупных кристаллов за счет растворения мелких частиц, совершенствуется кристаллическая структура осадка, сокращается его удельная поверхность, вследствие чего десорбируются и переходят в раствор примеси поглощенных ранее веществ. Время «созревания» осадка можно сократить, нагревая раствор с осадком.
Чистота аморфных осадков существенно уменьшается в результате процесса адсорбции, так как аморфный осадок состоит из частиц с неупорядоченной структурой, образующих рыхлую пористую массу с большой поверхностью. Наиболее эффективным способом уменьшения в результате процесса адсорбции является переосаждение. В этом случае отфильтрованный осадок растворяют и снова осаждают. Переосаждение существенно удлиняет анализ, но оно неизбежно для гидратированных железа ( III ) и алюминия оксидов, цинка и марганца гидроксидов и т. п. Процессом, обратным коагуляции аморфного осадка, является его пептизация – явление, в результате которого коагулированный коллоид возвращается в исходное дисперсное состояние. Пептизация часто наблюдается при промывании аморфных осадков дистиллированной водой. Эта ошибка устраняeтcя при правильном выборе промывной жидкости для аморфного осадка.
ОСАЖДЕННАЯ И ГРАВИМЕТРИЧЕСКАЯ ФОРМЫ.
ТРЕБОВАНИЯ К НИМ.
В гравиметрическом методе осаждения существуют понятия осажденной
определяемый осадитель осажденная гравиметрическая
определяемый осадитель осажденная гравиметрическая
Из приведенных примеров видно, что не всегда гравиметрическая форма совпадает с осажденной формой вещества. Различны и требования, предъявляемые к ним.
Осажденная форма должна быть:
· достаточно малорастворимой, чтобы обеспечить практически полное
выделение определяемого вещества из раствора. В случае осаждения
бинарных электролитов ( AgCl; BaS04; СаС2О4 и т. п.) достигается
практически полное осаждение, так как произведение растворимости этих
· полученный осадок должен быть чистым и легко фильтрующимся (что определяет преимущества кристаллических осадков);
· осажденная форма должна легко переходить в гравиметрическую форму.
После фильтрования и промывания осажденной формы ее высушивают или прокаливают до тех пор, пока масса осадка не станет постоянной, что подтверждает полноту превращения осажденной формы в гравиметрическую и указывает на полноту удаления летучих примесей. Осадки, полученные при осаждении определяемого компонента органическим реагентом (диацетилдиоксимом, 8-оксихинолином, α-нитрозо-β-нафтолом и т. д.), обычно высушивают. Осадки неорганических соединений, как правило, прокаливают
Основными требованиями к гравиметрической форме являются:
· точное соответствие ее состава определенной химической формуле;
· химическая устойчивость в достаточно широком интервале температур, отсутствие гигроскопичности;
· как можно большая молекулярная масса с наименьшим содержанием
в ней определяемого компонента для уменьшения влияния погрешностей
при взвешивании на результат анализа.
В ГРАВИМЕТРИЧЕСКОМ МЕТОДЕ АНАЛИЗА
Гравиметрический анализ включает два экспериментальных измерения: определение массы навески m н анализируемого вещества и массы продукта известного состава, полученного из этой навески, то есть массы гравиметрической формы m гр.ф анализируемого вещества.
На основании этих данных несложно вычислить массовую процентную долю w, % определяемого компонента в навеске:
Значение гравиметрических факторов, рассчитанное с высокой точностью, приводится в справочной литературе.
Р е ш е н и е. Необходимо допустить, что Fе3О4 количественно превращается в Fе2О3 и для этого имеется достаточное количество кислорода:
Из каждого моля Fе3О4 получается 3/2 моля Fе2О3. Таким образом, число молей Fе2О3 больше, чем число молей Fе3О4, в 3/2 раза, то есть:
Из формулы m(Fе2О3) = 3/2 (m(Fе3О4) ∙ М(Fе2О3)) / М(Fе3О4)
и подставляем в нее численные значения:
m(Fе2О3) = 1,63 ∙(3 ∙ 159,7) / (2 ∙ 231,5) = 1,687 ≈ 1,69 г.
Гравиметрический фактор F равен:
Следовательно, в общем случае гравиметрический фактор определяют по формуле:
Однако не во всех случаях эти расчеты применимы. При косвенном определении железа в Fе2(SО4)3, которое заключается в осаждении и взвешивании BaSО4 (гравиметрическая форма), при расчете аналитического фактора в числителе и знаменателе формулы нет общего элемента. Здесь необходим другой способ выражения химической эквивалентности между этими величинами:
Гравиметрический фактор для массовой процентной доли железа будет выражаться:
Пример 2. Раствор препарата Nа3РО4 ( m н = 0,7030 г) осадили в виде MgNН4РО4∙ 6Н2О. После фильтрования и промывания осадок прокалили при 1000 ˚С. Масса полученного осадка Mg2P2О7 составила 0.4320 г. Рассчитайте массовую процентную долю фосфора в навеске
w, %(Р) = 0,4320 ∙ 0,2782 ∙ 100 / 0,7030 = 17,10 %.
Пример 3. При прокаливании загрязненного препарата натрия оксалата m н = 1,3906 г получили остаток массой m гр.ф = 1,1436 г. Определите степень чистоты образца. t
Ре ш е н и е. Следует допустить, что разница между исходной и конечной массами соответствует потере углерода оксида при прокаливании. Анализ основан на измерении этой величины:
ВЫБОР МАССЫ НАВЕСКИ В ГРАВИМЕТРИИ
Как известно, точность анализа зависит как от массы навески, так и от массы гравиметрической формы, получаемой из нее. Если навеска будет взята с большой точностью, а полученная из нее гравиметрическая форма будет малой величиной, измеренной с большой погрешностью, то весь анализ будет выполнен с ошибкой, допущенной при взвешивании гравиметрической формы. Поэтому должна быть взята такая навеска, чтобы при ее взвешивании и при взвешивании полученной из нее гравиметрической формы ошибка не превышала ± 0,2 %. Для этого необходимо определить минимальную массу, которую еще можно взвесить с точностью ± 0,2 % на аналитических весах с абсолютной ошибкой взвешивания ± 0,0001 г, а минимальная ошибка, учитывая возможный разброс (±), в этом случае будет равной 2 ∙ (±0,000 1) = ±0,0002 г.
Следовательно, такой минимальной массой m min является 0,1 г. При величине, меньшей чем 0,1 г, ошибка превысит 0,2 %. При расчете массы навески в гравиметрическом анализе масса гравиметрической формы компонента приравнивается к минимальной массе вещества:
Если величина массы навески, рассчитанная по указанной формуле, окажется менее 0,1 г, то навеску следует увеличить до 0,1 г. Чаще всего массу исходной навески указывают в методике анализа или же для объемных аморфных осадков массу навески берут около 0,1, а для кристаллических от 0,1 до 0,5 г.
Расчет количества осадителя проводят с учетом возможного содержания определяемого компонента в анализируемой пробе. Для полноты выделения осадка применяют умеренный избыток осадителя. Если осадитель летуч (например, раствор хлороводородной кислоты), берут двух-, трехкратный избыток, который впоследствии удаляют при нагревании осадка. Если осадитель нелетуч (растворы бария хлорида, аммония оксалата, серебра нитрата и т. п.), достаточно его полуторакратного избытка.
АНАЛИТИЧЕСКИЕ ВЕСЫ. ПРАВИЛА ОБРАЩЕНИЯ С НИМИ
Правила обращения с аналитическими весами включают следующие основные требования:
1. Весы должны быть установлены на жестко закрепленной поверхности,
2. Недопустимы резкие колебания температуры, действие прямых солнечных лучей, а также воздействие на аналитические весы химических веществ.
3. Предельно допустимая нагрузка аналитических весов должна быть не более 200 г.
4. При взвешивании предметов на аналитических весах необходимо, чтобы они имели температуру весовой комнаты.
5. Взвешиваемое вещество помещают на левую чашку весов в специальной таре (бюксы, тигли, часовое стекло). Гири аналитического разновеса помещают на правую чашку весов.
6. Взвешиваемые предметы и гири вносят через боковые дверцы весов (шторки). Взвешивание производят только при закрытых дверцах весов.
7. Гири аналитического разновеса берут только специально предназначенным пинцетом. Все операции со сменой разновеса производят при полном арретировании весов.
8. До и после каждого взвешивания необходимо проверять нулевую точку весов.
9. Во избежание перекоса чашек весов гири и взвешиваемые предметы помещают в центр чашек.
10. Запись результатов взвешивания проводят по пустым гнездам аналитического разновеса и по данным барабанов с десятыми и сотыми долями грамма. Третий и четвертый знаки после запятой снимают со светящегося табло.
11. По окончании взвешивания необходимо убедиться, что весы арретированы, полностью разгружены и дверцы футляра плотно закрыты.
12. Для уменьшения ошибки взвешивания необходимо пользоваться аналитическим разновесом, предназначенным для строго определенных аналитических весов.
Следует отметить, что даже при соблюдении всех упомянутых правил
могут возникать ошибки взвешивания, зависящие от различных причин:
· вызванные неравноплечестью коромысла весов;
· за счет изменения массы тела в процессе взвешивания;
· за счет взвешивания в воздухе, а не в вакууме;
· вызванные несоответствием массы гирь (разновесов) их номинальной
ПРИМЕНЕНИЕ ГРАВИМЕТРИЧЕСКОГО МЕТОДА АНАЛИЗА
Иногда в основу гравиметрических определений положено восстановление определяемого компонента до элемента, который служит гравиметрической формой.
Для гравиметрического определения неорганических веществ предложен ряд органических реагентов, которые, как правило, обладают большей селективностью. Известны два класса органических реагентов. Первые образуют малорастворимые комплексные (координационные) соединения и содержат не менее двух функциональных групп, имеющих пару неподеленных электронов. Еще их называют хелатообразующими реагентами, например 8-оксихинолин осаждает более двадцати катионов:
Растворимость оксихинолятов металлов изменяется в широких пределах в зависимости от природы катиона, значения рН среды.
Диацетилдиоксим (диметилглиоксим) отличается высокой селективностью, и его широко используют для гравиметрического определения малых концентраций никеля:
ПОГРЕШНОСТИ ГРАВИМЕТРИИ
Гравиметрический метод анализа дает наиболее правильный результат, и, несмотря на длительность и трудоемкость, его очень часто применяют как проверочный метод в арбитражных анализах. Систематические методические ошибки в гравиметрии могут быть учтены и уменьшены в ходе выполнения соответствующих операций ( табл. 1.2).
Методические погрешности гравиметрии
Гравиметри-ческая операция
Абсолютная погрешность
положительная (завышенный результат)
отрицательная (заниженный результат)
а) природа осадителя
б) количество осадителя
Нелетучий, неспецифический осадитель
Небольшой избыток осадителя, соосаждение посторонних ионов
Высокая растворимость осаждаемой формы, коллоидообразование
Недостаток осадителя. Слишком большой избыток осадителя, повышение растворимости осадка в результате комплексообразования или солевого эффекта
Соосаждение посторонних ионов
Недостаточное время созревания (кристаллические осадки). Коллоидообразование (аморфные осадки)
Неправильный выбор фильтра – прохождение частиц осадка через фильтр
Промывание нелетучей промывной жидкостью
Избыток промывной жидкости: пептизация аморфного осадка; гидролиз кристаллического осадка. Потери в результате растворимости
Получение гравиметри-ческой формы
Температура прокаливания: получение соединения другого состава, гигроскопичность, поглощение СО2 из воздуха
Превышение температуры высушивания для осадков органической природы. Превышение температуры прокаливания (получения соединения другого химического состава)
Правильность метода объясняется малой систематической ошибкой измерений, связанной с точностью взвешивания на аналитических весах:
Анализ приведенных данных показывает, что выявить вид ошибки можно при рассмотрении методики определения с учетом механизма образования осадка, свойств веществ, используемых и получающихся в ходе анализа.
В настоящее время значение гравиметрических методов анализа несколько уменьшилось, однако не следует забывать, что, имея достоинства и недостатки, гравиметрический анализ является оптимальным для решения достаточно большого количества аналитических задач.