что такое граничная частота транзистора

Граничная частота транзистора

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

Предельная частота коэффициента передачи тока fгр, ft — частота, при которой модуль коэффициента передачи тока в схеме с общим эмиттером экстраполируется к единице.

Граничная частота коэффициента передачи тока биполярного транзистора f h21э — частота, на которой модуль коэффициента передачи тока падает на 3 дБ по сравнению с его низкочастотным значением.

Источник

Смотреть что такое «Граничная частота транзистора» в других словарях:

ГРАНИЧНАЯ ЧАСТОТА — частота, на к рой напряжение U или сила тока I в электрнч. цепи (фильтр, колебат. контур и др.), крутизна хар ки транзистора уменьшаются до значения, принятого за минимально допускаемое (в большинстве случаев в корень из 2 раз от Макс. значения) … Большой энциклопедический политехнический словарь

Изобретение транзистора — Основная статья: Транзистор Макет точечного транзистора Бардина и Браттейна. Треугольник в центре прозрачная призма, по рёбрам которой приклеены полоски фольги выводы коллектора и эми … Википедия

ГОСТ 20003-74: Транзисторы биполярные. Термины, определения и буквенные обозначения параметров — Терминология ГОСТ 20003 74: Транзисторы биполярные. Термины, определения и буквенные обозначения параметров оригинал документа: 1 При заданном обратном токе эмиттера в токе коллектора, равном нулю, UЭБ0, UEB0. 2 При заданном токе коллектора и… … Словарь-справочник терминов нормативно-технической документации

ТРАНЗИСТОР — полупроводниковый прибор, предназначенный для усиления электрического тока и управления им. Транзисторы выпускаются в виде дискретных компонентов в индивидуальных корпусах или в виде активных элементов т.н. интегральных схем, где их размеры не… … Энциклопедия Кольера

ТРАНЗИСТОР БИПОЛЯРНЫЙ — (от лат. bi двойной, двоякий и греч. polos ось, полюс) один из осн. элементов полупроводниковой электроники. Создан в 1948 Дж. Бардином (J. Bardeen), У. Браттейном (W. Brattain) и У. Шокли (W. Shockley) (Нобелевская премия по физике, 1956).… … Физическая энциклопедия

Биполярный транзистор — Обозначение биполярных транзисторов на схемах Простейшая наглядная схема устройства транзистора Биполярный транзистор трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно… … Википедия

Электронный усилитель — Электронный усилитель усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное … Википедия

Усилитель (электроника) — Электронный усилитель усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное… … Википедия

Стабилитрон — У этого термина существуют и другие значения, см. Стабилитрон (значения) … Википедия

Составной транзистор — Условное обозначение составного транзистора Составной транзистор (транзистор Дарлингтона) объединение двух или более биполярных транзисторов[1] с це … Википедия

Источник

4.11. Частотные свойства транзисторов

С увеличением частоты усилительные свойства транзистора ухуд­шаются. Это происходит в основном по двум причинам. Первая причина заключается в инерционности диффузионного про­цесса, обусловливающего движение дырок через базу к коллектору.

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистораДля направленного переноса частиц необходимо, чтобы их кон­центрация убывала в направлении переноса. Дырочный ток возле эмиттерного и коллекторного переходов пропорционален градиенту концентрации дырок в этих сечениях, т.е. пропорционален углу на­клона касательной, проведенной к кривой распределения концентрации в соответствующих точках.

При быстром изменении тока инжекции изменяется концентрация дырок у эмиттерного перехода. Но процесс изменения концентрации дырок сразу не может распространиться на всю базу и дойти до коллекторного перехода.

Быстрые изменения концентрации дырок у эмиттерного перехода доходят до коллекторного перехода с запаздыванием и уменьшенные по амплитуде. На высокой частоте амплитуда коллекторного тока уменьшается, и он отстает по фазе от тока эмиттера (рис. 4.18). Следовательно, с ростом частоты колебаний ухудшаются усилительные свойства транзистора.

Падение усилительных свойств транзистора с ростом частоты проявляется в зависимости коэффициентов передачи тока эмиттера и базы от частоты (рис. 4.19).

Та частота, на которой модуль коэффициента передачи тока базы па­дает на 3 дБ (в раз), по сравнению с его низкочастотным значением, называется предельной частотой коэффициента передачи тока базы ( ).

Из этого примера видно, что частотные свойства транзистора в схе­ме с ОЭ хуже. Предельная частота в схеме с ОЭ примерно в раз ниже, чем в схеме с ОБ.

В эквивалентной схеме усилительного каскада на транзисторе с ОБ (рис. 4.21) для высоких частот видно, что емкость шунтирует сопротивление (сопротивлениями и можно пренебречь, так как они велики по сравнению с и ). Условно можно считать, что шунтирующее действие емкости оказывается за­метным, когда ее сопротивление становится меньше шунтируемого, т.е.

Если принять = 0, то ча­стотные свойства коллекторной цепи непосредственно самого тран­зистора могут быть оценены с по­мощью равенства:

где – круговая частота, начи­ная с которой следует учитывать шунтирующее действие Ск; – параметр транзистора, называемый постоянной времени цепи обратной связи на высокой частоте.

Следует заметить, что на этих частотах транзистор еще может уси­ливать и генерировать электрические колебания. Генератор – это усилитель с замкнутой положительной обратной связью, когда на вход подается сигнал с выхода самого усилителя, и усилитель сам себя «раскачивает».

Максимальной частотой генерации называется наибольшая часто­та, при которой транзистор способен генерировать в схеме автогене­ратора.

Следовательно, одной из основных причин ограничения верхнего частотного предела работы транзисторов является наличие диффузионной емкости эмиттерного перехода и, как следствие, инерционность диффузионного процесса в базе. Понятно, что маломощные транзисторы с точечным эмиттерным переходом и тонкой базой более высокочастотные, чем мощные плоскостные транзисторы, рассчитанные на высокие напряжения, т.е. с более широкой базой.

Для улучшения частотных свойств транзисторов необходимо заставить инжектированные в базу неосновные носители быстрее двигаться к коллекторному переходу. Для этого базу некоторых транзисторов легируют неравномерно: сильнее у эмиттерного перехода и слабее у коллекторного. В рез
ультате, у эмиттерного перехода концентрация основных носителей оказывается повышенной, а у коллекторного – пониженной.

При установлении равновесного состояния внутри базы часть основных носителей диффундирует от эмиттерного перехода к коллекторному. Возле эмиттерного перехода остаются нескомпенсированные ионы примесей, а возле коллекторного образуется избыток основных носителей. В базе появляется диффузионное электрическое поле, которое для p-n-p-транзистора направлено от эмиттерного перехода к коллекторному. Это поле является ускоряющим для неосновных носителей, двигающихся от эмиттерного перехода к коллекторному.

Инжектированные в базу дырки будут двигаться от эмиттерного перехода к коллекторному не только за счет диффузии, но и за счет дрейфа, т.е. более быстро. Такие транзисторы называют дрейфовыми в отличие от бездрейфовых, база которых легирована равномерно. Частотные свойства дрейфовых транзисторов существенно лучше.

Источник

Частотные свойства биполярных транзисторов

Зависимость значения коэффициента передачи тока транзистора от частоты для
каскадов с общей базой (ОБ) и общим эмиттером (ОЭ).
Онлайн калькулятор зависимости коэффициента передачи тока от частоты

Частотные свойства транзистора – это набор характеристик, которые определяют диапазон частот входных сигналов, в пределах которого прибор тем или иным образом выполняет присущие ему функции по усилению или преобразованию этих сигналов.
Для биполярных транзисторов для определения частотных характеристик принято использовать (среди прочих) частотную зависимость коэффициентов передачи входного тока в схемах ОБ и ОЭ.
Обозначаются эти коэффициенты, как правило: h21б (можно встретить α – альфа) и h21э (или β – бета).

Параметр коэффициента передачи транзистора h21б (включённого по схеме с ОБ), как правило, в перечне справочных характеристик не приводится, но его всегда можно рассчитать, исходя из следующего соотношения: α = β/(1 + β) .
Значение этого параметра всегда будет меньше 1, т. к. мы помним, что схема ОБ обладает усилением по напряжению, но не усиливает ток. Но дело в данном случае не в этом, а в том, что если мы поочерёдно подставим в эту формулу два значения β (т. е. h21э), например 100 и 50 (разница в 50%), то легко убедимся, что изменение α (т. е. h21б) составляет всего 1%.
А с учётом того, что для каскада с ОБ, как мы помним: Ku ≈ Rк x α/Rэ , то и зависимость его усиления по напряжению от β транзистора будет значительно снижена. А потому и частотные свойства по отношению к ОЭ у него окажутся более предпочтительными, так как β транзистора существенно зависит от частоты, а Ku каскада ОЭ – от β. Поясним сказанное рисунком.

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

Рис.1 Зависимость коэффициентов передачи тока транзисторов от частоты

Здесь β0 (h21э) и α0 (h21б) – это коэффициенты передачи тока транзисторов в схемах ОЭ и ОБ по постоянному току.
fh21э и fh21б – это предельные частоты коэффициентов передачи тока (для схем ОЭ и ОБ). Они представляют собой частоты, на которой коэффициенты передачи снижаются в 1,41 раза (на 3 дБ) от максимального значения.
fтэто граничная частота коэффициента передачи тока биполярного транзистора, при которой модуль коэффициента передачи тока в схеме с общим эмиттером становится равным единице.

Величину коэффициента передачи тока транзисторов в зависимости от рабочей частоты для схемы ОЭ можно определить по следующей формуле:
что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора, где:
h21э0 – это статический коэффициент передачи тока транзистора для схемы ОЭ (является паспортной характеристикой),
F – это рабочая частота, на которой определяется β,
fh21э – это предельная частота коэффициента передачи тока для схемы ОЭ.

fh21э связана с граничной частотой fт (которая также является паспортной характеристикой) простым соотношением: fh21э ≈ fТ/ β0 .

Теперь, после того как мы собрали все данные, можно рассчитать величину коэффициента передачи тока транзистора β на реальной частоте.
А далее, подставив полученное значение в формулу α = β/(1 + β) , также получить и значение коэффициента передачи и для схемы ОБ.
Сдобрим пройденный материал онлайн калькулятором.

РАСЧЁТ ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ ПЕРЕДАЧИ ТОКА ТРАНЗИСТОРА ОТ ЧАСТОТЫ

Источник

Параметры биполярного транзистора

В радиолюбительской практике часто приходится подбирать транзисторы для их замены на аналогичные или выбирать нужные транзисторы при конструировании какого нибудь изделия по желаемым параметрам.
Поэтому без справочников по транзисторам никак не обойтись. В них приведены основные параметры транзисторов как по постоянному, так и переменному току. Но не все знают, что они обозначают. Попробуем разобраться с этим.

Биполярные транзисторы

Обратный коллекторный ток

Параметры транзистора по постоянному току характеризуют токи транзистора при включении перехода в обратном направлении.

Низкочастотные параметры транзистора

Для лучшего понимания происходящего в четырехполюснике транзистора покажем его эквивалентную схему ( рис.6 ).
Тогда уравнения четырехполюсника с h-параметрами выглядят так:

У современных транзисторов коэффициент обратной связи h12 почти равен нулю и позтому его можно не указывать на эквивалентной схеме.

Для разных схем включения транзистора h-параметры определяются по формулам:

h11б?h11э/(1+h21э);
h12б?h11э•h22э/(1+h21э);
h21б?-h21э/(1+h21э);
h22б?h22э/(1+h21э);

h11к?h11э;
h12к?1;
h21к?-(1+h21э);
h22к?h22э.

Например, возьмем старенький легендарный низкочастотный, маломощный транзистор МП41, и рассчитаем его входное и выходное сопротивления при включении с ОЭ по справочным данным:
h11б = 25 Ом,
h22б = 3,3 мкСм,
h21э = 30. 60.

Выходное сопротивление R вых. обратно пропорционально проводимости h22э:

Высокочастотные параметры транзистора

Емкость коллекторного перехода

Сам по себе транзистор представляет собой кристалл с двумя p-n или n-p переходами.
В следствии диффузии основных и неосновных зарядов в переходах образуются обедненные слоя с заряженными границами переходов (см. раздел «p-n переход», рис.a,b,c.), которые представляют собой своеобразные конденсаторы и называются барьерными емкостями.
При подаче напряжения разной полярности на переходы они будет расширяться или сужаться, меняя при этом свою емкость.

Эту эквивалентную схему можно использовать как модель для анализа происходящих процессов в транзисторе при подаче на него малого переменного напряжения, к примеру, с генератора.

Из этого можно сделать вывод: транзисторы для работы в усилительном режиме нужно выбирать как можно с меньшей емкостью коллекторного перехода, особенно на высоких частотах.

Предельная и граничная частоты коэффициента передачи тока.

Предельная и граничная частоты коэффициента передачи по току приводятся в справочных данных как существенные параметры транзистора.
Мы уже выяснили, что при увеличении частоты входного сигнала транзистора коэффициент усиления по току с определенного момента начнет уменьшаться из-за увеличения емкости коллекторного перехода. Но это только одна из причин падения усиления транзистора от частоты, хотя и немаловажная.

С увеличением частоты сигнала проявляются инерционные свойства транзистора.
Происходит отставание по фазе переменного тока коллектора от тока эмиттера. Это вызвано конечным значением времени перемещения носителей заряда от эмиттерного перехода к коллекторному через базу. И хотя время «пролета» составляет меньше 0,1 мкс, но при частотах в несколько мегагерц и выше это приводит к сдвигу фаз коллекторного и эмиттерного токов, что увеличивает ток базы и уменьшает коэффициент усиления.
Так же к инерционным свойствам относится время на перезарядку емкостей коллекторного и эмиттерного переходов.
Все эти паразитные явления приводят к уменьшению коэффициента усиления по току.

Коэффициент шума

Из этого определения следует, что для идеального «нешумящего» транзистора Кш будет равен единице, т.к. шумы будут обусловлены только сопротивлением источника сигнала:

Из рис.11,12 можно сделать вывод, что коэффициент шума зависит от режима транзистора ( Iэ ) и температуры окружающей среды ( Т?С ), а так же от выходного сопротивления источника сигнала ( Rг ) и частоты сигнала.

Чтобы получить как можно меньший уровень шумов транзистора в усилительном режиме необходимо определить наивыгоднейшие значения по току эмиттера и напряжению на коллекторе при оптимальном значении сопротивления источника сигнала.
Этого можно добиться если выбирать Iэ=0,1. 0,5 мА, Uк=0,5. 2,5 В и как можно уже полосу рабочих частот.

Источник

Основные параметры и характеристики биполярного транзистора.

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

Продолжаем разбирать все, что связано с транзисторами и сегодня у нас на очереди одна из наиболее часто используемых схем включения. А именно схема включения биполярного транзистора с общим эмиттером (ОЭ)! Кроме того, на базе этой схемы мы рассмотрим основные параметры и характеристики биполярного транзистора. Тема важная и интересная, так что без лишних слов переходим к делу!

Название этой схемы во многом объясняет ее основную идею. Поскольку схема с общим эмиттером, то, собственно, эмиттер является общим электродом для входной и выходной цепей. Вот как выглядит схема с ОЭ для n-p-n транзистора:

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

А вот так — для p-n-p:

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

Давайте снова разбирать все процессы для случая с использованием n-p-n транзистора. Для p-n-p суть остается той же, меняется только полярность.

Входными величинами являются напряжение база-эмиттер ( U_ <бэ>) и ток базы ( I_ <б>), а выходными — напряжение коллектор-эмиттер ( U_ <кэ>) и ток коллектора ( I_ <к>). Обратите внимание, что в этих схемах у нас отсутствует нагрузка в цепи коллектора, поэтому все характеристики, которые мы далее рассмотрим носят название статических. Другими словами статические характеристики транзистора — это зависимости между напряжениями и токами на входе и выходе при отсутствии нагрузки.

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач.

И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_ <кэ>):

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

Входная характеристика, в целом, очень похожа на прямую ветвь ВАХ диода. При U_ <кэ>= 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_ <кэ>ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора — выходной! Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы.

Для нее также указывается семейство характеристик для разных значений тока базы:

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

Видим, что при небольших значениях U_ <кэ>коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_ <кэ>(зато пропорционально току базы). Эти участки соответствуют разным режимам работы транзистора.

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_ <бэ>, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано 🙂

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_ <кэ>уменьшается и напряжение на коллекторном переходе U_ <кб>. И при определенном значении U_ <кэ>= U_ <кэ \medspace нас>напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_ <кэ>ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора!

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_ ) от тока коллектора для биполярного транзистора BC847:

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды! Разным значениям температуры соответствуют разные кривые.

Основные параметры биполярных транзисторов.

Давайте теперь рассмотрим, какие существуют параметры биполярных транзисторов, и какие предельные значения они могут принимать.

I_ <КБО>( I_ ) — обратный ток коллектора — ток через коллекторный переход при определенном обратном напряжении на переходе коллектор-база и разомкнутой цепи эмиттера.
I_ <ЭБО>( I_ ) — обратный ток эмиттера — ток через эмиттерный переход при определенном обратном напряжении на переходе эмиттер-база и разомкнутом выводе коллектора.
I_ <КЭО>( I_ ) — аналогично, обратный ток коллектор-эмиттер — ток в цепи коллектор-эмиттер при определенном обратном напряжении коллектор-эмиттер и разомкнутом выводе базы.
U_ <БЭ>( V_ ) — напряжение на переходе база-эмиттер при определенном напряжении коллектор-эмиттер и токе коллектора.
U_ <КБ \medspace проб>( V_ <(BR) CBO>) — напряжение пробоя перехода коллектор-база при определенном обратном токе коллектора и разомкнутой цепи эмиттера. Например, для все того же BC847:

что такое граничная частота транзистора. Смотреть фото что такое граничная частота транзистора. Смотреть картинку что такое граничная частота транзистора. Картинка про что такое граничная частота транзистора. Фото что такое граничная частота транзистора

U_ <ЭБ \medspace проб>( V_ <(BR) EBO>) — напряжение пробоя эмиттер-база при определенном обратном токе эмиттера и разомкнутой цепи коллектора.
U_ <КЭ \medspace проб>( V_ <(BR) CES>) — напряжение пробоя коллектор-эмиттер при определенном прямом токе коллектора и разомкнутой цепи базы.
Напряжения насыщения коллектор-эмиттер и база-эмиттер — U_ <КЭ \medspace нас>( V_ ) и U_ <БЭ \medspace нас>( V_ ).
Конечно же, важнейший параметр — статический коэффициент передачи по току для схемы с общим эмиттером — h_ <21э>( h_ ). Для этого параметра обычно приводится диапазон возможных значений, то есть минимальное и максимальное значения.
f_ <гр>( f_) — граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером. При использовании сигнала более высокой частоты транзистор не может быть использован в качестве усилительного элемента.
И еще один параметр, который следует отнести к важнейшим — I_ <К>( I_ ) — максимально допустимый постоянный ток коллектора.

И на этом заканчиваем нашу сегодняшнюю статью, большое спасибо за внимание! Подписывайтесь на обновления и не пропустите новые статьи 🙂

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *