что такое график нагрузки
Графики электрических нагрузок
Графики электрических нагрузок позволяют правильно подойти к выбору основного оборудования подстанций — трансформаторов, компенсирующих устройств, кабелей и наметить наиболее экономичный режим их работы.
В условиях действующего предприятия графики электрических нагрузок помогают выявить основные показатели электрических нагрузок, которые необходимы для проектирования электроснабжения аналогичных производств.
Суточные графики показывают изменение нагрузок в течение суток. Их строят по показаниям счетчиков активной и реактивной энергии через каждый час либо каждые полчаса (для выявления получасового максимума нагрузки).
Для суточных графиков активной и реактивной нагрузок характерны следующие величины: максимум активной (реактивной) нагрузки за сутки P ‘ м (Q ‘ м) кВт ( квар), максимум активной нагрузки в наиболее загруженной смене P м кВт, расход активной (реактивной) энергии за сутки Wcут ( V cут), кВт-ч (квар-ч), расход активной (реактивной) энергии за наиболее загруженную смену Wcм (Vcм), кВт-ч (квар-ч).
Используя эти характерные величины и зная общую номинальную мощность всех рабочих электроприемников (Ри, кВт), можно определить следующие характерные для суточных графиков показатели:
Cреднюю активную нагрузку за сутки (кВт) :
Средниюю активную нагрузку за наиболее загруженную смену (кВт) :
К оэффициент использования номинальной мощности Р н за наиболее загруженную смену :
К оэффициент мощности в период максимума :
Cредневзвешенный коэффициент мощности за наиболее загруженную смену
К оэффициент заполнения суточного графика активной и реактивной нагрузки :
К оэффициент максимума активной нагрузки за наиболее загруженную смену :
Годовые графики активной и реактивной нагрузок по продолжительности, построенные на основании суточных или месячных графиков нагрузок, позволяют уточнить величину годового потребления электроэнергии, наметить режим работы трансформаторов на подстанциях в течение года, правильно выбрать компенсирующие устройства.
Для годовых графиков активной и реактивной нагрузок по продолжительности характерны следующие величины: годовой максимум активной (реактивной) нагрузки P м.г (Qм.г), кВт (квар), годовой расход активной (реактивной) энергии Wг (V г ), кВт-ч (квар-ч).
Производными для этих графиков будут следующие характерные показатели:
Г одовое число часов использования максимума активной (Гм, ч) и реактивной (Гм. р, ч) нагрузок :
где Тт — годовой фонд рабочего времени, ч,
Г одовой коэффициент сменности по энергоиспользованию :
К оэффициент заполнения годовых графиков активной и реактивной нагрузок :
Для анализа и сопоставления показателей, полученных на одном предприятии, с показателями аналогичных производств других предприятий необходимо графики электрических нагрузок дополнять данными, характеризующими технологию производства в соответствующий графикам период времени.
В качестве примера на рис. 1 и 2 приведены суточный и годовой графики активных нагрузок цеха мощностью 5,5 млн. м2 в год, построенные на основании показаний счетчиков активной энергии во время обследования электрических нагрузок предприятия.
Графики электрических нагрузок.
Изменение электрической нагрузки во времени называется графиком электрической нагрузки. Графики электрических нагрузок строятся в прямоугольных координатах и представляются плавными кривыми или ломаными линиями.
На рис. 1 показаны различные способы представления графиков электрических нагрузок Р= f(t). Графики нагрузок могут быть представлены плавными кривыми линиями и ломаными (ступенчатыми) линиями с интервалом осреднения на каждой ступени 30 мин (рис. 1,а) и 60 мин (рис. 1,б) в зависимости от времени достижения предельно допустимой температуры при максимальной нагрузке.
Графики электрических нагрузок строятся с помощью самопишущих приборов (амперметры, ваттметры), по визуальному отсчету показаний стрелочных приборов через равные промежутки времени, по отсчету показаний счетчиков активной энергии через те же интервалы времени. График, построенный с помощью самопишущего прибора, является криволинейным, а построенный по показаниям счетчиков энергии – ступенчатым, где на каждой ступени показывается средняя мощность за контролируемый промежуток времени.
Нагрузка в каждый момент времени является величиной случайной, закон распределения которой во времени изменяется.
Графики электрических нагрузок строятся как для одиночных электроприемников, так и для их групп. Для одиночных электроприемников строятся индивидуальные графики и для группы электроприемников – групповые графики.
Рис. 1. Сменные графики электрических нагрузок, выраженные кривыми и ломаными линиями: а – с интервалом осреднения 30 мин.; б – с интервалом осреднения 60 мин.
Характер и форма индивидуального графика нагрузки электроприемника определяются технологическим процессом. Групповой график представляет собой результат суммирования индивидуальных графиков электроприемников, входящих в группу. Конфигурация группового графика зависит от многих случайных факторов – различной загрузки отдельных электроприемников, сдвигом во времени их включения и отключения. Устойчивые графики для отдельных предприятий, производств называют типовыми.
Графики электрических нагрузок во времени действия нагрузки делят на сменные, суточные, месячные, сезонные (летние, зимние) и годовые.
Сменные графики строят за время продолжительности смены с учетом технологических перерывов в работе электроприемников. Суточные графики охватывают время от 0 до 24 часов. При построении графика принимают среднюю нагрузку за время осреднения. На этом графике выделяют наиболее загруженную смену, т.е. смену, в течение которой наблюдается наибольший выпуск продукции и наибольшее потребление электроэнергии. Такие графики характерны для предприятий и производств с 2-х – 3-х – сменным и непрерывным режимом работы. Месячные графики строят с целью определения расхода электроэнергии на производственные и непроизводственные нужды и оплаты за электроэнергию. При анализе таких графиков можно выделить недели, декады, в течение которых имеет место наибольший выпуск продукции и наибольшее потребление электроэнергии.
По сезонным и годовым графикам определяют максимальную нагрузку, зависящую от сезонных факторов (отопление, вентиляция, подача воды на непроизводственные нужды), расход электроэнергии за сезон и год. На рис. 2 представлен суточный график активной и реактивной нагрузки группы сельскохозяйственных предприятий при трехсменной работе в зимнее время.
Рис. 2. Суточный график активной (Р), реактивной (Q) нагрузки
Из суточного графика видно, что наиболее загруженной сменой является вечерняя (с 16 до 24 часов), менее загруженной – ночная (с 23 до 7 часов). Максимальная нагрузка наблюдается с 18 до 20 часов. В это время наряду с силовой нагрузкой технологического оборудования добавляется осветительная нагрузка. Максимальная нагрузка из приведенного графика принимается за расчетную нагрузку при выборе электрических устройств по допустимому нагреву.
На графике электрических нагрузок площадь, ограниченная ломаной линией изменения активной нагрузки Р = f(t) и осями координат, представляет собой активную энергию Wa, потребляемую приемниками из сети для преобразования в другие виды.
Площадь, ограниченная линией изменения реактивной нагрузки Q=f(t) и осями координат, выражает реактивную энергию Wp, циркулирующую между сетью и электроприемниками. Эта энергия необходима электроприемникам для создания магнитных полей.
Годовой график нагрузки может быть построен аналогично суточному графику, т. е. по средним мощностям, но не за 30, 60 мин, а за месяц (рис. 3, а).
Рис. 3. Годовой график изменения активной мощности: а – по средним месячным мощностям; б – по продолжительности
Чаще строят годовые графики по продолжительности. Такой график представляет собой кривую изменения убывающей нагрузки в течение года (8760 час). Годовой график по продолжительности (рис. 3, б) можно построить по годовому графику, построенному по средним месячным мощностям (рис. 3, а) или двум характерным суточным графикам нагрузки за зимние и летние сутки.
При этом условно принимают, что продолжительность зимнего периода 213 суток или 183 суток, а летнего – 152 или 182 суток в зависимости от климатического района, в котором находится промышленное предприятие. На рис. 4 показаны графики электрической нагрузки: годовой график по продолжительности (рис. 4, в), построенный на основании суточных графиков – зимнего (рис. 4, а) и летнего (рис. 4, б).
Рис. 4. Графики электрических нагрузок: а – суточный зимнего периода; б – суточный летнего периода; в – годовой график по продолжительности
Для построения годового графика можно воспользоваться вспомогательной таблицей (табл. 1).
Вспомогательная таблица для построения годового графика
Почасовые максимумы нагрузок, кВт
Число часов работы с нагрузкой в сутки сезона, ч
Число часов работы с нагрузкой за год, ч
Графики электрических нагрузок
Содержание
Общее описание
Потребление энергии отдельным потребителем в каждый момент времени — величина случайная, однако в целом по предприятию, району, энергосистеме оно подчиняется определенным статистическим закономерностям и поэтому может быть предсказано с некоторой степенью достоверности. Знание этих закономерностей необходимо для планирования энергетического производства: определения резерва, проектирования энергообъектов и сетей, определения потребной мощности, экономичного и надежного электроснабжения
Основной такой закономерностью, определяющей в каждый момент времени [math]t[/math] величину потребления электроэнергии, является график нагрузки, то есть функция мощности от времени, который представляется в виде формулы, таблицы, чертежа.
По функциональному назначению различают:
Изменение нагрузок как энергосистем, так и отдельных потребителей происходит циклически, в соответствии с циклическим характером производства, жизни людей и космических процессов. Поэтому целесообразно выделять графики, соответствующие периодам этих процессов:
Анализ этих графиков позволяет изучить динамику развития и прогнозировать нагрузку. Такие же графики строятся и для потребителей: промышленных предприятий, транспорта, быта, сельскохозяйственных нагрузок. Это дает возможность получить типовые нормативные графики для разного рода потребителей. Типовые графики позволяют создать методики проектирования и расчёта по ним нагрузок.
Метеорологические факторы
На величину электропотребления существенное влияние оказывают метеорологические факторы — в первую очередь температура и освещённость. Они в значительной степени определяют сезонные колебания и суточную неравномерность графиков потребления. Устойчивые сезонные и суточные колебания метеорологических факторов можно представить в аналитической форме. При этом необходимо учитывать, что для энергообъединений с распределенной по большой территории нагрузкой влияние фактора освещённости заметно снижается. С другой стороны, становится более заметно влияние температуры. Оставшиеся неучтённые метеорологические факторы (скорость ветра, влажность) в основном усиливают влияние основных двух (температура и освещённость).
Степень влияния метеорологических факторов на величину электропотребления в первую очередь зависит от доли коммунально-бытовой и осветительной нагрузки. Вторым фактором, увеличивающим влияние метеорологических факторов, является наличие, в последнее время, аномальных отклонений температуры от среднемноголетних тенденций. Это, в свою очередь, вызывает сильные скачки электропотребления особенно в весенний и осенний периоды. В эти периоды резкие отклонения температуры заставляют население прибегать к помощи отопительных (при похолодании) или охлаждающих (при потеплении) приборов.
Характеристики графиков нагрузки
Коэффициент заполнения
Коэффициент заполнения графика показывает долю времени, от общего периода анализа, за которое генератор выработает (нагрузка потребит) всю энергию, если будет работать с максимальной мощностью.
где [math]P_<\text<ср>>[/math] — средняя мощность на интервале; [math]P_
Коэффициент неравномерности
Показывает отношение минимальной величины потребления к максимальной величине за анализируемый период времени.
где [math]P_
Коэффициент регулируемости
На суточном интервале времени показывает долю нагрузки, которую необходимо покрывать за счёт маневровых свойств генерирующего оборудования.
Коэффициент формы
Назначение графиков нагрузки
Графики нагрузки предназначены для [2] :
При этом чем более равномерная загрузка генераторов, тем лучше условия и экономичность их работы, вследствие этого возникает проблема выравнивания графиков нагрузки.
Регулирование графиков нагрузки
С целью выравнивания графиков нагрузки используют несколько подходов [2] :
Электрические нагрузки: характеристики, графики, зависимости
Целью расчета электрических нагрузок является определение токов, протекающих по токоведущим элементам, с точки зрения их допустимости по условиям нагрева элементов. Расчет электрических нагрузок является определяющим величину затрат в системах электроснабжения.
Ток, протекая по элементу вследствие его омического сопротивления, вызывает его нагрев. Температура нагрева проводников ограничивается по условиям износа изоляции и условиям работы самого элемента. Если бы токи в проводниках были неизменны, то расчет их сечений можно было бы производить, пользуясь допустимыми температурами перегрева. Для кабелей и проводов, например, она составляет 50…80°С. Но мы имеем изменяющийся во времени ток, который вызывает изменение температуры проводников. Нас интересует максимальная температура, которая может существовать некоторое время.
Требование, чтобы установившаяся температура была меньше допустимой (Туст Содержание
Расчет электрических нагрузок
Расчетная величина электрических нагрузок Рр определяет технические решения, диктуя затраты на изготовление электротехнических изделий, создание и развитие субъектов электроэнергетики, построение и функционирование объектов электрики. Ожидаемые Рр определяют электроснабжение всех уровней. Опыт показал, что Рр систематически завышаются и что проблемы расчета Рр не могут быть решены в рамках существующих теорий. Рынок снизил на четверть среднюю общезаводскую загрузку трансформаторов и сетей системы электроснабжения и коэффициент спроса предприятий.
Отсутствие анализа исходных данных (известных к моменту принятия решения по схеме электроснабжения при проектировании, во время эксплуатации и др.); отрыв расчета от технологических, временных и человеческих факторов; нечеткость представления, для каких целей, стадий проектирования и уровней системы электроснабжения выполняется расчет, порождают путаницу в терминологии, проявляющуюся в применении понятий, имеющих разный физический смысл, но одинаковое математическое представление. Понятие Рр многозначно и применяется, вопервых, как связанное с физическим процессом протекания электрического тока; вовторых, при инвестиционном проектировании, решении перспективных вопросов развития предприятия, модернизации отдельных производств, согласование вопросов присоединения (подключения) предприятия или отдельных его объектов с энергоснабжающей организацией; втретьих, для нормирования, оплаты и других целей, связанных с управлением электропотреблением и энергосбережением.
Исторически, со времен Вольта и Ома, греющее действие электрического тока поставило вопрос о выборе сечения проводников. И сейчас выбор элементов электрической сети из условий нагрева является одним из основных этапов проектирования. Максимальная температура перегрева проводника с постоянной времени нагрева Тн в общем случае определяется уравнением теплового баланса, решаемым до конечного результата только для неизменного во времени / графика нагрузки I(t) = const, т.е. для электроприемников, имеющих постоянную во времени нагрузку (не как на рис 2.3).
Закон изменения нагрузки (например, на протяжении года) достаточно сложен, особенно учитывая сезонную составляющую (рис. 2.5) и неравномерность потребления по дням недели (рис. 2.6). Подключение, соединение электроприемников в группу на распределительном щите или подстанции порождает случайный характер нагрузки, где уравнение теплового баланса неразрешимо изза математических трудностей.
Поэтому выбор сечения проводника по нагреву производят не по максимальной температуре перегрева, а по расчетной токовой на грузке /р, которая определяется на основании принципа максимума средней нагрузки.
Для оценки нагрева проводников правильнее использовать закон Джоуля—Ленца и вести расчет по максимуму среднеквадратичного (эффективного) тока для каждого изменения за определенное время. Расчетный ток /р, равный максимуму среднего тока, есть приближение, обеспечивающее инженерную точность при построении схемы электроснабжения.
При переменной нагрузке, когда график чаще всего случайный, использование выражения (2.7) приводит к эквивалентному по эффектам нагрева расчетному току /р, который вызывает в проводнике или такой же максимальный нагрев над окружающей температурой, или тот же тепловой износ изоляции, что и заданная переменная нагрузка /(/). ток /р обычно определяют по расчетной активной нагрузке.
В качестве расчетной нагрузки применяют среднюю нагрузку поактивной мощности за интервал реализации продолжительностью Г, который связывают с постоянной времени нагрева Г0. Использование максимальной из средних нагрузок (в этом и заключается принцип максимума средней нагрузки) позволяет судить о расчетном (проектном) максимуме, заявленном или фактическом суточном, недельном, месячном, квартальном и годовом 30минутном (Р = Pmax) максимуме.
В зависимости от конструкции, условий прокладки для каждого проводника любого назначения указывается неизменный во времени нормируемый (номинальный) ток /ном, длительно предельно допустимый по его нагреву. Например, по ПУЭ допустимый длительный ток для трехжильных кабелей напряжением 10 кВ сечением токолроводящей жилы 185 мм2 с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке, прокладываемых в земле, составляет 310 А. ток принят из расчета прокладки в траншее (земле) на глубине 0,7… 1,0 м не более одного кабеля при температуре земли 15 °С, с удельным сопротивленцем земли 120 см * К/Вт и допустимой температурой жилы кабеля 60 °С.
При прокладке нескольких кабелей рядом в зависимости от расстояния между ними и от их количества вводится понижающий коэффициент до 0,75 (теоретически все изложенное есть мировоззрение первой научной картины мира: все можно и нужно рассчитывать). По току р выбирают ближайшее сечение, номинальный ток которого с учетом всех расчетных коэффициентов больше (Iном > Iр).
Таким образом, при проверке на нагрев проводников любого назначения принимается получасовой максимум тока /тах, наибольший из средних получасовых токов данного элемента. Выбор сечений проводников в отношении предельно допустимого нагрева производится с учетом не только нормальных, но и послеаварийных режимов, а также режимов в период ремонта и возможных неравномерностей распределения токов между линиями, секциями шин и т.п.
Кроме определения сечений элементов системы электроснабжения по нагреву максимальная нагрузка Ртах необходима для определения потерь и отклонений напряжения, максимальных потерь мощности и энергии в сетях; выбора элементов электрических сетей по экономической плотности тока; определения тока трогания релейной защиты; выбора плавких предохранителей и уставок выключателей; проверки самозапуска электродвигателей, колебаний напряжения в сетях и в других случаях, когда необходимо рассчитать элементы электрической сети или их режимы, опираясь на законы Максвелла. Для простоты далее будем рассматривать идеальный случай, когда расчетная (проектная или иная) максимальная нагрузка совпадает с фактической максимальной, замеренной какимлибо способом, и равна максимальной заявленной (договорной) на уровне предприятия: Рр = Ртах = Рф = Рз(mах).
Заявленный максимум не передается по конкретному проводу, не трансформируется одним трансформатором, не отключается одним выключателем: физически нет тока, соответствующего расчетной мощности Рр и определяемого по формуле (2.8). Положение усложняется (рис. 2.7), если учитывать: максимальную электрическую нагрузку в часы утреннего и вечернего максимумов нагрузки; ночной максимум; максимальную нагрузку, превышающую заявленную и лимит, которая может быть разрешена, если есть резерв у субъектов электроэнергетики; максимальную нагрузку, соответствущую проектной технологической производительности; максимальную нагрузку, согласованную с энергоснабжающей организацией для подключения; перспективную максимальную проектную нагрузку; максимальную нагрузку при осуществлении регулирования режима электропотребления (управление потребителямирегуляторами) и др.
Таким образом, при решении вопросов электроснабжения определяющей величиной является расчетная электрическая нагрузка, которая принимается равной получасовому максимуму Ртах. Этот максимум может находиться по данным конкретных электроприемников и применяться для расчетов электрических сетей и их элементов (опираясь на теоретические основы электротехники). Но он может также рассчитываться с учетом системных свойств предприятия, устойчивости развития и ценологической устойчивости структуры. Такой Ртах нужен при выборе на перспективу схем электроснабжения предприятий, производств и цехов, определении их объемов электропотребления, решении вопросов технологического и технического присоединения к подстанциям и сетям энергоснабжающей организации, определении основных групп электрооборудования, инновационных вложений, штатов.
Рост числа элементов по уровням сверху вниз приводит к тому, что расчеты, которые жестко определяют каждый элемент системы электроснабжения, возможны лишь при многих допущениях для 6УР и 5УР. Для более низких уровней системы электроснабжения возможны лишь локальные расчеты (для данной секции РП, цеховой ТП, распределительного шкафа).
Как физическая величина электрическая нагрузка есть электрическая мощность Р = U*I. Если электрическая энергия А — совершая работу, расходуется равномерно в течение времени то Р = A/t. Изменение электрических нагрузок во времени представляют таблицами (временными рядами), указанием нагрузок для характерных режимов, например периодов расплавления, окисления и рафинирования дуговой сталеплавильной печи, или определенного временного интервала (получаса, часа, смены, суток, недели, месяца, года).
Графики электрических нагрузок
Для графиков важен интервал осреднения Д, сумма которых определяет 30-минутный интервал, принимаемый за расчетное время. Для индивидуальных графиков At должно соответствовать физике изучаемого процесса. Например, для рельефных сварочных машин должно быть малым из-за резкопеременного режима работы, отображаемого графиком нагрузки, когда время импульса сварки t = 0,04…0,12 с; время паузы между импульсами t2 = 0,02…0,20 с; число последовательных импульсов — 2… 10.
Регистрация ординат графиков нагрузки группы электроприемников, подключенных к какомулибо коммутационному аппарату 2УР, и графиков потребителей 6УР—4УР существующими регистрирующими приборами может осуществляться с любым интервалом осреднения. При измерении на одном электрическом присоединении с интервалом At = 3 мин общее число регистрируемых точек за сутки составит 24 • 60:3 = 480; всего за год — 175 200. Такое количество измерений затрудняет использование графика на большом временном интервале и для большого числа присоединений. Кроме технических трудностей съема информации, суммирования результатов, регистрации и обработки существуют и экономические ограничения.
Если индивидуальные графики нагрузки электроприемников известны и возникает необходимость аналитического формирования групповых графиков нагрузки, то применимы автокорреляционная функция индивидуального графика нагрузки рассматриваемого, как реализация стационарного случайного процесса.
Чтобы получить достаточно снять показания счетчика электроэнергии, пересчитать их в киловаттчасы и разделить на 0,5 ч. Отклонение от Рмах учитывается счетчиком, определяющим среднюю нагрузку Рср за интервал. Суммирование, проводимое счетчиком за 30 мин, упрощает допущения о значении и вероятности изменения нагрузки за Д.
Из рис. 2.4 очевидно, что величина Р зависит от начала отсчета. Технически возможно рассчитывать Рмах за 30 минутный интервал, начинающийся с любого момента. Возникает вопрос о цели таких измерений и их экономической целесообразности, которая оправдывается при регулировании электропотребления предприятий и создании систем управления электрическими нагрузками. Пока, как правило, измерение производится в фиксированное время, совпадающее с началом часа. Усредненные по формуле максимумы фиксируются, образуя суточный график (рис. 2.7), состоящий из 48 точек.
На суточном графике выделяют утренний и вечерний (обычно больший) максимумы и ночной провал, когда нагрузка понижается до минимума. Часы прохождения утреннего и вечернего максимумов задаются энергоснабжающей организацией.
Наибольший из максимумов принимается за суточный максимум (при регулировании максимум может не совпадать с этими значениями) и наносится на годовой (месячный, квартальный) график нагрузки. Наибольший из суточных максимумов в течение квартала должен приниматься за заявленный максимум и оплачиваться. В этом случае фактический расчетный и заявленный максимумы будут совпадать. Аналогично определяется среднесуточная мощность.
Максимальная электрическая нагрузка
Графики наглядно характеризуют электрическую нагрузку (и многие другие стороны работы предприятия, например ритмичность, использование оборудования по сменам). Но в инженерной практике оперировать с графиками неудобно (а сейчас на начальных стадиях проектирования они отсутствуют вообще, в отличие от проектных заданий 1930— 1940х гг.), когда, не предполагая ценологических ограничений, стремились сделать заводы одинаковыми, будто это два электродвигателя. Поэтому при расчетах электрических нагрузок, согласовании технических условий на электроснабжение предприятий, лимитировании и управлении электропотреблением оперируют показателями, применение которых является достаточным практически для всех расчетов.
Поэтому, говоря в электроснабжении предприятия (об объекте потребителя) о мощности Рр, Рмах, Рф, всегда явно или неявно предполагается, что присутствует время и как интервал, и как точка на текущем времени Ньютона.
Так что определение Рр есть конвенционное соглашение 1930— 1950х гг. (хотя так и не называемое) об интервале Д/, привязки этого интервала к протяженности суток … года. Это утверждение нашло отражение в замерах в характерный летний и зимний дни, когда предприятия по требованию энергоснабжающей организации предоставляют фактические замеры своего Ртах в течение суток с 30минутным интервалом.
Таким образом, для действующих предприятий на высших уровнях системы электроснабжения 6УР, 5УР, 4УР всегда имеется достоверная величина — расход электроэнергии за отчетный период: смену, сутки, неделю, месяц, квартал, год. Годовая отчетность для 6УР есть государственная статистическая отчетность; отчетность для 5УР (частично и для 4УР) — ведомственная, которая может быть положена в основу отраслевых информационных банков по удельным и общим расходам электроэнергии.
Используем наиболее известную и достоверную величину Л. Если площадь А = const и А = Р^Т, где Т — число часов в сутках, в году (Тт = 8 760 ч), то при работе предприятий с нагрузкой, равной Рмак это же количество электроэнергии А было бы израсходовано за число часов Tmаx, называемое числом часов использования максимума или продолжительностью использования максимальной нагрузки.
Из всех интервалов, усредненных на At = 30 мин, нагрузка с 21 ч до 21 ч 30 мин является максимальной.
Именно эта нагрузка, являясь средней за некоторый интервал времени, иллюстрирует положение, согласно которому максимальная нагрузка Ртах, принимаемая при расчете, есть максимальная из средних нагрузок. Это положение распространяется на любой интервал, в том числе на квартал, год. Развитие вычислительной техники и потребности в регулировании электропотребления требуют уменьшения временного интервала (в идеале — ежесуточная заявка Ртах реализован переход на заявку Ртах по месяцам и неделям).
Назовем установленной мощностью электроприемника Ру его номинальную мощность, указанную изготовителем электротехнического устройства (паспортная мощность, указанная в документации). Установленным назовем любой электроприемник, подключенный к электрической сети, работающий или неработающий, но могущий быть включенным или отключенным в любое время по технологическим требованиям, условиям безопасности, ремонтным соображениям.
Установленная мощность для любого присоединения и на любом уровне системы электроснабжения равна сумме установленных (номинальных) мощностей без какихлибо поправочных коэффициентов. В случае, например, установки трех насосов водоотлива с электроприводом (таких, что в нормальном режиме один обеспечивает удаление воды, второй включается взамен или аварийно, третий должен быть в состоянии готовности к периоду интенсивного поступления воды; все три насоса могут быть в любом из трех состояний).
При этом исключается неопределенность, которая вносилась исключением из формулы (2.18) всех заведомо резервных потребителей, простаивавших в дни производства записи (замера нагрузки) по причинам, не свойственным условиям нормальной эксплуатации.
В расчетах часто используется номинальная (паспортная) мощность электродвигателя Рном — мощность, развиваемая на валу при номинальном напряжении. Это значит, что на зажимах электродвигателя и далее на 2УР и выше потребуется большая мощность, определяемая КПД электродвигателя и потерями в сети, которые изменяются при изменении загрузки электродвигателя и напряжения. Однако несмотря на вносимую погрешность в расчетах используют паспортные данные электроприемников (РноЫ9 /ном, coscp).
Определим коэффициент использования по активной мощности как отношение средней мощности к установленной.
В различных теоретических расчетах используют годовой коэффициент энергоиспользования АГПЭИ, принимая среднегодовую нагрузку Рсг = Аг/Тп где Тп — годовое число работы предприятия, заимствованное электриками в 1950—1960е гг. у экономистов. Со временем Тп трансформировалось в число часов использования максимума, которое для силовых нагрузок цехов и предприятий составляет: одна смена — 1 500…2000 ч/год; две смены — 2 500… 4000 ч/год; три смены — 4 500…6000 ч/год; непрерывная работа — 6500…8000 ч/год. Естественно, что ценологические пределы существенно отличаются. Понятнее для технологического менеджмента использовать коэффициент электроиспользования Ктъп и, физический смысл которого заключается в следующем: сколько часов в сутки, неделю, месяц, квартал, год работало предприятие (объект 2УР— 5УР), если работало бы с нагрузкой неизменной и равной Лпах.