что такое градиент автоматии сердца
Что такое градиент автоматии сердца
Автоматия— способность генерировать свое собственное возбуждение и сокращение. Ритмичность – регулярность пейсмейкерной активности.
Узлы автоматии сердца.
Автоматия сердца.
Автоматия – способность генерировать ПД самостоятельно, без внешних стимулов. Доказательство автоматии сердца: сокращение изолированного сердца лягушки, помещенного в физиологический раствор.
Градиент автоматии – уменьшение способности к автоматии у клеток проводящей системы сердца по мере удаления от синоатриального узла. У человека синоатриальный узел (САУ) генерирует ПД с частотой 60-80 в минуту, атриовентрикулярный узел (АВУ) – с частотой 40-50 в мин, клетки системы Гиса – 30-40 в мин, волокна Пуркинье – 10-20 в мин. (Опыт Станниуса с «тремя лигатурами» доказывает наличие градиента автоматии в сердце лягушки).
Сино-атриальный узел (САУ) является истинным водителем ритма (1-го порядка). Он обеспечивает частоту сердечных сокращений в норме.
Атрио-вентрикулярный узел (АВУ) является скрытым (латентным) водителем ритма (2-го порядка) и т.д. Водители ритма низшего порядка обеспечивают частоту сердечных сокращений при полной поперечной блокаде сердца ( в этом случае частота сокращений желудочков слишком низкая, больным вживляют искусственный водитель ритма – электрокардиостимулятор).
МЕХАНИЗМ АВТОМАТИИ СЕРДЦА.
Особенность клеток САУ – высокая проницаемость для натрия и низкая проницаемость для калия в покое. Поэтому (1) мембранный потенциал во время диастолы доходит только до уровня – 60 мв и (2) самопроизвольно уменьшается (за счет поступления в клетку ионов натрия) Происходит медленная диастолическая деполяризация (МДД). Когда МДД достигает критического уровня деполяризации, в клетке происходит генерация потенциала действия.
Токи SA для МДД: входящий ток If, вызванный гиперполяризацией (Na через специфические каналы, отличающиеся от быстрых Na-каналов); входящий Са-ток; выходящий ток К, IK.
Медленная диастолическая деполяризация – это основной признак пейсмейкерных клеток.
В условиях диастолической деполяризации быстрые Na-каналы инактивированы и не принимают участие в генерации ПД. Генерация ПД происходит за счет активации медленных Са-каналов и тока ионов кальция в клетку. Поэтому форма, амплитуда и продолжительность такого ПД отличается от ПД сократительного миокарда.
В клетках АВУ тоже происходит спонтанная диастолическая деполяризация, но скорость ее в клетках АВУ меньше, чем в клетках САУ (поэтому в норме клетки АВУ возбуждаются под действием импульса, пришедшего от САУ, раньше, чем их собственная спонтанная деполяризация достигнет критического уровня). Задержка возбуждения делает возможным оптимальное наполнение желудочков кровью во время сокращения предсердий. AV-блокада.
Еще меньшая скорость МДД отмечается в клетках системы Гис-Пуркинье. В клетках волокон Пуркинье длинный рефрактерный период, и все ранние импульсы от предсердий, которые проводятся через AV-узел, блокируются клетками Пуркинье (предотвращение экстрасистолы).
Вегетативная дисфункция сердца
Вегетативная дисфункция сердца является частью симптомокомплекса, называемого соматоформной дисфункцией вегетативной нервной системы. Так как ВНС обеспечивает стабильность работы практически всех внутренних органов, то и симптомы расстройства ее чрезвычайно разнообразны.
Симптомы вегетативной дисфункции сердца
Симптоматику вегетативной дисфункции выявить достаточно просто, однако для окончательного установления диагноза врачу нужно точно ответить на следующие вопросы: являются ли данные симптомы признаком самостоятельной болезни или же проявлением другого, соматического, неврологического, психического заболевания? Могут ли они означать наличие патологии ССС (сердечно-сосудистой системы): гипертония, ИБС, клапанные пороки, воспаление миокарда?
При установке диагноза вегетативной дисфункции учитывают:
Выделяют основные и дополнительные диагностические признаки вегетативной дисфункции. Достоверным можно считать диагноз при наличии двух и больше основных и 2-х дополнительных признаков.
Основные признаки:
Дополнительные признаки:
Также есть признаки, наличие которых со стопроцентной вероятностью исключает диагноз вегетативной дисфункции. Выявляются они при осмотре и дополнительном обследовании. Это отеки ног, влажные хрипы в легких, аускультативные шумы в диастолу, увеличение сердца (гипертрофия, дилатация), изменения на ЭКГ (блокада левой ножки п.Гиса, АВ-блокада II-III степени, очаговые изменения, смещение сегмента ST, нарушения ритма кроме единичной экстрасистолии), изменения в анализах крови.
Причины ВСД
В основе заболевания — нарушение нейрогуморальной регуляции вегетативной нервной системы, отвечающей за стабильность и слаженность деятельности всех внутренних органов и организма в целом. Это отдел нервной системы, не подчиняющийся сознанию и управлению волей человека.
Диагностика и лечение вегетативной дисфункции сердца
Вегетативная дисфункция является диагнозом исключения. После того как будет исключен ряд сердечно-сосудистых заболеваний благодаря лабораторным, инструментальным методам (ЭКГ, ЭхоКГ, Холтер-ЭКГ и др.) следует проводить дифдиагностику с нервно-психическими заболеваниями и только в последнюю очередь думать о вегетатике.
Лечение же непосредственно расстройства вегетативной нервной системы следует начинать с оздоровления образа жизни: регулярные физические нагрузки, спорт (приоритетно плавание), исключение вредных привычек, полноценный ночной сон, оптимальное питание, нормализация массы тела, закаливание.
Из медикаментов используются адаптогены, дневные транквилизаторы, ноотропы, сосудистые препараты, антиоксиданты, витамины.
К кому обратиться?
В случае преобладания кардиальной симптоматики для правильной диагностики и при необходимости лечения нужна консультация врача-кардиолога. Лечение вегетативных расстройств является компетенцией неврологов и психиатров.
Что такое градиент автоматии сердца
• В норме возбуждение генерируется в синусовом узле. Под действием этих импульсов сердце сокращается с частотой 60-80 в минуту.
• Возбуждение из синусового узла достигает сначала атриовентрикулярного (АВ) узла, затем, спустя непродолжительное время, распространяется по ПГ, его правой и левой ножкам, называемым также правой и левой ножками пучка Тавары, и далее по волокнам Пуркинье, вызывая сокращение миокарда желудочков сердца (систолу желудочков).
• Если генерация возбуждения в синусовом узле нарушается, электрический импульс может генерироваться в АВ-узле или на уровне желудочков. В этом случае сердце сокращается реже, с частотой примерно 40-20 в мин.
Рабочий миокард обеспечивает собственно сокращения сердца, его насосную функцию.
Функции специализированного миокарда:
• обеспечение ритмической автоматической генерации возбуждения (автоматизм);
• проведение этого возбуждения.
Специализированный миокард состоит из центра автоматизма, генерирующего возбуждение, и проводящей системы. В норме центром автоматизма является синусовый узел. Проводящая система охватывает предсердные проводящие пучки, АВ-узел, ПГ, правую и левую его ножки (или левый и правый пучки Тавары) и волокна Пуркинье.
1. Синусовый узел (узел Кис-Флака)
Синусовый узел располагается в стенке правого предсердия (ПП) между устьем верхней полой вены и ушком ПП, функционирует автономно и является центром автоматизма первого порядка. Возбуждение в норме генерируется в этом узле, и сердце здорового взрослого человека сокращается с частотой примерно 60-80 в минуту.
2. Атриовентрикулярный узел (узел Ашоффа-Тавары)
АВ-узлу присущи две важные функции. Одна из них состоит в задержке поступающего в него импульса возбуждения и дальнейшем проведении. Вторая функция заключается в генерировании возбуждения в случае, если функция автоматизма синусового узла оказывается по тем или иным причинам утраченной.
В этом случае АВ-узел выполняет роль центра автоматизма второго порядка, но сердце под влиянием генерируемых им импульсов сокращается с меньшей частотой, равной примерно 40-60 в минуту.
3. Пучок Гиса
Возбуждение из АВ-узла проводится в ПГ и далее в каудальном направлении. ПГ в норме является единственной мышечной структурой, которая связывает предсердия с желудочками.
В норме возбуждение, как уже говорилось ранее, генерируется в синусовом узле. Отсюда оно проводится в АВ-узел, ПГ, его левую и правую ножки и, наконец, достигает волокон Пуркинье. Это вызывает сокращение сердца, которое называется систолой.
Если процесс генерирования возбуждения в синусовом (центр автоматизма первого порядка) и АВ-узле нарушается, желудочки сердца все же сохраняют способность генерировать возбуждение за счет так называемых центров автоматизма третьего порядка. В этом случае желудочки сердца сокращаются с частотой, примерно равной только 20-40 в минуту.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Физиология человека и животных
Разделы
Механизм автоматии миокарда. Градиент автоматии
Импульсы возникают в так называемом водителе ритма (пейсмейкере), который располагается в правом предсердии в устье полых вен – синоатриальный узел, или узел первого порядка. Он генерирует импульсы с частотой 60 – 80 сокращений в мин (60 – 80 импульсов/мин).
Узел второго порядка находится в предсердно-желудочковой перегородке – атриовентрикулярный узел. Скорость проведения возбуждения от узла первого порядка к узлу второго порядка составляет 1 м/с, однако в узле второго порядка скорость проведения падает до 0,02 – 0,05 м/с, в результате чего формируется интервал между сокращениями предсердий и сокращениями желудочков («атриовентрикулярная задержка»). В случае повреждения синоатриального узла импульсы могут генерироваться в атриовентрикулярном узле с частотой 40 – 60 импульсов/мин.
От узла второго порядка начинается пучок Гиса, делящийся на правую и левую ножки, которые далее распадаются на волокна Пуркинье, непосредственно контактирующие с волокнами миокарда. В пучке Гиса скорость проведения достигает 5 м/с, и затем в волокнах Пуркинье скорость проведения опять уменьшается до 1 м/с.
Ножки пучка Гиса могут генерировать сокращения с частотой 30 – 40 имп/мин. Отдельные волокна Пуркинье могут генерировать импульсы с частотой 20 сокращений в мин. Уменьшение числа генерируемых импульсов в каждом последующем звене проводящей системы сердца составляет градиент автоматии.
В покое сердце сокращается с частотой 60 – 80 ударов в минуту. Если частота сокращений сердца превышает 80 ударов в минуту, это называется тахикардия, если меньше 60 – брадикардия.
Таким образом, важными особенностями возбудимости сердечной мышцы являются наличие автоматии, длительное протекание одиночной волны возбуждения и длительный период абсолютной рефрактерности, которые обусловлены свойствами мембран кардиомиоцитов.
Частота генерации возбуждения клетками проводящей системы и, соответственно, сокращений миокарда определяется длительностью рефрактерной фазы, возникающей после каждой систолы и составляющей в сердце около 0,3 с. Длительный рефрактерный период имеет для сердца важное биологическое значение, так как он предохраняет миокард от слишком частого повторного возбуждения и сокращения.
Особенности сокращения сердечной мышцы заключаются в следующем:
— мышца сердца сокращается по закону «все или ничего»;
— длительность сокращения в миокарде больше, чем в скелетных мышцах;
— сердечная мышца не может сокращаться тетанически.
Вопрос 115. Физиологические свойства и особенности миокарда. Атоматия сердца. Современные пресдатвления о субстрате, природе и градиенте автоматии.
Проводящая система сердца и его электрическая активность. Проводящая система сердца включает следующие элементы (рис. 69): 1) синоатриальный узел (СА), который находится между синусом (место впадения полых вен в правое предсердие) и правым предсердием. Существуют два вида клеток СА – водителя ритма или пейсмекерные (Р-клетки) и проводниковые (Т-клетки). Р-клетки генерируют электрические импульсы, а Т-клетки выполняют функцию проводников. Р-клетки связываются между собой и с Т-клетками; 2) атриовентрикулярный узел (АВ) – находится справа от межпредсердной перегородки над местом прикрепления створки, непосредственно рядом с устьем коронарного синуса трехстворчатого клапана. АВ также содержит два вида клеток – Р и Т; 3) межузловые пучки, которые объединяют синоатриальный узел и атриовентрикулярный: а) передний межузловой пучок – начинается от СА и на уровне межпредсердной перегородки делится на две веточки одна из которых доходит до левого предсердия (пучок Бахмана), другая – к АВ; б) средний межузловой пучок (пучок Венкебаха) начинается от СА, проходит позади верхней полой вены, спускается вниз по задней части межпредсердной перегородки и достигает АВ; в) задний межузловой пучок (пучок Тореля) отходит от СА, идет вниз и кзади; 4) пучок Гиса – начинается в нижней части АВ и в области межжелудочковой перегородки делится на две ножки; 5) правая ножка пучка Гиса – длинный тонкий пучок, который в дистальной части выходит из межжелудочковой перегородки и достигает передней сосочковой мышцы правого желудочка, где разветвляется и связывается с волокнами Пуркинье; 6) левая ножка пучка Гиса, которая делится на две ветви – переднюю и заднюю. Передняя ветвь достигает основания передней сосочковой мышцы и разветвляется в передне-верхней части левого желудочка. Задняя ветвь достигает основания задней сосочковой мышцы. Таким образом, внутрижелудочковая проводниковая система представлена тремя проводящими путями, названные Розенбаумом и сотрудниками фасцикулами – правой ножкой, передней ветвью и задней ветвью левой ножки пучка Гиса; 7) волокна сети Пуркинье – конечные разветвления правой и левой ножек пучка Гиса связываются анастамозами с обширной сетью клеток Пуркинье. Клетки Пуркинье представляют собой видоизмененные клетки миокарда, которые непосредственно связываются с сократительным миокардом желудочков.
Проводящая система обеспечивает автоматизм сердца – это способность спонтанно активироваться, то есть создавать электрические импульсы без помощи нервной стимуляции. Анатомическим субстратом автоматизма является мало дифференцированные мышечные клетки, из которых состоят элементы проводящей системы сердца. Особенностью проводящей системы сердца является способность каждой клетки самомстоятельно генерировать возбуждение. Электрические явления в клетках проводящей системы сердца имеют ряд особенностей (рис. 71): 1) низкий уровень МПП – 50-70 мВ; 2) форма ближе к пикообразному, то есть здесь отсутствует плато; 3) отмечается медленная диастолическая деполяризация (МДД) – спонтанное (автоматическое) снижение уровня МПП до критического уровня в результате чего происходит генерация МПД; 4) амплитуда МПД очень низкая (30 – 50 мВ) без явления овершута. Низкий уровень МПП связан с тем, что в клетках проводящей системы сердца в условиях покоя (диастолы желудочков) повышена проницаемость для ионов натрия. МДД возникает благодаря сохранению относительно высокой проницаемости для инов натрия (в клетках кардиомиоцита в состоянии покоя очень низкая проницаемость для ионов натрия). В возникновении МДД также играет роль уменьшение скорости выхода из клетки ионов калия. Уменьшение МПП до –40 мВ приводит к открытию медленных натрий-кальциевых каналов, что приводит к возникновению быстрой деполяризации – возникает электрический импульс в ответ на который возникает МПД в миоакарде.
Способность к автоматизму различных отделов проводящей системы изучалось Станиусом при помощи наложения лигатур. Первая лигатура накладывалась таким образом, что венозный синус сердца лягушки отделялся от АВ. После наложения первой лигатуры венозный синус сокращался в прежнем ритме (55-60 раз в минуту), а предсердия и желудочки, после временной остановки, возобновили свои сокращения, но в меньшем ритме (30-35 раз в минуту). Результаты опыта после первой лигатуры свидетельствуют о том, что, во-первых, венозный синус (или СА у человека и млекопитающих) обладает большей автоматией, чем АВ. Во-вторых, временная остановка предсердий и желудочков свидетельствуют о том, что при генерации импульсов в СА в нижележащих отделах проводящей системы импульсы не генерируются, они лишь проводят те импульсы, которые возникли в СА. Вторая лигатура накладывалась между предсердиями и АВ. После наложения второй лигатуры предсердия не сокращаются, так как к ним не подходят импульсы из венозного синуса (за счет первой лигатуры) и от АВ (за счет второй лигатуры). Венозный синус и желудочки сердца продолжают сокращаться в прежнем ритме (соответственно – 55-60 и 30-35раз в минуту). Третья лигатуранакладывалась в область верхушки сердца, после этой лигатуры верхушка сердца не сокращалась, что свидетельствует о том, что верхушка сердца не обладает автоматизмом. Таким образом, остановка предсердий после второй лигатуры и верхушки сердца после третьей лигатуры свидетельствует о том, что рабочий миокард не обладает автоматизмом, этим свойством обладают лишь клетки проводящей системы сердца. По результатам опыта Станиуса установлено, что в обычных условиях генератором возбуждения в сердце является СА – водитель ритма (пейсмеккер). АВ узел является водителем ритма 11 порядка, так как его способность к автоматии примерно в 2 раза меньше, чем у СА. Автоматизм волокон пучка Гиса еще меньше, а волокна Пуркинье обладают наименьшей способностью к автоматии. Это явление называется градиентом автоматизма: уменьшение способности к автоматизму различных отделов проводящей системы сердца по мере их удаления от СА к верхушке сердца. Этот градиент обусловлен разной скоростью МДД: наибольшая скорость МДД в клетках СА и наименьшая – в волокнах Пуркинье.
Проводимость миокарда и проводящей системы сердца различна: по миокарду предсердий – 0,8 – 1,0 м/с, по миокарду желудочков – 0,8 – 0,9 м/с, по проводящей системы сердца 4,5 – 5,0 м/с. В небольшом участке АВ скорость распространения возбуждения резко уменьшаетмя и достигает 0,02 – 0,04 м/с. Благодаря этому осуществляется задержка проведения возбуждения от предсердий к желудочкам – атриовентрикулярная задерждка. Она обеспечивает координацию (последовательность) сокращения предсердий и желудочков и позволяет предсердиям нагнетать дополнительную порцию крови в полость желудочков до начала их сокращения.
Таким образом, проводящая система сердца обеспечивает: 1) ритмическую генерацию импульсов (МПД) за счет которых возникает МПД в рабочем миокарде с последующим его сокращением; 2) последовательность сокращений предсердий и желудочков (благодаря атриовентрикулярной задержки); 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (за счет высокой скорости проведения возбуждения по проводящей системе сердца) благодаря чему уменьшается фаза асинхронного сокращения и увеличивается эффективность сокращения миокарда.
Сократимость сердечной мышцы имеет ряд особенностей: 1) cердечная мышца сокращается по закону «все или ничего». Это обусловлено ее морфологическими особенностями. Между отдельными мышечными клкетками сердечной мышцы имеются вставочные диски, или участки плотных контактов – нексусы, образованных участками плазматических мембран двух соседних миокардиальных клеток. Мембрана на уровне нексусов обладает очень низким электрическим сопротивлением и поэтому возбуждение распространяется от волокна к волокну беспрепятственно, охватывая миокард целиком. Поэтому сердечную мышцу, состоящую из морфологически разъединенных, но функционально объединенных мышечных волокон, принято считать функциональным синцитием; 2) сердечная мышца сокращается по типу одиночного сокращения, так как длительная абсолютная рефрактерная фаза препятствует возникновению тетанического сокращения. Эта особенность обеспечивает выполнение сердцем основной гемодинамической функции – насоса. Сокращение сердца по типу тетануса делали бы невозможным ритмическое нагнетание крови в кровеносные сосуды. При фибриляции и мерцательной аритмии укорачивается абсолютный рефрактерный период и миокард способен к тетаническому сокращению; 3) важным процессом в сокращении кардиомиоцита является вход ионов кальция в клетку во время МПД. Входящий в клетку кальций увеличивает длительность МПД (возникает плато), благодаря чему увеличивается абсолютный рефрактерный период. Кроме этого ионы кальция регулируют процесс сокращения и расслабления миокарда.
Вопрос 116. Сердце, значение его камер и клапанного аппарата, изменение дваления и объёма крови в полостях сердца в различные фазы кардиоцикла. Систолический и минутный объем крови.
Расположение и строение сердца
Сердце человека находится в грудной полости, позади грудины в переднем средостении, между легкими и почти полностью прикрыто ими. Оно свободно подвешено на сосудах и может несколько смещаться. Располагается сердце асимметрично и занимает косое положение: его ось направлена справа, сверху, вперед, вниз, влево. Своим основанием сердце обращено к позвоночнику, а верхушка упирается в пятое левое межреберье; две трети его находится в левой части грудной клетки, а одна треть – в правой.
Сердце представляет собой полый мышечный орган массой 200 – 300 г. Его стенка состоит из 3-х слоев: внутреннего – эндокарда, образованного клетками эпителия, среднего мышечного – миокарда и наружного эпикарда, состоящего из соединительной ткани. Снаружи сердце покрыто соединотельнотканной оболочкой – околосердечной сумкой или перикардом. Наружный слой околосердечной сумки плотный и не способен к растяжению, препятствуя тем самым переполнению сердца кровью. Между двумя листками перикарда находится замкнутая полость, в которой имеется небольшое количество жидкости, предохраняющей сердце от трения при сокращениях.
Сердце человека состоит из двух предсердий и двух желудочков (рис. 12). Левая и правая части сердца разделены сплошной перегородкой. Предсердия и желудочки каждой половины сердца соединяются между собой отверстием, которое закрывается клапаном. В левой половине клапан состоит из двух створок (митральный), в правой – из трех (трикуспидальный). Клапаны открываются только в сторону желудочков. Этому способствуют сухожильные нити, которые одним концом прикрепляются к створкам клапанов, а другим к сосочковым мышцам, расположенным на стенках желудочков. Эти мышцы являются выростами стенки желудочков и сокращаются вместе с ними, натягивая сухожильные нити и не допуская обратного тока крови в предсердия. Сухожильные нити не позволяют выворачиваться клапанам в сторону предсердий во время сокращения желудочков.
У места выхода аорты из левого желудочка и легочной артерии из правого желудочка располагаются полулунные клапаны по три створки в каждом, имеющие вид кармашков. Они пропускают кровь из желудочков в аорту и легочную артерию. Обратное движение крови из сосудов в желудочки невозможно, т. к. кармашки полулунных клапанов заполняются кровью, распрямляются и смыкаются.
Сердце сокращается ритмично, сокращения отделов сердца чередуется с их расслаблением. Сокращения называются систолой, а расслабления – диастолой. Период, охватывающий одно сокращение и расслабление сердца, называют сердечным циклом. Сердце человека сокращается примерно 75 раз в минуту. Каждый цикл длится 0,8 с и состоит из трёх фаз: систолы предсердий, систолы желудочков, общей паузы.
При сокращении левого и правого предсердий кровь поступает в желудочки, которые в это время расслаблены. Створчатые клапаны открыты в сторону желудочков. Систола предсердий длится 0,1 секунды, после чего наступает расслабление предсердий – диастола. В это время предсердия расслабляются и вновь заполняются кровью.
При систоле желудочков створчатые клапаны закрываются. При сокращении обоих желудочков в их полостях нарастает давление крови. Когда давление в желудочках станет выше, чем давление крови в аорте и легочной артерии, полулунные клапаны открываются, и кровь из желудочков с силой выбрасывается в артерии. Давление в левом желудочке во время систолы составляет 130 – 150 мм ртутного столба. Систола желудочков длится 0,3 секунды, затем наступает общая пауза, во время которой предсердия и желудочки расслаблены. Давление крови в аорте и легочной артерии теперь выше, чем в желудочках, поэтому полулунные клапаны заполняются кровью со стороны сосудов, закрываются и препятствуют возвращению крови в сердце. Продолжительность общей паузы 0,4 секунды. После общей паузы начинается новый сердечный цикл. Таким образом, в течение всего цикла предсердия работают 0,1 секунды и отдыхают 0,7 секунды, желудочки работают 0,3 секунды и отдыхают 0,5 секунды. Этим объясняется способность сердечной мышцы работать, не утомляясь, в течение всей жизни.
Силой, которая проталкивает кровь в артерии сердца, является сила обратного тока крови. После того, как сердце осуществило сокращение и, соответственно, толчок крови в артерии, сердечная мышца расслабляется, и кровь стремится вернуться обратно в сердце. Сила обратного тока крови закрывает клапаны артерий, а закрытие клапанов является силой, проталкивающей кровь в коронарные сосуды.
Во время мышечной работы время расслабления сердечной мышцы уменьшается, что затрудняет кровоснабжение сердца. Поэтому большие нагрузки для нетренированного человека могут быть весьма опасны. Сердце тренированного человека имеет более богатую сосудистую сеть и дольше находится в состоянии расслабления даже при мышечной работе. Поэтому тренированный человек легче переносит одни и те же нагрузки по сравнению с нетренированным.
Сердце, осуществляя сократительную деятельность, во время систолы выбрасывает в сосуды определенное количество крови. Количество крови, которое выбрасывает сердце за одно сокращение, называют систолическим, или ударным объемом сердца (в среднем он составляет 60 – 80 мл). Количество крови, выбрасываемое сердцем в сосуды за минуту, называют минутным объемом сердца. Минутный объем сердца у человека в состоянии относительного покоя равен 4,5 – 5 л. Он одинаков для правого и левого желудочков. Минутный объем можно легко рассчитать, умножив систолический объем на число сердечных сокращений. За 70 лет жизни сердце человека перекачивает около 150 тысяч тонн крови.
Работа сердца регулируется нервной системой и гуморальным путем. К сердцу подходят волокна вегетативной нервной системы. Симпатические нервы при раздражении усиливают и учащают сердечные сокращения. При этом повышается возбудимость сердечной мышцы и проведение возбуждения по проводящей системе сердца. Центры симпатических нервов, регулирующие работу сердца, находятся в верхних грудных сегментах спинного мозга. Парасимпатические ветви блуждающего нерва ослабляют деятельность сердца. Ядра блуждающего нерва расположены в продолговатом мозге.
Работа сердца усиливается и гуморальным путём. Усиливает работу сердца гормон надпочечников адреналин. Повышение содержания кальция в крови увеличивает частоту и силу сокращений, а калий вызывает противоположное действие.
Проводящая система сердца человека представлена тремя основными узлами (рис. 13).
1. Синоатриальный узел, расположенный у места впадения верхней полой вены в правое предсердие (узел Кис-Фляка). Он генерирует возбуждение с частотой 70–90 раз в минуту. Именно этот узел является реальным водителем ритма в норме. От него отходят волокна, осуществляющие функциональную связь синоатриального узла со вторым узлом проводящей системы (пучок Кис-Фляка).
2. Атриовентрикулярный узел (Ашоффа-Тавара) расположен на границе правого и левого предсердий между правым предсердием и правым желудочком. Этот узел состоит из трех частей: верхней, средней и нижней.
Атриовентрикулярный узел может возбуждать сердце с частотой 40–60 раз в минуту. Однако в норме он не генерирует спонтанные нервные импульсы, а «подчиняется» синоатриальному узлу и играет роль передаточной станции, а также обусловливает атриовентрикулярную задержку.
3. Пучок Гиса в толще сердечной перегородки отходит от атриовентрикулярного узла и делится на две ножки, одна из которых направляется к правому, а другая – к левому желудочку. Ножки пучка Гиса ветвятся и в виде волокон Пуркинье пронизывают весь миокард. Пучок Гиса является водителем ритма 3-го порядка, спонтанный ритм его волокон 30 – 40 раз в минуту. Поэтому в норме его волокна являются лишь ведомыми, осуществляют проведение возбуждения в миокарде.
В нормальных условиях жизнедеятельности организма проявляется автоматия только синоатриального узла. Ему подчинены все другие отделы проводящей системы сердца, их автоматия подавляется водителем ритма.
Внешние проявления деятельности сердца
О сократительной деятельности сердца, его функциональном состоянии судят по ряду внешних проявлений, которые регистрируют с поверхности тела. При этом можно прослушать и записать сердечный толчок, тоны сердца, его биоэлектрические изменения.
Сердечный толчок. Во время систолы сердце напрягается, его верхушка поднимается вверх и надавливает на грудную клетку. При этом в области пятого левого межреберья возникает сердечный толчок. Его легко можно ощутить, приложив руку к пятому межреберью.
Движение крови по сосудам
Сердце сокращается ритмично, поэтому кровь поступает в кровеносные сосуды порциями, но по сосудам кровь движется непрерывно. Объясняется это эластичностью стенок артерий и сопротивлением току крови, возникающем в мелких кровеносных сосудах. Благодаря этому сопротивлению кровь задерживается в крупных сосудах и вызывает растяжение их стенок. Стенки артерий растягиваются в момент сокращения желудочков, а затем в силу эластической упругости стенки артерий спадаются и продвигают кровь, обеспечивая ее непрерывное движение по кровеносным сосудам.
Периодическое толчкообразное расширение стенок артерий, вызываемое работой сердца, называют пульсом.Пульс определяют в местах, где артерии лежат на кости, например, на виске, на позвоночнике, на лучевой кости и т.д. У взрослого здорового человека в состоянии покоя частота пульса равна 60 – 70 ударов в минуту.
Давление, под которым кровь находится в кровеносном сосуде, называется кровяным давлением. Его величина определяется работой сердца, количеством крови, поступающей в сосуды, сопротивлением стенок сосудов, вязкостью крови. Кровяное давление в кровеносной системе не постоянно. Во время систолы желудочков кровь с силой выбрасывается в аорту. Давление крови в этот момент наибольшее. Его называют систолическим или максимальным. В фазе диастолы сердца артериальное давление в сосудах понижается и становится минимальным или диастолическим. Максимальное (систолическое) давление в плечевой артерии у взрослого здорового человека в среднем равно 100 – 130 мм рт. ст. Минимальное (диастолическое) давление в плечевой артерии составляет 60 – 90 мм рт. ст.
Разность между максимальным и минимальным давлением называют пульсовой разностью, или пульсовым давлением. Пульсовое давление колеблется от 35 до 50 мм рт. ст. Оно пропорционально количеству крови, выбрасываемому сердцем за одну систолу и в какой-то мере отражает величину систолического объема сердца.
Согласно законам гидродинамики, скорость, с которой движется жидкость по трубе, зависит от двух основных факторов: от разности давления жидкости в начале и конце трубы; от сопротивления, которое встречает жидкость на пути своего движения. Разность давлений способствует движению жидкости, и чем она больше, тем интенсивнее это движение. Этим закономерностям подчиняется и движение крови по сосудам.
Разность кровяного давления, определяющая скорость движения крови по сосудам, у человека велика. Самое высокое кровяное давление в аорте – 150 мм ртутного столба. По мере продвижения крови по сосудам давление уменьшается. В крупных артериях и венах сопротивление току крови небольшое, поэтому давление уменьшается постепенно. Наиболее сильно давление падает в артериолах и капиллярах, где сопротивление току крови наибольшее. Кровяное давление в мелких артериях и артериолах составляет 60 – 70 мм ртутного столба, в капиллярах 30 – 40, в мелких венах 10 – 20 мм ртутного столба. В верхней и нижней полых венах, в местах их впадения в сердце, давление крови становится отрицательным, т. е. ниже атмосферного на 2 – 5 мм ртутного столба.
Сопротивление в сосудистой системе, уменьшающее скорость движения крови, зависит от ряда факторов: от длины сосуда и его радиуса (чем больше длина и меньше радиус, тем больше сопротивление), от вязкости крови (она в 5 раз больше вязкости воды) и от трения частиц крови о стенки сосудов и между собой.
С наибольшей скоростью кровь течет в аорте – 0,5 м/с. Каждая артерия уже аорты, но суммарный просвет всех артерий больше просвета аорты, поэтому скорость кровотока в них меньше. Суммарный просвет всех капилляров в 800 – 1000 раз больше просвета аорты, поэтому кровь там течет медленно, со скоростью 0,5 мм/с, что способствует обмену газов, переходу питательных веществ из крови в ткани и продуктов обмена из тканей в кровь.
Общий просвет вен меньше просвета капилляров, поэтому скорость движения крови в венах возрастает, в крупных венах до 0,25 м/с. Давление крови в венах невысокое, и поэтому движение крови в значительной степени происходит за счет сдавления окружающими мышцами. На движение крови по венам оказывает влияние присасывающее действие грудной клетки. При вдохе увеличивается объем грудной клетки, что приводит к растяжению легких. Растягиваются и полые вены, давление в венах становится ниже атмосферного. Возникает разница давлений в мелких и крупных венах, что способствует продвижение крови к сердцу.
Время кругооборота крови – время, в течение которого частичка крови проходит большой и малый круги кровообращения. В норме это время 20-25 секунд, оно уменьшается при физических нагрузках и увеличивается при нарушениях кровообращения до 1 минуты. Время кругооборота по малому кругу составляет 7-11 секунд.