что такое горизонт частиц

Что такое космический горизонт?

что такое горизонт частиц. Смотреть фото что такое горизонт частиц. Смотреть картинку что такое горизонт частиц. Картинка про что такое горизонт частиц. Фото что такое горизонт частиц

что такое горизонт частиц. Смотреть фото что такое горизонт частиц. Смотреть картинку что такое горизонт частиц. Картинка про что такое горизонт частиц. Фото что такое горизонт частиц

Привычный зрительный горизонт, обусловленный шарообразностью нашей планеты, статичен и не зависит от времени наблюдения (к тому же на километровых дистанциях конечность скорости света не принимают в расчет). Но в применении ко Вселенной понятие горизонта теряет былую простоту. Космическое пространство не двумерно, как земной рельеф, а трехмерно, к тому же Вселенная расширяется, причем с переменной скоростью. Более того, применительно к космическим масштабам необходимо помнить о конечности скорости света.

Два горизонта

Понятие космологического горизонта ввели в науку вначале 1950-х годов в связи с разработкой теории горячей Вселенной. А в 1956 году крупный специалист по ОТО Вольфганг Риндлер из Корнеллского университета уточнил и расширил эту концепцию в статье «Visual horizons in world-models». Риндлер предложил по-разному рассматривать космические объекты длительного существования, такие как звезды и галактики с их протяженными мировыми линиями (кривыми в пространстве-времени, описывающими движение тела), и кратковременные эффекты, такие, например, как взрывы сверхновых, которым соответствуют небольшие фрагменты таких линий, а в пределе — просто точки. Корректно описать наблюдаемость объектов обоих типов можно лишь при помощи различных горизонтов.

Границу между наблюдаемыми и ненаблюдаемыми мировыми линиями Риндлер назвал горизонтом частиц, а аналогичную границу между точками этих линий — горизонтом событий.

Согласно стандартной космологической модели, мы живем в однородной изотропной Вселенной. Отсюда следует, что горизонт частиц представляет собой сферическую поверхность, в центре которой находится наблюдатель. Внутренность сферы заполнена долгоживущими космическими объектами (скажем, галактиками), чей испущенный в прошлом свет приходит к наблюдателю. С внешней стороны этой сферы находятся галактики, которые наблюдатель не может видеть ни на каких этапах их истории, предшествовавших моменту наблюдения. Таким образом, горизонт частиц отсекает наблюдаемую зону Вселенной от ненаблюдаемой, то есть по своей сути не слишком отличается от географического горизонта.

А вот горизонт событий не столь нагляден: он разделяет события, которые наблюдатель может увидеть в тот или иной момент времени в своем собственном будущем, от событий, увидеть которые ему никогда не дано. В некоторых космологических моделях присутствуют оба горизонта, в некоторых — только один из них, а в некоторых горизонтов нет вовсе.

Статичный мир

Для простоты рассмотрим горизонты безграничной статичной вселенной. В ньютоновском мире с бесконечной скоростью света (и, как следствие, абсолютным временем), который не имеет ни начала, ни конца во времени, то есть существует вечно, наблюдатель, где бы он ни находился, всегда может видеть все светила без единого исключения. Поэтому в таком мире нет ни горизонта частиц, ни горизонта событий (собственно говоря, там нет и самих событий!) — он дважды безгоризонтен.

Теперь допустим, что в галактиках иногда взрываются сверхновые. Если скорость света бесконечна, эти вспышки мгновенно достигают наблюдателя, так что двойная безгоризонтность по-прежнему имеет место. Однако она сохраняется и при конечной скорости света!

В самом деле, допустим, что какая-то галактика на короткое время увеличила блеск из-за взрыва сверхновой. В вечной и статичной вселенной свет этой вспышки рано или поздно придет к любому наблюдателю. Отсюда следует, что в этом мире нет сигналов, которые наблюдатель никогда не сможет увидеть, и, следовательно, нет горизонта событий (разумеется, там по-прежнему нет и горизонта частиц).

Далее рассмотрим гипотетическую статичную вселенную с началом во времени. В таком мире горизонт частиц представляет собой сферу, расширяющуюся со скоростью света. Если через 5 млрд лет после сотворения этого мира в какой-нибудь из галактик появится наблюдатель, его горизонт частиц окажется сферой радиусом в 5 млрд световых лет. Еще через миллиард лет радиус составит 6млрд световых лет, через 2 млрд — 7 млрд. Этот мир остается неизменным, но его наблюдаемая часть постоянно расширяется.

Как ни примитивна модель статичной вселенной, она позволяет уяснить ключевые черты обоих горизонтов. За пределами горизонта частиц лежат мировые линии, которые в данный момент не могут наблюдаться ни в одном из своих предшествующих фрагментов. А вне горизонта событий пребывают события, которые наблюдатель не способен узреть за все время своего существования.

Ближе к реальности

Наша Вселенная, как известно, отнюдь не статична — она расширяется, причем в течение последних пяти-шести миллиардов лет даже с ускорением (считается, что оно порождено ненулевой энергией физического вакуума, получившей не особенно удачное, но эффектное название — темная энергия). При этом она обладает плоской геометрией, поскольку полная плотность ее энергии равна критическому значению, при котором кривизна космического пространства зануляется. Если бы это равенство имело место в отсутствие темной энергии, прошлая, нынешняя и последующая динамика Вселенной (за исключением ее самого раннего этапа) соответствовали бы модели Эйнштейна — де Ситтера («ПМ» № 6’2012).

Согласно закону Хаббла, радиальные скорости далеких галактик пропорциональны расстоянию до них с коэффициентом, который называется параметром Хаббла H (он зависит от возраста Вселенной и в настоящую эпоху обозначается H0). Поэтому на некоторой дистанции, равной c/H, скорость галактического разбегания становится равной скорости света. Такое расстояние называют дистанцией Хаббла (или радиусом хаббловской сферы), и в нашу эпоху оно приблизительно равно 14 млрд световых лет. Относительно центра сферы скорость расширения пространства внутри нее меньше световой, а вне ее — больше.

Очень важно, что радиус сферы Хаббла в общем случае вовсе не равен радиусу наблюдаемой части мироздания, который, по определению, есть радиус горизонта частиц. Это наглядно представлено в приведенном выше примере статичной вселенной с одновременно вспыхнувшими галактиками. Поскольку там параметр Хаббла равен нулю, хаббловский радиус бесконечен. А вот радиус горизонта частиц пропорционален возрасту Вселенной и при любых конечных сроках ее жизни тоже конечен.

Рассмотрим вспышки сверхновых, одновременно взорвавшихся в двух разных галактиках. Пусть одна из галактик расположена внутри сферы Хаббла наблюдателя, а вторая — вне ее. Наблюдатель увидит первую вспышку и не увидит второй, поскольку расширяющееся пространство «уносит» с собой ее фотоны со скоростью больше световой. На самой сфере Хаббла световые кванты как бы вморожены в пространство, которое расширяется там со световой скоростью, и поэтому она становится еще одним горизонтом — горизонтом фотонов.

Если расширение вселенной замедляется, то радиус сферы Хаббла возрастает, поскольку он обратно пропорционален уменьшающемуся хаббловскому параметру. В таком случае по мере старения вселенной эта сфера охватывает все новые и новые области пространства и впускает все новые и новые световые кванты. С течением времени наблюдатель увидит галактики и внутригалактические события, которые ранее находились вне его фотонного горизонта. Если же расширение вселенной ускоряется, то радиус хаббловской сферы, напротив, сокращается.

Конкретная скорость расширения сферы Хаббла зависит от деталей эволюции вселенной. Например, в мире Эйнштейна — де Ситтера она равна полутора световым скоростям. Поскольку пространство на хаббловской сфере раздувается со световой скоростью, разница между темпами расширения фотонного горизонта и расширения пространства равна половине скорости света. В то же время горизонт частиц во вселенной Эйнштейна — де Ситтера расширяется вдвое быстрее фотонного горизонта (следовательно, со скоростью, равной трем световым).

С глаз долой

Из-за конечности скорости света наблюдатель видит небесные объекты такими, какими они были в более или менее отдаленном прошлом. За пределами горизонта частиц лежат галактики, которые в данный момент не наблюдаются ни на едином этапе их предшествующей эволюции. Это означает, что их мировые линии в пространстве-времени нигде не пересекают поверхность, по которой распространяется свет, приходящий к наблюдателю с момента рождения Вселенной (она называется ретроградным световым конусом). Внутри горизонта частиц расположены галактики, чьи мировые линии в прошлом пересеклись с этой поверхностью. Именно эти галактики и составляют часть Вселенной, в принципе доступную наблюдению в данный момент времени.

Ретроградный световой конус любого наблюдателя во Вселенной, расширяющейся после Большого взрыва, сходится на этой начальной сингулярности и охватывает конечный объем. Отсюда еще раз следует, что наблюдатель может видеть лишь конечную часть своего мира.

Таким образом, нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Некоторые теории ранней Вселенной утверждают, что очень далеко за этим горизонтом она совсем не похожа на то, что мы видим. Этот тезис вполне научен, поскольку он вытекает из вполне разумных вычислений, однако его нельзя ни опровергнуть, ни подтвердить с помощью астрономических наблюдений, доступных в наше время. Более того, если пространство и дальше будет расширяться с ускорением, его нельзя будет проверить и в сколь угодно отдаленном будущем.

В статичной вселенной с фиксированным началом радиус горизонта частиц равен произведению ее возраста на скорость света. В нашей Вселенной он гораздо больше, поскольку расширяющееся пространство увлекает за собой световые кванты. Для определения этого радиуса требуется знание всей динамики Вселенной, в том числе и в фазе инфляции, которым наука пока не располагает. По современным данным, масштабный фактор Вселенной в ходе инфляции увеличился как минимум в 1027 раз, но эта оценка может быть сильно занижена (стандартная космологическая модель вообще не описывает фазу инфляции и отсчитывает возраст Вселенной от ее завершения).

В мире Эйнштейна — де Ситтера радиус горизонта частиц равен удвоенному радиусу хаббловской сферы, который, в свою очередь, в полтора раза превышает произведение возраста этого мира и скорости света. Легко посчитать, что в соответствии с этой моделью нынешний радиус горизонта частиц (и, следовательно, радиус наблюдаемой с Земли области космоса) составляет около 41 млрд световых лет, или 13 гигапарсек. Поскольку Вселенная в эпоху доминирования темной энергии вышла на ускоренное расширение, радиус ее горизонта частиц должен оказаться несколько больше. Впрочем, учет темной энергии дает довольно близкое значение — 14 гигаперсек.

Стоит напомнить, что наши телескопы не могут заглянуть в эпоху, когда космическое пространство было заполнено плазмой и не содержало свободных фотонов. Она завершилась через 380 000 лет после Большого взрыва. Вселенная тогда эволюционировала практически точно по модели Эйнштейна — де Ситтера и продолжала это делать еще не менее 8 млрд лет. Позднее темная энергия внесла свои поправки, но пока что они увеличили горизонт событий не слишком сильно.

Если нынешняя плотность темной энергии в будущем не изменится, эволюция Вселенной постепенно начнет все больше и больше соответствовать модели де Ситтера. В таком случае радиус горизонта событий с течением времени будет стремиться к предельному постоянному значению. В очень далеком будущем все источники света, расположенные вне гравитационно связанной Местной группы галактик (к которой принадлежит и наш Млечный Путь), окажутся за пределами этого горизонта и навсегда станут невидимыми.

Источник

Что такое горизонт частиц

Наш мир, родившийся в процессе Большого взрыва, и поныне расширяется, а объем разделяющего галактики пространства стремительно увеличивается. Скопления галактик, удаляясь друг от друга, тем не менее остаются устойчивыми образованиями с определенными размерами и стабильной структурой. Да и атомы вовсе не набухают в процессе расширения Вселенной, в отличие от свободно летающих фотонов, увеличивающих свою длину волны в процессе перемещения по расширяющемуся пространству. Куда же ушла энергия реликтовых фотонов? Почему мы можем видеть квазары, удаляющиеся от нас со сверхсветовой скоростью? Что такое темная энергия? Почему доступная нам часть Вселенной все время сокращается? Это лишь часть вопросов, над которыми думают сегодня космологи, стараясь согласовать общую теорию относительности с картиной Мира, наблюдаемой астрономами.

Сфера Хаббла

что такое горизонт частиц. Смотреть фото что такое горизонт частиц. Смотреть картинку что такое горизонт частиц. Картинка про что такое горизонт частиц. Фото что такое горизонт частиц

Согласно закону Хаббла, описывающего расширение Вселенной, радиальные скорости галактик пропорциональны расстоянию до них с коэффициентом Н0, который сегодня называется постоянной Хаббла.

Значение Н0 определяется по наблюдениям галактических объектов, расстояния до которых измерены, главным образом, по ярчайшим звёздам или цефеидам.

Большинство независимых оценок Н0 дают для этого параметра в настоящее время значение приблизительно около 70 км/с на мегапарсек.

Это означает, что галактики, находящиеся на расстоянии 100 мегапарсек, удаляются от нас со скоростью примерно 7000 км/с.

В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова.

Величина, обратная постоянной Хаббла, имеет смысл характерного времени расширения Вселенной на текущий момент. Для современного значения постоянной Хаббла, возраст Вселенной оценивается приблизительно в 13,8 млрд лет.

Относительно центра сферы Хаббла скорость расширения пространства внутри нее меньше световой, а вне ее – больше. На самой сфере Хаббла световые кванты как бы вморожены в пространство, которое расширяется там со световой скоростью, и поэтому она становится еще одним горизонтом – горизонтом фотонов.

Если расширение вселенной замедляется, то радиус сферы Хаббла возрастает, поскольку он обратно пропорционален уменьшающемуся хаббловскому параметру. В таком случае по мере старения вселенной эта сфера охватывает все новые и новые области пространства и впускает все новые и новые световые кванты. С течением времени наблюдатель увидит галактики и внутригалактические события, которые ранее находились вне его фотонного горизонта. Если же расширение вселенной ускоряется, то радиус хаббловской сферы, напротив, сокращается.

Горизонт частиц

Горизонт частиц отделяет наблюдаемые в настоящий момент объекты от ненаблюдаемых.

Из-за конечности скорости света наблюдатель видит небесные объекты такими, какими они были в более или менее отдаленном прошлом. За пределами горизонта частиц лежат галактики, которые в данный момент не наблюдаются ни на едином этапе их предшествующей эволюции. Это означает, что их мировые линии в пространстве-времени нигде не пересекают поверхность, по которой распространяется свет, приходящий к наблюдателю с момента рождения Вселенной. Внутри горизонта частиц расположены галактики, чьи мировые линии в прошлом пересеклись с этой поверхностью. Именно эти галактики и составляют часть Вселенной, в принципе доступную наблюдению в данный момент времени.

Для нерасширяющейся Вселенной размер горизонта частиц растет с возрастом, и рано или поздно все области Вселенной окажутся доступными для изучения. Но в расширяющейся Вселенной это не так. Более того, в зависимости от скорости расширения размер горизонта частиц может зависеть от времени, прошедшего с момента начала расширения, по более сложному закону, чем простая пропорциональность. В частности, в ускоренно расширяющейся Вселенной размер горизонта частиц может стремиться к постоянной величине. Это означает, что есть области принципиально ненаблюдаемые, есть процессы принципиально непознаваемые.

Кроме того, размер горизонта частиц ограничивает размер причинно-связанных областей. Действительно, две пространственные точки, разделенные расстоянием больше размера горизонта, никогда не взаимодействовали в прошлом. Поскольку самое быстрое взаимодействие (обмен лучами света) еще не произошло, то и любое другое взаимодействие исключено. Поэтому никакое событие в одной точке не может иметь в качестве своей причины событие, произошедшее в другой точке. В случае, когда размер горизонта частиц стремится к постоянной величине, Вселенная разбивается на причинно-несвязанные области, эволюция в которых протекает независимо.

Таким образом, нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Некоторые теории ранней Вселенной утверждают, что очень далеко за этим горизонтом она совсем не похожа на то, что мы видим. Этот тезис вполне научен, поскольку он вытекает из вполне разумных вычислений, однако его нельзя ни опровергнуть, ни подтвердить с помощью астрономических наблюдений, доступных в наше время, Более того, если пространство и дальше будет расширяться с ускорением, его нельзя будет проверить и в сколь угодно отдаленном будущем.

Горизонт событий

Горизонт событий – это поверхность в пространстве-времени. Такой горизонт возникает не во всякой космологической модели. Например, в замедляющейся Вселенной горизонта событий нет – любое событие из жизни удаленных галактик можно увидеть, если достаточно долго подождать. Смысл введения этого горизонта в том, что он отделяет события, которые могут повлиять на нас хотя бы в будущем, от тех, которые никак повлиять на нас не смогут. Если даже световой сигнал о событии не доходит до нас, то и само событие не может оказать на нас влияние. Почему такое возможно? Причин может быть несколько. Самая простая – модель с «концом света». Если будущее ограничено во времени, то ясно, что свет от каких-то далеких галактик дойти до нас просто не сумеет. Большинство современных моделей такой возможности не предусматривают. Есть, правда, версия грядущего Большого разрыва (Big Rip), но она не очень популярна в научных кругах. Зато есть другой вариант – расширение с ускорением.

Недавнее открытие того факта, что Вселенная сейчас расширяется с ускорением, буквально взбудоражило космологов. Причин такого необычного поведения нашего мира может быть две: либо основным «наполнителем» нашей Вселенной является не обычное вещество, а неведомая материя с необычными свойствами (так называемая темная энергия), либо (еще страшнее подумать!) нужно изменять уравнения общей теории относительности. Да еще почему-то человечеству довелось жить в тот краткий по космологическим масштабам период, когда замедленное расширение только-только сменилось ускоренным. Все эти вопросы еще очень далеки от своего разрешения, но уже сегодня можно обсудить то, как ускоренное расширение (если оно будет продолжаться вечно) изменит нашу Вселенную и создаст горизонт событий. Оказывается, что жизнь далеких галактик, начиная с того момента, как они наберут достаточно большую скорость убегания, для нас остановится и их будущее станет нам неизвестно – свет от целого ряда событий просто никогда до нас не дойдет. Со временем, в достаточно далеком будущем, все галактики, не входящие в наше локальное сверхскопление размером 100 мегапарсек, скроются за горизонтом событий.

Прошлое и будущее

«Над проблемами горизонта я задумался еще в аспирантуре, причем даже не по собственной инициативе, — рассказывает профессор Вольфганг Риндлер, который до сих пор преподает физику в Техасском университете в Далласе. — Тогда была в большой моде теория Вселенной, известная как космология стабильного состояния — Steady State Cosmology. Мой научный руководитель ввязался в ожесточенный спор с авторами этой теории и предложил мне разобраться в существе разногласий. Я не стал отказываться от предложенной задачи, и в результате появилась моя работа о космологических горизонтах.

По словам профессора Риндлера, существует очень понятная интерпретация обоих горизонтов нашего мира: «Горизонт событий образован световым фронтом, который в пределе сойдется на нашей Галактике, когда возраст Вселенной возрастет до бесконечности. Напротив, горизонт частиц соответствует световому фронту, испущенному в момент Большого взрыва. Фигурально выражаясь, горизонт событий очерчивается самым последним из световых фронтов, достигающих нашей Галактики, а горизонт частиц — самым первым. Из такого определения становится понятным, что

горизонт частиц задает максимальное расстояние, с которого в нашу нынешнюю эпоху можно наблюдать произошедшее в прошлом. Горизонт событий, напротив, фиксирует максимальную дистанцию, откуда можно получить информацию о бесконечно отдаленном будущем.

Это действительно два разных горизонта, которые необходимы для полного описания эволюции мироздания».

Источник

Что такое горизонт частиц

Тонкие детали

Расширение Вселенной (мы будем писать Вселенную с большой буквы, хотя речь идет именно о наблюдаемом мире, который иногда пишут с маленькой буквы) является очень странным процессом, осмысление которого во-первых вызывает определенный интеллектуальный дискомфорт, во-вторых приводит к некоторой путанице. Безусловно, путаница в головах не относится к профессиональным космологам и тем, кто серьезно разбирался с этими вопросами (в стандартных учебниках по космологии все обычно аккуратно расписано). Однако, в популярной литературе неточности присутствуют в избытке. Дэвис и Лайнвивер, ни в коей мере не претендуя на открытие нового феномена, попытались обсудить основные неточности, связанные с популярным (и не только) изложением некоторых деталей, связанных с расширением Вселенной, и на наш взгляд им это удалось. Так что их работа носит скорее просветительско-педагогический характер. В приложении к своей статье они приводят цитаты из известных книг известных людей, где в той или иной степени неточно описаны эти детали (не относя себя к числу великих, нельзя не отметить, что и мы в свое время внесли вклад в распространение путанных знаний, о чем весьма сожалеем). Забегая вперед скажем, что основным источником путаницы является использование формулы для релятивистского эффекта Доплера там, где ее применять нельзя.

Обсудим две детали: сверхсветовое расширение (когда скорость удаления галактики превышает световую) и горизонты. В этом нам будут помогать рисунки из статьи Дэвис и Лайнвивера.

Теоретическое введение

В начале немного пояснений.

Будем использовать метрику Робертсона-Уокера в упрощенном варианте:

Напомним, что постоянная Хаббла является величиной, изменяющейся со временем. Она равна отношению производной масштабного фактора по времени к самому масштабному фактору: H=(dR/dt)/R. Скорость убегания определяется как производная собственного расстояния:

В космологии бывает опасно применять СТО (и интуицию на ее основе), т.к. это может приводить к ошибочным выводам (Кианг называет это «тени СТО»). Дело в том, что скорость убегания существенно отличается от привычного нам понятия скорости. Для нее СТО неприменима «в лоб». Скорость убегания является не свойством источника, а свойством точки в пространстве. Поэтому не следует ждать прямой применимости понятий, интуитивно наработанных в СТО, к космологии.

что такое горизонт частиц. Смотреть фото что такое горизонт частиц. Смотреть картинку что такое горизонт частиц. Картинка про что такое горизонт частиц. Фото что такое горизонт частиц
Рис. 1в. То же, но теперь кроме того, что по горизонтальной оси отложено сопутствующее расстояние, по вертикальной оси отложено конформное время. На этом рисунке яснее видны детали вблизи t=0. Кроме того, световой конус превратился из каплеобразной фигуры действительно в конус.

Сверхсветовое расширение

Теперь посмотрим, как ведет себя Хаббловская сфера. Здесь все привычно, в «нормальных» координатах она уменьшается при движении в прошлое. Однако, при перерисовывании в сопутствующих координатах картина меняется (и это помогает прояснить смысл происходящего). Если мы используем сопутствующее расстояние, то хаббловская сфера ведет себя немонотонно! На третьем рисунке (1в) ясно видно, что для данной конкретной модели (30/70) источники могут попадать в Хаббловскую сферу, а потом выходить из нее.

Типичная путаница со сверхсветовыми скоростями убегания и возможностью наблюдения таких источников связана с тем, что используют формулу для релятивистского эффекта Доплера, в которой стремление красного смещения к бесконечности соответствует стремлению скорости к скорости света. Т.о., говорят, следуя этому заблуждению: «наблюдать галактики, убегающие со скоростью больше световой, нельзя, т.к. они находятся за горизонтом». На самом деле они находятся за сферой Хаббла, которая не является горизонтом, а потому их можно прекрасно наблюдать. В некоторых моделях горизонт и сфера Хаббла могут совпадать, но, по всей видимости, мы живем во Вселенной, где горизонт шире сферы Хаббла.

Красное смещение позволяет определить не скорость, а сопутствующее расстояние (если задана модель). Сопутствующее расстояние, χ, как функция z задается произведением (c/R0) на интеграл от нуля до z, под интегралом стоит dz’/H(z’). В ряде космологических моделей бесконечное красное смещение будет соответствовать бесконечному сопутствующему расстоянию. В модели 30/70 бесконечное красное смещение соответствует объекту на горизонте частиц с конечным сопутствующим расстоянием от нас. Как легко понять нулевое значение масштабного фактора в момент излучения будет давать бесконечное красное смещение, т.е. это соответствует источнику на t=0 (R(t=0)=0).

Обычная же интуиция применима на малых расстояниях. Примерно до z=0.1 результаты по выписанным выше формулам и по эффекту Доплера будут близки друг к другу. Также для таких близких источников можно оценивать расстояния умножая скорость света на <(возраст Вселенной сейчас)-(возраст Вселенной в момент излучения)>.

Горизонты

С горизонтами большой путаницы в литературе нет. Просто полезно разобраться. Рассмотрим два важных горизонта: горизонт частиц и горизонт событий.

На рисунках горизонт частиц проиллюстрирован световым конусом из точки t=0, χ=0 в будущее. Однако, этот конус сам по себе не является горизонтом частиц! В каждый данный момент ti горизонт является сечением этого конуса плоскостью t=ti. Т.е. это трехмерная сфера вокруг нас, которая изменяется с течением времени. Зато нарисованный конус позволяет увидеть, как горизонт частиц изменяется со временем (в частности, как «галактики» входят в него, т.е. становятся видимыми для нас).

Обратите внимание, что в модели 30/70 бесконечному будущему соответствует конечное конформное время.

что такое горизонт частиц. Смотреть фото что такое горизонт частиц. Смотреть картинку что такое горизонт частиц. Картинка про что такое горизонт частиц. Фото что такое горизонт частиц
Рис. 2a. Более крупно кусочек рисунка 1а с новыми линиями. Добавлена мировая линия частицы, которая в настоящий момент находится на нашем горизонте частиц. Видно, что ранее она была за этим горизонтом.

Заключение

Выше мы постарались прояснить некоторые тонкие моменты, связанные с расширением Вселенной. Мы можем наблюдать (и наблюдаем) источники, которые и в момент излучения, и сейчас имеют скорость убегания, превышающую скорость света. Расстояния до далеких объектов превышают произведение скорости света и возраста Вселенной. Расстояние, на котором скорость убегания сравнивается со световой, не является горизонтом (т.е. границей видимой части Вселенной), и вообще не является физически выделенным расстоянием (объекты прямо перед этой границей и прямо за ней ничем не отличаются принципиально, как не отличаются и условия их наблюдений). Горизонтом наблюдаемой Вселенной является горизонт частиц, на нем источники имеют бесконечные красные смещения.

Выражаю глубокую признательность С.Блинникову, П.Иванову, М.Прохорову за ряд ценнейших замечаний.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *